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Radiation of Body Waves Induced
by the Sliding of an Elastic
Half-Space Against a Rigid
Surface

G. G. Adams The steady sliding of a flat half-space against a rigid surface with a constant interfacial
Professor, coefficient of friction is investigated. It is shown here that steady sliding is compatible
Fellow ASME with the formation of a pair of body waves (a plane dilatational wave and a plane shear
Department of Mechanical Engineering, wave) radiated from the sliding interface. Each wave propagates at a different angle such
Northeastern University, that the trace velocities along the interface are equal and supersonic with respect to the
Boston, MA 02115 elastic medium. The angles of wave propagation are determined by the Poisson’s ratio
e-mail: adams@neu.edu and by the coefficient of friction. The amplitude of the waves are indeterminant, subject

only to the restriction that the perturbations in interface contact pressure and tangential
velocity satisfy the inequality constraints for unilateral sliding contact. It is also found
that a rectangular wave train, or a rectangular pulse, can allow for motion of the two
bodies with a ratio of remote shear to normal stress which is less than the coefficient of
friction. Thus the apparent coefficient of friction is less than the interface coefficient of
friction. Furthermore it is shown that the apparent friction coefficient decreases with
increasing speed even if the interface friction coefficient is speed-independent. This result
supports the interpretation of certain friction behavior as being a consequence of the
dynamics of the system, rather than strictly as an interface property. In fact no distinction
is made between the static and kinetic interface friction coefficients.
[S0021-89360)02101-3

1 Introduction tical half-spaces sliding with friction due to the presence of

The sliding of two surfaces upon each other is such a COmmgﬁparation waves and/or stick-slip waves. Both of their analyses

. - L owed that such waves could exist only wstjuare-root singu-
occurrence. Yet this phenomenon remains one which is not wj y 9

understood. The relative motion of two surfaces is resisted byaar|t|es at the tips of the slip zones. Freuf] pointed out that the

tangential force which is called the friction force. The ratio of thiglngqlantles encountered by C_:omnlnou and DundGré] would
fequire energy sources and sinks.

tangential force to the normal force is called the coefficient o ' .~ . . . -
kinetic friction (u) and this coefficient can easily be determined Martins, Guimaras, and Farig6] investigated the sliding of

experimentally. However, the mechanics of contact and friction cleslastlc and viscoelastic half-spaces against a rigid surface. Dy-

- o . : amic instabilities, in the form of subsonic surface waves, were
gglrtrgaeﬁc;mglgx. ; J;qcél_gigr:s ;Igsot?csztillﬂgrnn?:tg nm?:ggmi?scuggdpg%%pd for cases in which the friction coefficient and the Poisson’s
tic waves. It is the interaction of elastic body waves with observerqaIo ;Nreorlz isnugg;]eglt;ymlzége\,‘v;\?gée Algzﬁgig[]lessh;vv%z :Egtu?hhet to
friction which is the subject of this investigation. play :

Rayleigh waves can propagate along the free surface of a se gady slid_ir_1g of two e!asti(_: half-spaces is (_j_yna_mically unstaple.
infinite elastic body and have amplitudes which decay exponeh'® instability mechanism is due to destabilization of interfacial

tially with distance from the free surface. Similar waves can travg| P, waves and gives rise to a dynamic '”St?‘b"'ty' in the _form of
glf-exuted motion, which is generally confined to a region near

\ilgrneg it:veelsr:itg;ftzge t;); ggnce?&if]c?gg Sé?%tgdbggr'ﬁ;étsgﬁg g?g%e sliding interface. It was speculated that the instability would
rentually lead to either partial loss of contact or to regions of

known as Stoneley waves. Stoneley waves exist only if the shez ; - ) . . ;
wave speeds of th)é two materials dc>>/ not differ greatly)./ AchenbaEﬁCk'S"p motion. It is noted that the cases |nvest|ggted by Qomm-
and Epsteif2] investigated interface waves in unbonded friction'OY and D_undur§3,4_] were th(_)s_e of fn_ctlon!ess s||d|ng of d'ﬁ‘?f'
less contacts in which separation does not occur. These “smo { materials and frictional sliding of |d¢nt_|cal ma_lt_erlals. Neither
contact Stoneley waves{also known as slip wavesre qualita- © hose cases would lead to the dynamic instabilities encountered

. O . by Adams|[8].
trgr?gaS;ngzgﬁaﬁhgjrig?r:azgzged contact and occur for a Wldet? Adams [9] investigated the sliding of two dissimiliar elastic

Slip waves with periodic regions of separation along a frictio bodies due to periodic regions of slip and stick propagating along

less inerface were found by Comninou and DundalsComni- (22 JEECRCE: | BES Nt ot e S e cond
nou and Dundurf4] also investigated the possibility of two iden- ; 9¢ . - e 9
tions. In particular the interface coefficient of friction can be con-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF stant or an increasmg/decreasmg function of Slip velocity.
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED _However’ _thgapparen_tc_oeffncnent of friction can be less than_ t_he
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Janinterfacefriction coefficient. Furthermore the apparent coefficient
12, 1999; final revision, Mar. 31, 1999. Associate Technical Editor: A. K. Malof friction can decrease with sliding speed even though the inter-
Discussion on the paper should be addressed to the Technical Editor, Profeg%e friction coefficient is constant. Thus the measured coefficient
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,, .. . . : . .
Houston, TX 77204-4792, and will be accepted until four months after final pubIP]c fl’!C’[IOI’l does not necessarily represgnt the behavior of the slid-
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. ing interface. Also the presence of slip waves may make it pos-
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sible for two frictional bodies to slide without a resisting shear  y(x,y,t)=A, cosé, exfik,(x cosf;—y sin6;—c;t)]
stress and without any interface separation. The notion that certain

observed friction behavior is not a property of the interface, but + A, sin 0, exliky(X cosf—y sin§r—Cot)],
rather a consequence of system dynamics, was suggested by Mar-
tins, Oden, and Sines [10]. In the limit as the slip region be-
comes very small compared to the stick region, the results of + A, cosb, exf ik,(x cosf,—y sinf,—c,t)]
Adams[9] become that of a slip pulse travelling through a region i ) )

which otherwise sticks. RickL1] derived that result, in a simpler which were determined by standard coordinate transforr_natlons. In
manner than the periodic solution of Adams, by using the movir%)' u=u(x,y,t) andv=v(x,y,t) are the components of displace-
dislocation formulation of Weertmdi2]. Rice then extended the Ment in thex andy-directions, respectivelyh, , A, are the wave
pulse solution to rate and state friction. Consequences to seisnafiplitudes and,, k, are the wave numbers for dilatational and
ity were also discussed. A numerical solution for a slip pulse wa€ar waves, respectively, and andc, are the dilatational and
found by Andrews and Ben-Ziofi3]. The amplitude of the slip- shear wave speeds, respectively. L

pulse increases and the pulse width decreases as the pulse contilft ©rder for the boundary conditions at the sliding interface to
ues to propagate. This self-sharpening effect is consistent with tfe Satisfied, it is necessary that the trace veldcitynd the wave

1)
v(X,y,t)=—A;sing; exdik,(x cosf,—y sinf,—cqt)]

Adams[8] solution for sliding. number along the interfadd) of both waves, be identical, i.e.,
This papgr_is motivated by the o_Iesire to better underst_and the c=c,/cosf,=c,/cosb,,

nature of sliding interfaces. In particular it addresses the interac- 2

tion of elastic body waves in the sliding of an elastic half-space k=k, cosf;=k, cosh,, = k,=k;ci/c,.

againsi_;\l rigi_?hst;l]rfe}ce. ltt.Wi” bfe shqwnf tgaé steady slliding i?hus it is observed froni2) that the dilatational and shear waves
compatibie wi e formation of a pair of body waves plane yield wave motion along the interface which is supersonic. Fur-

_dllayatlonal wave and a plane shear V\_/)amadlated from_the slid- thermore,(2), provides a constraint between the angles of propa-
ing interface. Each wave moves at a different angle with respect

the interface such that the trace velocities along the interface dlion of the dilatational and shear waves. Finally, the normal and

equal and supersonic. It will further be shown that a rectangular aring stresses are given by

wave train, or a rectangular pulse, can allow for motion of the two  7,,(x,y,t) =A;Giky[(c;/cy)2—1—cos 26,]
bodies with a ratio of remote shear to normal stress which is less .

than the coefficient of friction. xexgik(x—ytan6,—ct)]

—A,Gik; sin 20, exd ik(x—y tanf,—ct)] 3)

2 Formulation of the Sliding Problem Tyy(X,Y,1)=—A;Giky sin 26, exd ik(x—y tan6; —ct)]

Consider a perfectly flat elastic half-space, moving to the left +A,Gik; cos 20, exd ik(x—y tan#,—ct)]
with constant speelfy, in contact with an infinite rigid surface. )
The elastic body is subjected to a remotely applied compressifgereG is the shear modulus.
normal traction p*) and shearing tractiomg) as shown in Fig.
1. The ratiog*/p* is, at this point of the analysis, the same as thg  Steady Sliding With Radiated Waves
coefficient of friction(x), where no distinction is made between
static and kinetic friction.
A well-known solution to the plane strain equations of motion v(x,01)=0, = A,=A,sin6,/cos6,. (4)
is in the form of plane body waves in an infinite medidmg., o i i ]
Graff [14]). It is emphasized that solutions in the form of body"ictional contact obeying Coulomb’s law requires
waves, rather than surfac_:es waves, are sought I_1ere b_ecau;e, as q* + Txy(X,O,'[):/.L[p* —ryy(x,O,t)] (5)
was noted in the Introduction, surface waves for this configuration
were shown to exist only for high values of the coefficient ovhich leads to

For contact of the elastic body with a rigid surface

friction (u>1) and of Poisson’s ratiq 6]). Consider a plane dila- sing. (¢ c.\2
tational and a plane shear wave which move away from the inter- ! (—1) C0S 20,—sin20,=—p (—1) —1-cos 29,
face at angle®, and 6, respectively. The displacement compo- €052\ Cz C2

C1) .
C_z) sin 202} (6)

nents in thex—y coordinate system are (sin 01)(

cosf,

where

y
Y, C1 [2(1—v) b _1(00561) .
Rigid Surface /yz c, N 1-2p’ 27 C0s ci/c,)’ ™
O

X

In (7); v is the Poisson’s ratio an), comes from(2),.

So in order to obtain solutions for sliding with a pair of body
waves and for given Poisson’s ratio and coefficient of friction, it is
necessary to solvi)—(7) for the dilatational wave angled(). It
is, however, mathematically more convenient to végy calcu-
late 6, from (7), and solve foru from (6). Results have been
obtained in this manner and are shown in Figs. 2—3. It is interest-
ing to note that these waves result from tieundary conditions
of frictional sliding of the elastic body against a rigid surface.

3.1 Results and Discussion. In Fig. 2 is shown the angles
of propagation of dilatational wave®{) and of shear waves)
versus friction coefficientu) for various values of Poisson’s ratio
(v). Note that for small values ofi, the angle#, is small and
Fig. 1 An elastic half-space sliding against a rigid surface hence the dilatational wave travels in a direction nearly parallel to

2 / Vol. 67, MARCH 2000 Transactions of the ASME



90 hence the energy dissipated at the interface will be less than the
--------- - 049 work done in moving the rigid body. This extra energy is the
75 =y 04 contributor to the energy of the radiated dilatational and shear
T G waves.
= 60 08
A . . . .
e A — 4 Propagating Stick-Slip Regions
D 45 | . . . . . .
> 45 — 9, In this section the possible relative motion of the two bodies
< [ e | due to the presence of propagating stick-slip regions is investi-
% sor gated. Due to the presence of stick regions, the ratio of the re-
= motely applied shear-to-normal stress would not necessarily be
5y the same as the ratio of the interface shear-to-normal stress. Thus
i . . . * =% /n* * ,
%.0 0.2 0.4 0.6 0.8 1.0 A LR T (20)

Friction Coefficient (u) Tyt 0¥ = u(p* —7y,) in slip regions
F|g 2 The ang|es of propagation of dilatational waves (01) Where/.L* IS the appal’entfl’lctlon COEffICIent,,u IS thelnterface
and of shear waves (#,) versus friction coefficient  (u) for vari-  coefficient of friction, andu is theratio of shear-to-normal trac-
ous values of Poisson’s ratio  (v) tions for the body waves. It will be shown that Coulomb’s law of
friction can be satisfied even though these three coefficients differ
from each other.

Consider a superposition of the wave pairs obtained in the pre-
vious section, the form of which is a rectangular wave train in
tangential velocity(Fig. 4) which is invariant in the moving coor-

the interface. Agw increases so doag . The angle of propagation
of the shear waved, remains almost constant as varies. As
Poisson’s ratidv) increases, so do the values@fand@,. Infact 7 » \ . ; N !
asvincreases toward 0.5, the ratig/c, becomes infinite requir- Tnate k(Xh_Ct)' ,lo\ typical Sft'Ck kreg_lon IS de'ilned.blz/k|x
ing that the angle, approach 90 deg. In Fig. 3 is shown the ratio” ¢l <& whereas slip occurs fa<k|x—ct|<. For stic
u(x,0t)=Vy, Kkjx—ct|<a (11)

of amplitudes of the shear and dilatational wavas /A,) versus

friction coefficient for various values of Poisson’s ratio. Note that . . .

A, /A, is always positive and its value increases with increasi hlch states_that the tangent[a[ velocity of the upper surface of the
friction. Thus small values of correspond to nearly pure dilata-€ astic body is equal to the s_Ildlng speed. The requirement that the
tional waves, with the shear waves becoming more important aVerage values of the velocity, shear stress, and normal stress are
increases. This trend is especially true for a large value of PoR&ch zero for this superposition of harmonic waves leads to rela-
son’s ratio in which case the shear component can be mu}é@,nshlps between these quantities in the stick and slip regions,

greater than the dilatational part. €.,
The question arises as to where the energy source is which _ avy ‘ arStick . arStick
generates these waves. The energy dissipaleel to friction per uShiP= — —— rf;'p: - rﬂ'p: -
unit surface area over one period of oscillation is given by m—a m—a m—a 12)
27/ck
azf plp* = 7yy(x,00)1[Vo— U(x,04)]dt Now the parametes is defined according to
’ a=[ 1 (x0)/GIU(x,01)/c,], (13)
_ 277:“p*v0+ MCKMT (x,01)u(x,08)dt ®) where, from(3), and (9), « depends only o and v and is
ck Yy " independent ok andt. From the plot in Fig. 5 ofx versus the
wave friction coefficient(x) it can be seen that>0. Further-
where more, (12)—(13) leads to
U(x,0t)=—Ajikc cosfy(1+tand, tand,)exdik(x—ct)]. Tf;ick Vo Tf)l/ip aa V,
) —g2, o220
) . G C, G (m—a) cy
It can be shown that the phase af,(x,0t) is opposite to the . , (14)
phase ofu(x,0t). Thuse will be less than (2/ck)up*V, and W aVy 7y’ aa Vg
G  wmc,’ G (m—a)ucy
1.00 In the slip region, the shear stress is related to the normal stress
: through Coulomb’s law, i.e.,
< v=0.49 Ty A% = p(p* — 75yP) (15)
< 075 ¢ 1
< 0.4
2
6:“ 0.50 | 03 u(x,0,ty/c,
é ) Vfe, 7, (x.0,1/G
:‘%L 0.25 | ‘
o2 1 Stlcl.( ----------------
Region
0.00 : : : - - -a a T k(ect)
0.0 0.2 0.4 0.6 0.8 1.0 f y
Friction Coefficient () 7T
Fig. 3 The ratio of amplitudes of the shear and dilatational Slip Region Slip Region

waves (A,/A;) versus friction coefficient for various values of

Poisson’s ratio  (v) Fig. 4 A rectangular wave train of tangential velocity
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1.00 : . . 5
v=0.49 4 v=0.2
075 =
£ g
[ ]
o} £°
g 0.50 + 0.4 ©
o
g ot
& 03 =3 .
L (7]
0.25 0.2 1 /
0.49
0.00 . : : 0 ' ' : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Friction Coefficient (u) Wave Friction Coefficient (i)

Fig. 5 The parameter «a versus the wave friction coefficient (u) Fig. 6 The slip parameter B versus the wave friction coeffi-
for various values of Poisson’s ratio (v) cient (w) for various values of Poisson’s ratio

) o o ] waves with material combinations for which slip waves exist.
where the interface friction coefficieri.) appears in(15). Sub-  such is not the case here in which there is a large mismatch in
stitution of (10)1 and (14)214 Into (15) leads to material properties_

m aa(Vy/cy) It is also observed froni16) that theapparent coefficient of
wE=u— (——1 —0*2, (16) friction («*) will decrease with increasing speed even though the
p ) (m=a)(p*/G) interface friction coefficient £) is constant and speed-

The result(16) is significant only if sliding could occur with an independe_nt. This behavior is due to_the existence of the stick-slip
apparent friction coefficientu*) which is less that the interface zones which propagate along the interface. Thus the use of a

friction coefficient (), i.e., speed-independent interface friction coefficient is consistent with
. — _ observations of friction decreasing with increasing sliding speed.
n<u = u>u>0. (17)  The distinction between observed static and kinetic friction is
The requirement that Coulomb’s inequality be satisfied in tr@reatly influenced by the time of repofeS]. Here the time of
stick region, i.e., repose is equal to the wavelength divided by the speed of the
Stick — stick |_nterface wave. Hence thg time qf repose is short and th(_e distinc-
Try A" <p(=7y "+ p*) (18) tion between static and kinetic friction is not as great as it would

is automatically satisfied due t47). otherwise be.

The normal contact stress must remain compressive throughout
the entire interface. This condition leads to a maximum value & A Slip Pulse

the length of the stick zones &), In this section the propagation of an isolated slip pulse along an
w(p*/G) (19) interface which otherwise sticks is investigated. Conditigrstill
amax™ * . holds along the entire interface, along wittD) in the slip region
#(p*IG)+a(Volcy) (k|]x—ct|<b), and
It is noted that theshear stress is increased in the stick zamel .
that this result may appear counterintuitive. However, the contact u(x,08)=0, Kix—ct|>b, (21)
pressure also increases in the stick region. Sppege Coulomb’s  in the stick region. The width of the stick region i®/k and the
inequality holds. Likewise, in the slip region, the shear stress angkults for this case may be obtained by taking7—a in the
the contact pressure decrease. Thus Coulomb’s law is satisfiediffit asb becomes very small. For this cagg— 0 and from(12),
the slip region but with a different coefficient of friction that theand (14),
ratio of the remote shear-to-normal tractigu*). The tangential Qi Slip
velocity increases in the stick region such that it equals the sliding utt _ g( Tyy )
G |
4.1 Results and Discussion. It is observed that the nature of The magnitude of the slip distance is found by integrating the
sliding friction is profoundly influenced by the length of the sticknegative of the tangential velocity in the slip region. The result is

region, 1.€., USP/(b/k) = B(7SIPIp* ) (p*IG),  B=2(ula)cosb,.

velocity. C, @ (22)

a=0, = u*=n 0 23)

a=aya, = uF=pu. Thus the magnitude of the slip distance depends nonlinearly upon

. ) ) . ) w and linearly upon the magnitude and width of the pdiseFig.
Thus sliding with small stick zones is governed by the interfagg js shown the slip parametg versus the wave friction coeffi-
friction coefficient, whereas sliding with large stick regions igjent ., for various values of Poisson’s ratio. The slip increases
dominated by the behavior of radiated body waves. It is furth@fith increasingu and this trend is more pronounced with smaller
noted that a vanishing value @f causes a perturbation in the,5ues of Poisson’s ratio.
contact pressure without a change in the interface shear stresshe apparent friction coefficient for the slip pulse is found from
This case corresponds t=c,, i.e., a dilatational wave parallel (14), and(16) and is given by
to the interface and no shear wave. Under these conditions con- 7 )
sider an applied normal tractiorpt) without an applied shear p* == (= p) (75 P p%). (24)
traction @*), i.e., u* =0. In that case the results obtained here are
qualitatively similar to the interface stick-slip problem of Adams
[9]. However, the results of Adams were applicable for interface Note thatu, «, and 6, are interrelated.

4 | Vol. 67, MARCH 2000 Transactions of the ASME



Thus the apparent frictiofu*) decreases fromu as the magni- behavior as being a consequence of the dynamics of the sliding
tude of the slip pulse increases, approachings T?;‘PH p*. The bodies, rather than as a property of the interface. No distinction is
coefficientu is related to the wave angly and to the Poisson’s made between static and kinetic friction.
ratio through(6)—(7).

Einally it is noted .that dynamic shear-domina}teq cracks, Propacknowledgments
gating at supersonic speeds along a bimaterial interface with a_ o )
large mismatch in material properties, have recently been ob-This material is based upon work supported by the National
served[16] using photoelasticity and high-speed photographycience Foun_datlon und_er Grant No. CMS-9622196 of the Sur-
The[16] cracks exhibit large scale frictional contact between th@ce Engineering and Tribology Program.
crack faces at the leading edge of the crack-tip. That investigation,
which includes stick, separation, and slip zones, differs from thReferences
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A Mathematical Model for the
Strained Shape of a Large

F. Baginski . s .
waeroso - §oj@ntific Balloon at Float Altitude
W. Collier
Graduate Student A large scientific balloon is constructed from long flat tapered sheets of thin polyethylene
. film called gores which are sealed edge to edge to form a complete shape. The balloon is
Department of Mathematics, designed to carry a fixed payload to a predetermined altitude. Its design shape is based on
George Washington University, an axisymmetric model that assumes that the balloon film is inextensible and that the
Washington, DC 20052 circumferential stresses are zero. While suitable for design purposes, these assumptions
are not valid for a real balloon. In this paper, we present a variational approach for
computing strained balloon shapes at float altitude. Our model is used to estimate the
stresses in the balloon film under various loads and for different sets of material con-
stants. Numerical solutions are compute80021-89360)02201-7
1 Introduction balloon system is modeled as the sum of the hydrostatic pressure

For design purposes, a large scientific balloon is usually moaotential due to the lifting gas, the gravitational potential energy

eled as a loaded axisymmetric inextensible membran ue to the weight of the balloon systeffiim, caps, load tapes,

Archimedes’ principle states that the buoyant force acting on tﬁgd fittings, eto, and the strain energy due to the balloon film and

balloon system is equal to the weight of the displaced air ar# d tapes. The balloon surface is triangulated, using the gore

lifing gas. The balloon system includes the weight of the ﬁ“_rE ructure as a fundamental building block. A flat reference con-
i

load tapes, payload, ballast, venting ducts, end fittings, fins e(guration is associated with each gore in the balloon shape, and so

The design shape is based on conditions that the balloon wﬂf.s possible to associate a triangle in the balloon surface with a

' ; que triangle in the flat reference configuration. A constant
encounter at its float altitude. The standard model was develops'%rﬁain model is used to compute the strain energy for the faceted

g dr?tze:g(l:l:]t?c:i sa;rtgeothJenrllvgfseltr)r/egftgﬂggﬁzofs(g It: Z 13?22_ balloon surface(including internal folds An isotropic plane-
p P stress constitutive model is used to estimate the stresses within

eter that appears in the model equatjoghen one assumes that
the circumferential stresses are zero in ¥ishape equations, its each facet. The load tapes that run along the edges of the gores are

: “ " . modeled as linearly elastic strings. In the present work, we will
solutions are called “natural-shape” balloons. A common filnfl" Y 9 P

used in the construction of large scientific balloons is 20.32 m issume that the zero-pressure level is at the base of the balloon. A

cron polyethylene. The balloon is constructed from flat taperés‘éra'nEd zero-pressure balloon will always have some small inter-

sheets of polyethylene called gores that are roughly 183 meters?%l folds, but we will refer to these as fully deployed configura-

length and about 2.5 meters at the widest point. The gores are h%s' These types of shapes are in contrast fo those with deep
ik

sealed edge to edge to form a complete shape and load tapes' ]n)al folds such as those observed in partially inflated shapes

ag?ceqﬁdlsriznigsevaecrh ?g?rpv'irfsgnrgeggga;ég :ht% 2ﬂ$§qﬁguﬂa he term fold has been used in membrane problems that in-
polyethy y torgiving P lve wrinkling. For example, in Contri and Schref(@f] the au-

have been introduced during the manufacturing process. As & rs draw a distinction between a wrinkled region and what they

3:2;:Sec1hgyn;ﬂ?;(ﬁrsohuaspeslét;(:s?ssfﬁlasbslrlg\?;n ;r;i?aseio;ses&/gtre ?;?t n a “fold” (a large single wrinkle, but without self-contgct
! fr?features are included in their model. For the results presented

sign purposes. Nevertheless, it would be desirable to estlmategére’ the wrinkling in the balloon film is negligible in comparison

the magnitude of typical folds that are observed. We include a
9de| for folds, and ignore wrinkling in the balloon fabric. In our
work, a fold is a region of external contact forming in the center
a gore, where symmetric portions of a flat polyethylene film lie
%ck to back against each other. This is different from the situa-
dign in ([7]), where a fold represents a large single wrinkle, but
thout self-contact.
Although large deformations of membrane-like structures have
jheen studied theoretically and experimentd[ly,8]) the loading

metric solutions based on the natural shdge-4]) or asymmetric conditions and size of a typical large scientific balloon are non-
models that consider large-scale geometric featdfBs]). In standard. For example, the axisymmetric elastic membrane in

these previously mentioned works, the straining in the film i3] is loaded under uniform pressure in the range 98.15 Pa to

ignored. In the model that is presented here, the total energy of tHeL-> Pa. However, the maximum differential pressure at the top
of the balloon at float is only about 3.83 Pa when the tail of the

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF b‘_"‘”oon is at 39429 meters. Although the _membrane considered in
MECHANICAL ENGINEERS for publication in the ASME GURNAL oF AppLiED  Fig. 18.20 of([8]) had roughly the same thickness as polyethylene
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Janfilm, the structure is only about 20 cm in diameter. If one were to
3, 1997, final revision, Oct. 12, 1999. Associate Technical Editor: M. M. Carrolgcgle up this model to the size of a real balloon, one would find

Discussion on the paper should be addressed to the Technical Editor, Profe! _ ; ;
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstoz,ﬁc‘ét the scaled-up version would have a thickness of nearly 1 cm,

Houston, TX 77204-4792, and will be accepted until four months after final pubi@Nd SO it would not be appropriate to extrapolate results to an
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. actual balloon. A similar remark would apply to the results in

stresses in the balloon film during the course of a normal ballo
flight. Ignoring the variety of shapes that are observed shorgg
after launch, there are three types of configurations that warr
study: the in-spool configuratiafprior to launch, ascent configu-
rations, and the float configurations. In this paper, we will restri
our attention to strained float configurations. Our goal here is
present a mathematical model that can provide a reasonable
mate of the balloon film stresses while the balloon is in the fully'
deployed configuration.

Previous work on modeling balloon shapes focused on axisy
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([7]), where experimental data is presented on an airiidgsk- In this paper, we present some results on strained float configu-
ness: 50 to 150 microns, Young's modulus 85 to 177 MPa, Poistions of large scientific balloons that can be compared to pub-
son’s ratio 0.4; the pressure loadings for the experimental airbadished work using finite elements with a tension fidlti0]). In the
were not reported, but the pressure in the corresponding numerigpécial case of float conditions, we find that the approachl6f)
model was reported at 0.005 MRsignificantly higher than the and our own approach lead to the same stress distribution and
hydrostatic pressure experienced by the balloon)fillwould be  strained float shape. In this paper, we include numerical solutions
virtually impossible to build a scaled-down version of a largéor a variety of parameter values and estimate the maximum prin-
scientific balloon, because the film thickness in the actual ballogipal stresses for the corresponding shapes. We find that even in
is only 20.32 microns. These are reasons to develop an accuiéi@ extreme conditions, the maximum stresses fall well below
mathematical model that is representative of how a real ballostess tolerance levels for typical operating conditions. One ad-
behaves. vantage of our approach is that we will be able to apply our strain
Material constants such as Young's modulus and Poisson’s Blergy methods to ascent shape geometries with large regions of
tio are highly temperature-dependent and we will consider shag@iled material[16]). _
for a variety of these parameter values. In reality, the balloon film In Section 2, we formulate our model for strained balloon
is a nonlinear viscoelastic material, but we will model it as ghapes. In Section 3, we present a number of numerical results.
linearly elastic material. We will ignore the stress response histo\%e consider two types of designs. One is based on the natural-
of the ascent to float altitude and assume that the balloon is SaPe model as presented(i@]). The second design is based on
quasi-static equilibrium for a fixed altitude. Since the balloon filn§ variation of the natural shape, where the weight of the cap is

is allowed to strain, internal folds of excess mateférrespond- [Ncorporated as an added thickness in 1hshape model and the

ing to regions of external contadre possible at float. An internal (il Of the gore is tapered near the bottom of the balloon. We

fold is a region of external contact because the outside of tHi!ude computed equilibrium shapes for a variety of parameter

balloon comes into contact with itself. For balloons at or ne2/ues and a higher than nominal payload. In Section 4, we

float, the volume is sufficiently large to avoid internal contact aniresent some concluding remarks.
so we need not consider shapes with wing sect{arnisg sections
are regions of internal contact; for further discussion, (§&p). If 2 Problem Formulation
one models a gore using standard membrane theory, one would o o o )
find that the model would predict negative stresses. In reality, theBefore describing the variational principle that is used to model
balloon film does not undergo compression, but wrinkles and/gfained balloon shapes, we describe first how the unstrained flat
forms internal folds. One way to treat the negative compressioffference configuration is obtained from the generating curve for
is to introduce a tension field modél7,9,10). A fully inflated th_e axisymmetric design shape. This construction is consistent
balloon similar to those considered here is considered1]). with the way real baIIc_Jons are manufacture_d. We will assume that
Tension field theory normally deals with finely wrinkled mem{he number of gores in a complete shapegs Let
branes([11)), but has also been applied to larger scale structures (R4(s),0Z4(s)), 0=s<ly, (1)
such as “folds” in the sense of 7]). While our definition of a ) )
fold is similar to what([7]) term a single wrinkle, our definition of Pe the generating curve for the design shape. We assume that the
a fold refers to a region of external contact. In addition, the prednstrained curved gore is a ruled cylindrical surface that is cen-
sure loading in[7]) is of significantly higher magnitude than thattered about the curve in Eq1). The unit vector normal to this
experienced by the balloon. surface is perpendicular to=(0,1,0). The left edge of the gore
Our approach of modeling the behavior of the balloon film ities in the planey= —tan(m/ng)x and the right edge of the gore
the fully deployed configuration has several assumptions in cofies in the planey=tan(w/ng)x. If we flatten out this region, we
mon with the wrinkling of a thin membranéa) the use of plane obtain what we call the flat reference configuration. Load tapes
stress theoryas applied to individual facets in our triangulation ofare attached along the edges where the gores are sealed to one
the balloon, (b) the assumption that bending of the membran@nother. When evolving an equilibrium shape, the gore can un-
does not introduce stresses, dojithe assumption that the mem-dergo large rigid-body displacements and deformations that strain
brane is not able to support negative strdd2—14). Our ap- the film. We will assume that the deformed gore is symmetric
proach in this paper is fundamentally different from that of @bout they=0 plane, and so we only need to consider the right
tension field. We do not impose the condition that the stresses 8af. The load tape remains in the plape tan(m/ng)x. In Fig.
non-negative(as is done when the complementary approach &a), we present a flat reference configuration. In Fig)1we
used[12]). Rather, we develop a geometric model that allowBresent the curved but unstrained design shape. Because the bal-
internal folds to form within each gorgust as in a real ballogn loon film is so thin, it has negligible bending stiffness. Instead of
What we term a “fold” can be small when Compared to the dicompressing, a small fold of excess material will form along the
mensions of a real balloon, but large in comparison to tHeenter of each gore. This is b_ased on observations of r_eal balloons.
wrinkles which are observed in the balloon film. Unli§8]) and In Fig. 1(c), we present a typical deformed half-gore with a small
([15]), where a relaxed strain energy function is used, in odifternal fold. The pre-image of the fold can be seen in Fig).1
model, we use the usual energy for a constant strain triangle € Will let S¢ denote the right half of a deformed gore. The
folded and nonfolded facetsee Appendix A This is appropriate reflection ofS; in they=0 plane is denoted b§; . The complete
as a first approximation, since we ignore the wrinkling. During thiealloon shape is made from, copies ofS;US; . C, will denote
process of evolving an energy minimizing shape, it is possible thie class of balloon shapes generated in this fashion from a fun-
an intermediate state may possess regions of high negatigmental sectios; . Corresponding t& andS; in the deformed
stresses; similarly, the load tapes may also experience compigsnfiguration are the flat reference configuratioBsands; , re-
sions. These transient states are not physically realistic. H0W9V§‘ﬁectively.
after we have solved the minimization problem and have com- 5 vertexV, | in S is identified with a vertex; ; in S; where

puted a shape that minimizes the balloon’s total energy, we find g +1 +2 Iandi:1, ...N.+2 andn, is the number of cir-

that the averaged principal stress resultants are non-negative{ghferential fibers. Perpendicular to the center axis of a flat ref-
within the accuracy of our numerical model and the strains in th§ence configuration are the directed edgese Fig. 2a)) C;

load tape segments are all strictly positive. In an approach likey. ,—v. , i=1,... n.+2. Note, C;=C, ,,=0. Along the
([7]), the compressive stresses are eliminated through an iterati,y . ¢

procedure at each stage of the incremental loading procedure @ht boundary of a gore are the directed edges,
their algorithm. Ei=Vii12—Via- 2)
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2q+1
(a) (b)
\\
(c)
Fig. 1 (a) S;—half-gore in the flat reference configuration; (b)

unstrained curved configuration; (c¢) S;—deformed half-gore

Verticesv; ,= (X 2,Yi 2,2 ) lie in the planey=tan(m/ng)x, and

€i=UVi+127 Vj2- (3)
M, will denote the edge of a deformed gore R? formed by
joining vertices{v; ,,i=1,... n.+2}. A load tape will be lo-

cated alongM,. Sincey; ,=tan(m/ng)X;,, we say thav; , has
two degrees-of-freedom. Vertices ; are determined by project-
ing v; » onto thexzplane, i.e.,

(Xi,1,Yi1:Zi0=Pud (X 2,Yi 2,2 2]
=(Xi 207 7).

(4)
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Vi+1,1

é_‘2+h2

Fig. 2 (a) Typical quadrilateral in the reference configuration
Sy defined by V;;; (b) distorted quadrilateral in the deformed
configuration Sy defined by v; ;

Vertex v; ; has zero degrees-of-freedoov!; denotes the curve
defined by{v;,,i=1,... n.+2}. The vertex at the top of the
balloon has one degree-of-freedom, since onlyzitbomponent
can vary. The vertex at the tail of the balloon is assumed to be
fixed.

Verticesv_,; and V_,; are determined by symmetry, i.e.,
Ui, —2=(Xi2, 7 VYi2,Zi 2 andV; _,=R,[V;,], whereR[(Y,Z)]
=(—Y,Z). The surfaceS; is triangulated by facets formed from
verticesv; ;. Normal to each facet of this type is an outward
pointing unit vector. We define an outward nornmal; at the
vertexwv; ; that has the direction of the average of all normals of
exterior facets that share the vertex . Vertices

Vi 0= Vi1~ ailj g
will form the crease of the internal fold. The parametgrmea-
sures the depth of the fold at thih station and is computed as

part of the solution process. In the flat reference configuration, we
define
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wherez, indicates the location of the zero-pressure ld{@], Eq.

a;j

V=V, o+t —C;, (7), p. 1.5). The specific buoyancy at float will be denoted by
' "oty (5) by=0(pair— Pgad- N this work, as in previous works, we assume
Vi =RV 1] that the zero-pressure level is located at the base of the balloon,
i,—1— vz i,11s

i.e., zo=0. In this case, the potential energy of the lifting gas is

wherei=2, ... n.+1. Note, bothV; _; andV; ; are identified given by

with v; ; and the verteX/, ; is identified withv; 5. Whena;=0,

thenViy,1=Vivl=Vi’0 andvi,1=vi,0. E as:_bdj f J’Zd\A (10)
The initial configuration of the balloon shape is triangulated. E V

The superscript ®” of a vertex label indicates that it is in the

(unstrainedl initial configuration. By constructiona®=0 and WhereVis the region occupied by the gas bubble. Equatidn is
0 the potential for hydrostatic pressufé 7]). Using the divergence

=p? =p? i 0 g i i
vi1=V;0=v; -y for all i and thev; ;s lie on the generating curve o o oy e symmetries 8f Eq. (10) can be replaced by a
given by Eq.(1). Corresponding vertices in the flat reference CONsim of surface integralé[6]))

figuration are given by, ,,V; . Note, material point&/; ,,V; o
are fixed throughout the evolution, but ., are determined by NG 1
Eq. (5). __ T2 AA

A typical fundamental section generated by the set of vertices Egas= 2ngbd,21 fTZ Z’k-dA, (11)
{vi,;} will be denoted bySi(v; ;) (see Fig. 1c)). The initial un- - '
strained configuration is denoted b%((vﬁj) (see Fig. 1)). As wheredA=ndA, n is normal toS, anddA is surface area mea-
the balloon shape evolves to equilibrium, the vertiogs can sure onS. Because triangles forming the internal fold will not
move, subject to the degrees-of-freedom previously described.contribute toEy,, the summation in Eq(11) is taken froml

Each triangleZ; in the deformed configuration is identified with=1 to |=N$. For triangular facets, terms in E4L1) can be
atriangle7; in the reference configuration. If we IBt;denote the computed exactlysee Eq.(5), [18]).
total number of facets in a triangulation of a fundamental section, Assuming a single balloon skin with uniform thicknessthe
we have gravitational potential energy due to the weight of the balloon film

Ny is
Si= U 7. (6)
=t Efim= f j Wiimzd S (12)

We can partition the sef;={7,I=1, ... N7} into two disjoint S
subsetsT { and 7}, where7{ denotes the set of triangles thatwhere the film weight density &g, . A cap is a subset dbthat
form the “outside” of the balloon andZ'; denotes the set of covers the top portion of the balloon. If the balloon system in-
triangles that form the internal folds. For the range of volumedudes several caps, their contribution to the gravitational poten-
considered here, the trianglds} are those on which the atmo-tial in Eqg. (12) can be incorporated by appropriately modifying
spheric pressure acts. The trianglE$ are regions of external the film weight density. Iior our purposes, WE‘1WI|| assume there
contact(the outside of the balloon contacts itgelflote, triangles are two caps denoted " andC, whereC*CC"CS. Eachcap
in 79 are constructed from the sets; ;} and{v; »}, while tri- is assumed to have the same material properties as the single film

angles in7} are constructed fronfu; o} and {v; 1}. We let N7 Eggelgsofir:gfe;So;gﬁgevtgballoon. We define a functiop) on tri-
denote the number of triangles T’ andN:-denote the number of '

triangles inTif. Without loss of generality, we can assume that o(T))=number of film layers coveringr,.
the triangles7 | are numbered so that

TeT?, forl=1,...N%

Efim IS given by

_ (1) N
TeTh, for I=N%+1,... Ny, Emm=2ngwfnmzl Zjw(T)aredT)), (13)

whereN;= N+ N2. The triangles are labeled from bottom to to
as shown in Fig. (c). A similar convention will apply to triangles
7, and the reference configurati¢see Fig. 1a)). In particular, we
let S¢= UlelT, denote the pre-image df; . By construction NS
=N!=2n, and we say thal,, and T,q,, are adjacent irg; .

The total energy of a balloon configurati@, is the sum of
six terms,

F{/\/herez is the zcomponent of the centroid of trianglg .
The gravitational potential energy due to the weight of the load
tapes is

Lm -
Etapes: nthapef ay(s)-kds,
0

wherew,. is the weight density of the load tapes(s) R3 for
Evota= Egast Efim  Etapest Siapest Siim+ Etop. (8) 0=s<L,ls a parametrization of the curvet,, sis arc length in
whereE,is the gravitational potential energy due to the liftinghe flat reference configuration, aker (0,0,1). Thez-component
gas(i.e., the hydrostatic pressure potentidtyy, is the gravita- of the centroid corresponding to the edggis z ,= Uz +12
tional potential energy of the filmE,pesis the gravitational po- +z ,). The contribution to the gravitational potential of this seg-
tential energy of the load tapes,y, is the gravitational potential ment iSWtape?i,2|Ei|1 whereE; is defined in Eq(2). The energy of
energy of the top fitlingSpesis the strain energy of the load ¢, s, s"*%7 |E|. The gravitational potential energy of

tapes, andSq, is the strain energy of the balloon film. In t.h.ethe load tapes in a complete shape is
following, we give a brief description of each of these quantities

and indicate how they are computed numerically. nc+1
For a balloon at a fixed altitude, it is reasonable to assume that Etapes nthapez ZZ|Ei|- (14)
the densities of the lifting gas,.sand ambient aip,;, are constant =1

over the height of the balloon. In this case, the pressure differenc

across the balloon film at levelis given by Swe assume that the fibers making up a typical load tape behave

like a linearly elastic string with stiffness constafype. If s*
P=—0(par— Pgad (2~ Zp), (9) denotes arc length along a deformed meridional fiber, satite
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corresponding arc length in the undeformed state, the linearized Nr

1
strain ise~(ds* —ds)/ds, and so the linearized strain of tiith Sﬁ,m=2ngz so(T)(N(T)):AT)))aredT)). (22)
segment inM, is =12
e=(le|-|ED/IEI], i=1,...n.+1, (15) Let S¢(v; j) denote the fundamental section of a faceted balloon

defined by vertice$v; ;}. The discrete form of the total energy of
where E; and e; are defined in(2) and (3), respectively. The S will be denoted byE(v; ;), and is obtained by substituting Egs.
corresponding strain energy for ta segmentlof the load tape (10), (13), (14), (16), (22) into Eq.(8). In particular, we have
running alongM, with stiffness constar ,peis 3K pd i) 2|Eil. _
It follows that the strain energy of the load tazpespin a l;or|nplete E(vij)=Egast Eim + Etapes™ Siapest Siim + Ziophiop-  (23)
shape is The last term is the gravitational potential due to the top fitting of
ne+1 the balloon v, is the weight of the fitting and,q,= Zon +2 is its

1 .
_= 2| height of above the base
Stapes anK‘apezl CORIIE (16) A volume constraint,

In what follows, we will assume that the balloon is made up of N7
a single layer. Using the previously defined functienwe will V—ZHQE V=0, (24)
add the contribution of the caps. In our work, we will use a stan- =1
dard measure of shell strain ener@g. (1.2.20, [19]). However, '\ nere); is the volume of the tetrahedron with ba&ein a parti-

since the balloon film has negligible bending stiffness, we droRy, of the gas bubble. Upper and lower bounds in the form
terms related to the bending energy. Retaining only the first inte- '

gral in Eq.(1.1.20 (([19])) and assuming a linearly elastic isotro- X=X =<x'9, 1=2,...,D.+1,
ic material, the film strain enerd$;, is given b
P St 1 9 y 2=z ,<7%, i=2,...n.+2, (25)

Ee P « ) ub H

Smm:mj j {(1= ) yg(u) vE(u) + vya(u) y5(u) A, Osai<e;”, 1=2,...0n.+1,

“ 17) corresponding to vertices with nonzero degrees of freedom are

applied. Because we are including strain energy in our problem

The mixed tensoty; corresponds to the Cauchy-Green strain. Thisrmulation, we do not include the fiber constraints that were
set() denotes the parameter space for the flat reference configmployed in previous workEgs. (13)—(14) of [5]). The Matlab
rations. The vector fieldi in Eq. (17) denotes the displacementsoftware(const) that is used to solve variational problems allows
field that maps a triangle in the reference configuration to one (85) to be specified. In practice, the upper and lower bounds are
the deformed configuration. We will not use directly in our chosen sufficiently large so they do not affect the solution. The
derivation of an expression fd;,,, but we will compute the variational principle that is used to compute the numerical EM-
contribution toSy,,, for a typical facet, then sum the results tashapes presented in Section 3 is given by the following:
obtain an approximation of the total strain energySof

There are alternative forms f&,, and in our computations, Problem (+)
we use S ec minimize:  E(v;),
For S(v; i) e
1 W2ETR subject tor G(v;)=0,
Sim=>5 f J ey AL, a o |
Q satisfying(25), whereG is defined by the left side aR4).

wheren represents the Second Piola-Kirkoff stress tengaep-

resents the strain tensor, and “:” is the tensor inner product. The
contravariant components ofare denoted by*?. Equation(18) 3 Numerical Solutions
is equivalent to Eq.(17) and follows after substitutingn:y

:nf‘;yﬁf into Eq. (17), where Previous work on EM-shape$5,6]) rescaled the balloon di-

mensions to be in agreement with the scaling of the standard
(19) shapes based on the design parametesiad =~ and theZ-shape
equations(see, e.g.[2,3]). In the present work, we use design
E«AM\ s the tensor of elastic moduli, i.e., shapes that are similar to those used for large scientific balloons
flown by NASA. For our calculations, we will consider two types
i ek aa}\aB/L_,’_aa/Laﬁ)\_i_iaaﬁa}\,u, (20) of designs. The first design is based on the standard natural-shape
2(1+v) 1-v ' model as described iff2]). This balloon has a volume of a
E is Young’'s modulusy is Poisson’s ratiog is the shell thick- 804,108 M (28.4 million cubic feey, two caps, and uses a design

. . value of 2=0.29. We will refer to this as theatural-shapede-
ness, andaa,; is the first fundament_al fo_rm Of. the r_eference qonéign. The second design is a 835 347 @9.5 million cubigfee)t
figuration. The Cauchy-Green strain,z is defined in Appendix '

A In our work we use flat facets o approximate the baIIoobaHoon that is based on a variation of the natural shape, where the
: ’ - PP Eaps are modeled as added thickness and the gore is tapered more
surface and so on each facet, we hayg=0, whereb,; denotes

the second fundamental form of the reference confiauration Cthg:m usual near the bottom. For this particular design, the base of
. . 5 9 - “®e balloon is nearly the shape of a cdttee source of the tapered
tesian coordinates are used, &g;= &, .

design profile was a balloon manufactyreNe call this theta-

naB: Eaﬁ)\ﬂwy)\

o

After triangulatingS;, Eq. (18) can be written in the form pereddesign. Because caps are included as an added thickness in
N7 4 the second model, the resulting design shapes are in general
2092 2| n(T):AT)dAC. (21) shorter in height and wider in diameter than the shapes produced

=12 by the natural-shape model, and we cannot assign a valtig®f

) the shape. Material constants and additional parameters are pre-
For a constant strain model, terms of the fau(iT|) and(T|) areé  sented in Table 1. Poisson’s ratioand Young'’s modulus for

constant on each triangl€, so [,n(T,):®(T;)dA° can be re- the balloon film are based on 20.32 micron polyethylene and are
placed byn(T):¢(T,) X area(,). If we add the contribution of highly temperature-dependent. For example, under normal operat-
the external caps, we have ing conditions,» and E could lie within the respective intervals,
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Table 1 Parameter values 3(a)). This means that after straining, the natural shape will have
slightly more excess material in this lower region. Consequently,

Description(units Variable its fold will extend all the way to the base of the balloon. On the
Young's modulusMPa) E 248.2,124.1  other hand, the internal fold of the tapered design initiates much
Eﬁgsvegiéhrfggnsitym s W 008125’;3?3?32 further up from the bottom of the balloon and nearer the top.
fil . . N
Load tape weight densitN/m) Wt;’;‘e 0.08785, 0.08002 Where the natural design forms a small internal fo!d near the bas_e
Load tape stiffness parametg) K tape 25000, 26244  of the balloon to account for excess balloon material, because it is
gllm tgcgness(mlcrc;r}ls A kf 0 0352-350542 tapered near the base, the tapered design does not need to form a
pecify buoyancy at floatN/m d . , 0. ; ; N i
Volume at float(m?) Vi 804198, 835347 fold of excess material. In Fig.(B), we present the tension in
Number of gores N, 156, 159 each segment of the load tape. o
Design gore lengttim) lg 178.476, 181.905  For the tapered design, Fig. 4 suggests that the film is under
Payload(N) 16035, 31751 pjaxial tension near the base. Although the hoop stresses are posi-
Gross weightN) 29531, 45247

tive, they are very smal(less than 0.17 N/cinand within the
accuracy of our model, one could argue they are zero. In any case,
this effect is due to the design shape, not our solution process
~ (compare to Casgly)). Near the base of the balloon, most of the
0.72<v=<0.82 and 124E<248 (MPa). For the purposes of this |oad is carried by the load tapes. However, the tapering of the
paper, we use nominal values-0.82,E=248 MPA, but consider gesjgn in Case(#) tends to transfer more of the load into the film
a number of different combinations efandE. , near the bottom of the ballodisee Figs. % The corners in graphs
We use a specific buoyancy th_at corr_esponds to an altitude Qd5rs=122 min Fig. 3b) and Figs. 4 correspond to the boundary
39,429 m([20], p. 73 as the nominal altitude for Cases I. Casgt the capgwhen the caps are removed, we find that the corners
I(a) refers to the tapered design, while Cas$b) Irefers to the are no longer presentThe caps are not needed to support the

natural-shape design. For Cases II, the specific buoyancy colgeyqon system at float altitude, but are needed to contain the gas

spcénds to.c?n altitude of 36’58.6 T Cas? I\I{uses’the ta(ljpelred 9B(fbble at launch and during the initial stages of ascent. In all
and considers various combinalions or Youngs moaulus angl .es the locations of the fold initiation and termination points

Poisson’s ratio. In Cases I-Il, the payload is adjusted appropfiz, i dicated by a &.” The parameters is measured along the

u
ately so that the balloon is in equilibrium for the float condltlonseolge of the gore in the undeformed configuration.

The5n3umber of circumferential segments in the discretization S One major difference between the present work and our earlier
n.=53. Z . . '
“Inthe following,u, for =12 will denote the princpal siress Ok & energy miniizing shapes s that iber constraints e ot
r(_esultants of théth triangle(see Appendix A The averaged prin- lengths of certain fibers were required to be fixeddowever, we
cipal stress resultants are denoted/y, whereur ;= ur 1, find that our computed solutions at float that include strain energy
. 1 have significantly less distortion when compared with those based
“r,qzi(ﬂrv2q+“ry2q+l)v on the variational principle if[5]). If Ly is the unstrained length
. ~of a meridional fiber and its strained lengthg,,=(1—L4)/Ly.
wherer=1,2,9=2,... nc—1, "_’md'“fv”c:“fﬁ”c' In S, the tri- The quantitiess: are similarly defined, exceps; is the mini-
anglesTyq,Toq+ form a quadrilateral and we can interpgel,  mum ands; is the maximum over all circumferential fibers. In
as measured at the centroid of i quadrilateralnote, inSt,  ([5)) the quantitys, was nonnegative by definition. However, in

Toq, Trq+1 Need not lie in the same pla)me the present work, circumferential fibers are allowed to stretch or
In Table 2, we present data on the strained float shapes for fg,iact “so thaw, could be negative. fEq,| represents the

tapered and natural designs. In both cases, the strained ShapeEﬁ'gFrained length of the “diagonal” edge in th triangle, and

roughly three meters taller than their respective designs. The di- | . . ; B
ameter of the strained tapered shape is about 1.2 meters les eJH' its corresponding %tra'”?d_ length, _theij—nja.x{ﬂedv,[
diameter than its design, while the strained natural shape is abot EaiD)/[Eqil | =1,... N7}. Similarly, 54 is the minimum di-
0.7 meters less than its design. Of the two design shapes consigenal strain andy is the average diagonal strain. One notable
ered here, the natural shape is curved more near its(basd-ig. difference between the present resiitst include strain energy

Table 2 Strained EM-shapes with nominal load at float; units of energy are megajoules (MJ); units of strain are m /m
Tapered Design Natural Design

Description Initial Strained Initial Strained
Young's modulusgMPa) - 248.2 - 248.
Poisson’s ratio - 0.82 - 0.82
Strain energy of film 0 0.00425 0 0.00424
Strain energy of load tapes 0 0.00960 0 0.01007
Hydrostatic pressure potential —1.83983 —1.89893 —1.68884 —1.74499
Gravitational potential of film 0.85422 0.89227 0.77447 0.79135
Gravitational potential of tapes 0.14013 0.14194 0.14013 0.14440
Gravitational potential of top fitting 0.01403 0.01451 0.01376 0.01418
Total energy of balloon system —0.79567 —0.83634 —0.79567 —0.78073
Maximum depth of internal foldcm) 0 1.05156 0 0.62484
Minimum contraction of circumferential fibers 0 —0.01891 0 —0.02027
Maximum elongation of circumferential fibers 0 0.00205 0 0.00188
Load tape strain 0 0.00485 0 0.00509
Maximum strain of diagonal fibers 0 0.00190 0 0.00188
Maximum strain of diagonal fibers 0 0.00655 0 0.00772
Average strain of diagonal fibers 0 0.00431 0 0.00455
Base anglédeg 57.460 56.45 63 60.93
Height of top fitting(m) 105.156 108.784 103.176 106.301
Maximum radius iny=tan(m/ng)x-plane 64.5963 63.9269 63.0744 62.7787
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Fig. 3 (a) Profiles of natural-shape and tapered natural shape designs (---) and strained
shapes (—); (b) one-half load tape tension at nominal conditions; ® marks the range of the
fold

and our previous workwhere fiber constraints are included, e.g stretchs; ; there were a few triangles with a diagonal strefh

_[5]) is areduc_tlon in the overall distortion of EM-shapes. Restricbn the order of 4.0 percent and the average positive diagonal
ing our attention to the data on the float shape§3i), we found  stretchess, were on the order of 0.60 percent. In the present work
distortions on the order of 0.2 percent for the maximum meridpn the natural design, we found that the meridional stretch was
onal stretchés,,, 2.0 percent for the maximum circumferential0.50 percent and the maximum circumferential stretch was 0.20
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Fig. 4 Averaged principal stress resultants (N/cm) for nominal float conditions; (a)
ﬁlyq—circumferential stress resultants, (b) ﬁzwq—meridional stress resultants;  ® marks the

range of the fold

percent; a contraction of approximately 2.0 percent was observeskd here is very similar to the one(J10]), where shapes have a

in the strained float shape. For the EM-shape at float, we foumdlume of around 826,852 H129.2 mcj, the specific buoyancy is

that all triangles experienced a positive diagonal stretch that wa$344 N/ni, and v=0.82, E=248 Pa. The volume is not in-

at most 0.77 percent and on the average about 0.45 percent. cluded as a constraint, and is computed after a solution is found;
In order to compare our results wiffiL0]), we need to compute quadrilateral elements and a finer mesh are usedli@]). The

an estimate of the meridional and hoop stresses. By examining thethor in([10]) uses an artificial bending stiffness to aid conver-

eigenvectors corresponding to the principal stress resultagence, but indicates that this does not affect the membrane solu-

1) .Mz, We observed that ) corresponds to the hoop directiontion. Since the directions of our principal stresses for the float

and u,; corresponds to the meridional direction. The zero loashape align with the circumferential and meridional directions, we

tape slackness case presented|i0]) that were obtained using can directly compare our results with the meridional and circum-

the commercial finite element code ABACUS is the most apprderential stress resultants presented([ih0]). We find that our

priate set of results that are available in the literature for compaéstimated meridional stress resultants are relatively con&gnt

sons with our results on float shapes. The tapered balloon desggoximately 0.28 N/chover the bottom two-thirds of the gore,

Table 3 Strained EM-shapes with heavy load at float, tapered design; units of energy are megajoules (MJ); strains are measured

in m/m

Description Initial Case (h) Case I(b) Case l(c) Case I{d)
Young’s modulugMPa) - 248.2 124.1 248.2 124.1
Poisson’s ratio - 0.82 0.82 0.72 0.72
Strain energy of film 0 0.01428 0.01107 0.01481 0.01550
Strain energy of load tapes 0 0.03404 0.04347 0.03458 0.04446
Hydrostatic pressure potential —1.83851 —2.98221 —3.00368 —2.98545 —3.00769
Gravitational potential of film 0.81339 0.91330 0.91878 0.91401 0.91959
Gravitational potential of tapes 0.13782 0.14542 0.14632 0.14552 0.14643
Gravitational potential of top fitting 0.01403 0.01490 0.01499 0.01491 0.01499
Total energy of balloon system —0.88728 —1.86025 —1.86903 —1.86159 —1.87069
Maximum depth of internal foldcm) 0 1.93548 2.28905 2.26162 2.54203
Minimum contraction of circumferential fibers 0 —0.03485 —0.04074 —0.03058 —0.03591
Maximum elongation of circumferential fibers 0 0.00339 0.00514 0.00459 0.00662
Load tape strain 0 0.00899 0.01032 0.00917 0.01055
Minimum strain of diagonal fibers 0 0.00328 0.00504 0.00450 0.00647
Maximum strain of diagonal fibers 0 0.01279 0.01288 0.01283 0.01292
Average strain of diagonal fibers 0 0.00804 0.00924 0.00828 0.00954
Base anglédeg 57.460 55.28 55.55 55.66 55.68
Height of top fitting(m) 105.156 111.726 112.392 111.735 112.375
Maximum radius iny=0 plane(m) 64.622 63.139 63.020 63.121 63.002
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Fig.5 (a) Profiles of tapered shape design  (---) and strained shapes (—) for Cases Il (a)—(d);
(b) one-half load tape tensions; ® marks the range of the fold

rising sharply in the top one-third of the gore to a maximum valuhat our plots of the meridional and circumferential stress result-
of 1.68 N/cm. In([10]), the maximum meridional stress resultanants in Figs. 4 and the corresponding figurg[it0]) are in good

is roughly 1.75 N/cm and the minimum meridional stress resultagtialitative agreemerti.e., stresses are relatively constant over the
is approximately 0.49 N/cm. The results froffi0]) were ob- bottom two-thirds of the gore, and begin rising at about the same
tained from graphs and so an error on the order of 0.2 N/cstation along the gore to roughly the same maximum values. In
should be taken into account. In addition to the good agreemesummary, we find good agreement.

on the maximum and minimum principle stress resultants, we findBased on the results presented in Case |, we see that the
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Fig. 6 Averaged principal stress resultants (Nfem) (py4.12,4) for Cases Il (a)—(d); (a)-
circumferential stress resultants; (b)—meridional stress resultants;  ® marks the range of
the fold

natural-shape design and tapered design behaved roughly \fng reasonable estimates of the film stresses. Our solutions are
same, so we carried out the parameter studies only for the tapeiredjood qualitative and quantitative agreement when compared
design. In Table 3, we present results for strained float shapes twith similar results obtained using a commercial finite element
support a heavy payloa@lmost double that used in Case As package that is combined with a tension field model. Our results
one might expect, we see upon comparing Tabledumn 3 on strained float shapes give us confidence that when we apply
with Table 3(column 3, a doubling of the payload results in aour model to ascent shapés., partially inflated configurations
doubling of the load tape strain and the corresponding maximumith significant regions of folded material, we should be able to
principal stresses. From Table 3, we see that varying Poissonistain useful estimates for the principal stresses. Our EM-
ratio over the range 0.Rr<0.82 has little effect on the corre- approach is tailored to handle configurations with excess folded
sponding solutions where the fold is present. Near the top of theaterial.

balloon, the solution with the higher Poisson ratend same

Young's modulug has the larger principal stress resultants. A

reduction in Young’'s modulus by a factor of two, is accompanieAppendix A

by an increase in strain of about ten percet indicated by the

load tape strain and average strain of diagonal fibers in Tgble 3 Computation of Principal Stresses. In the following, letT

For comparison purposes, the launch specification for maximuand 7 denote triangles in the reference and deformed configura-
film stress is roughly 3.85 N/cn@2.2 Ibf/in), so the maximum tion, respectively. We temporarily drop the subsctiipfor tri-
stresses that are considered here are within the range that a aalles. In the following{)® represents the “standard triangle”
balloon film might experience. Plots of the design shapes afer a typical T in the reference configuration,

strained equilibrium shapes are presented in Fig. Plots of the e

load tape tensions are presented in Figh)5Plots of the stress O ={(£1.£)|0= 6+ 6H=10<61,6H<1}.

resultants are presented in Fig. 6. Let n andj denote the edges of the standard triangle. Mgtbe
the linear map that takeg to the respective edges,c, € R? of a
4 Concluding Remarks typical triangleT in the reference configuration. Similarly, ety

. N . ._be the linear map that takég to the edges of a typical trianglg
A mathematical model for estimating the stresses in a stralnﬁ]a P & g yb g

large scientific balloon is proposed. Though in some ways le the deformed c_onfiguratiofi,_fzeRS, respectively. The defor-
S fration mapping is linear and is given Ipe T—qe 7 whereq
sophisticated than many standard finite element method packag_eﬁﬂ M- The displ i is defined by th
our model can accurately describe the geometry of the gore struc~ DS V'R (p). The displacement mapping is defined by the
ture with internal folds of excess material as observed in regfluationg=p+u. L . .
balloons. For float conditions, a balloon should behave like a stan-2€CaUse the mapping—q is linear, the deformation gradient
dard membrane under biaxial tension near the top of the ballodn!S the map itself, i.e.,

but somewhere below its shoulder, the balloon should behave aq

more like a degenerate membrane where tension is predominantly F= o MpeMg".

in the meridional direction. Our model predicts similar behavior P

and can handle strained balloon shapes with internal folds, pia-matrix form, the Cauchy strain tensor is given by
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On the Development of
Volumetric Strain Energy
5- Do} Functions

K. Schweizerhof
To describe elastic material behavior the starting point is the isochoric-volumetric de-

Institute for Mechanics, coupling of the strain energy function. The volumetric part is the central subject of this
University of Karlsruhe, contribution. First, some volumetric functions given in the literature are discussed with
76128 Karlsruhe, Germany respect to physical conditions, then three new volumetric functions are developed which
e-mail: mechanik@bau-verm.uni-karlsruhe.de fulfill all imposed conditions. One proposed function which contains two material param-

eters in addition to the compressibility parameter is treated in detail. Some parameter fits
are carried out on the basis of well-known volumetric strain energy functions and experi-
mental data. A generalization of the proposed function permits an unlimited number of
additional material parameters. Dedicated to Professor Franz Ziegler on the occasion
of his 60th birthday[S0021-89380)00901-§

1 Introduction For compressible materials a totally decoupled isochoric and

olumetric material behavior is commonly assuntsele citations

The success achieved in the application of finite element tech- . . — ) .
nigues during the recent years has the consequence that nowa(yﬁa sﬁy?gr:én-rthel f]sliav?/isthtct)hfeh?n\?;fig]ttlgn of the isochoric left

nonlinear material laws at finite strains are frequently applied
structural analysis. In the case of finite elasticity, strain energy 15=3"2R,, Hg=3"*,, =1 (1)
functions for compressibléor nearly compressiblematerials are
preferable because displacement-based finite elements can
used. As a special assumption the isochoric-volumetric decou- R=3713 )
pling of the energy function is frequently applied in this context. : v
An advantage appears that the isochoric and the volumetric matéich date back to Flory2]. Because of the isochoric incom-
rial behavior can be treated as completely independent, whiptessibility the classical constraint (sLholds, thush A A 3=1.
permits their decoupled treatment in the development of finitdow only two of three isochoric principal stretches are indepen-
elements, e.g., using different integration schemes to avoid loakent. Including the isochoric-volumetric decoupling into the strain
ing phenomena. A disadvantage of the split is the increase @fergy function leads to
computational effort due to the product formula that must be taken -
into account, deriving the stresses and the elasticity tangent from W=W(lg,115)+UQ), ?)
the strain energy function. N Y
The outline of this contribution is as follows: After reviewing W=W(R1,A2.A3=ky ") +UQ)

the isochoric-volumetric decoupling of the strain energy functiogyhere\W is the isochoric part antd(J) is the volumetric part.
the conditions imposed on the decoupled energy function are mo-The question for which materials or in which range such a
tivated and a complete representation is given. Then the focusyiscoupled strain energy function holds is not discussed (seeg
on the volumetric part, first discussing known functions and thefig.  Penrj3]) for some criticism of the additive split or van den
developing new functions. Bogert and de Bordq#4] for the investigation of coupling terms

In the following we assume that the additive s|§8} is valid for

the materials considered.

aB(é the isochoric principal stretches

2 Decoupling of the Strain Energy Function

As is well known(e.g.,[1]) under the assumption of isotropy ) ) )
the strain energy function depends only on the Ieit right 3 Requirements for the Strain Energy Function

Cauchy-Green tensdrthrough the invariantk,, 11, 11, orthe  The strain energy function has to satisfy some physical condi-
related principal stretches;, Az, A3: tions. For completeness the conditions are listed for the isochoric

W=W(b)=W(Iy,115,15)=W(Aq,As\s). part as Wc_ell as fo_r thg volumetric_: pa_rt_separately. _In eaph case a

) ) ) ST short motivation is given. For simplicity the considerations are

_In the compressible case aII_lnvarl_ants and prlnmpgl stretches @ksed on the representation §3)Some typical references are
|ndepe_ndent a_nd no constraint exists. The determinant of the d®yden[5,1] or Ciarlet[6]. It should be noted that all of the con-
formation gradient, which allows for the measurement of the locgltions imposed on the isochoric strain enelyyin this contribu-
change of volume during the deformation, is givendby JIIl},  tion coincide exactly with those imposed on the strain energy
=N1h2h3 With 0<J <o, function for incompressible materials. The only difference is that
the isochoric principal stretches replace the principal stretches
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The determinantl and therefore the volumetric part fulfill this In the following the attention is focused on the volumetric
requirement automatically. For isotropic materials the derivativesrain energy functiotJ exclusively.
must fulfill the following conditions:

I3 WAy, Ao, h3)[5 —1=3 WXy, Az, A3)]5 1, _ _ . . :
AW A2 AR =1 = R WAL A2 AR o0 4 Discussion of Volumetric Strain Energy Functions
%Wk Ko Ro)lR _1=32 s W(Ry Ry Ra)l5 1, The first part of this section extends the considerations of Liu
o 7 (4) and Mang[7] and sets the motivation for the second part which
deals with the design of alternative volumetric strain energy
functions.

2 Ao s R TR
19;i):jW()\1,)\2.7\3)|>\m:1:3;k;|W(7\1,7\2,)\3)|>\m:1
for i#j, k#l. 4.1 Functions Suggested in the Literature. In Table 1
Herein @ denotes the first partial derivative with respect to th&2 ¢ volumgtng strain enre]rgy functions ?queSted in t?e literature
indicated variable and? denotes the second partial derivativeZ o SUmmarzed. Some characteristic references arel fBuss-
" ; ' i <~ "~“man and Bath¢8], Simo[9], van den Bogert and de Borfst0],
These conditions hold only in the case of identical princip hang et al[11], van den Bogert et aJ4]; for U, Hencky[12]
stretches. Becgus_e of definitidg), |der_1t|cal prlr_lqlpal stretches Valanis and Landel13], Simo et al[14], Simo[15], Roehl and
always lead tov,,=1. The corresponding conditions on the degamm[16]; for U Simo and Taylof17], van den Bogert and de
rivatives of the vqu_metrlc part are the_n automatically fuffilled. gq ot [10], Liu and Mang[7]; for U, Ogden[18], Simo and
In the strainless initial state no strain energy Taylor [19], Miehe[20], Kaliske and Rotheff21] and forUs Liu
W(R,=18,=1/5=1)=0 and U(J=1)=0 ®) etal. [22-23. The cited references show that the isochoric-
volumetric decoupling of the strain energy function is very com-
is stored. If the strainless state is assumed to be stressfree rttan, especially in the treatment of nonlinear elasticity using the
condition finite element method. In some references the extension of incom-
pressible materials to nearly incompressible materials is dis-
93U]3-1=0 (6)

must hold, wherep(J)=4d;U represents the volumetric stress
(=hydrostatic pressufeDue to (4), no similar statement for

d;, W can be obtained. If strains are present, hg# 1, the stored Table 1 U(J) suggested in the literature  (see references )

energy U, (J)=K(J—-1)%2
SN - o alieg U,(J)=K(In J)%2
WA # L #LA3=A; "N, 7)>0, UJ#1)>0  (7) U3(3)=K[(I—1)2+(In J)2)/4
- U (d)=KO 2(61InJ+J 7—1) for <—1
must be always positive. Us(J)=K(J In J—J+1)

In the case of infinitesimal strains the strain energy function
leads in the limit to the classical Saint-Venant-Kirchh(VK)
material law Table 2 Fulfillment of the volumetric conditions for the given
and proposed U(J)

WA — 1A= 1A= ] A, D)+ U(J—1)—Wsgyk.

S . L o Literature Proposed
Considering the tangent of the stress-strain relation in the initial
state the conditions Condition U, U, Uz U, Us Ug U; Ug
L 2 2 e . S (5)2 v v oo v L
[(9}\iW+ o'?}"\i)‘\iW— &ii;\jw])\lal,)\zalv}\?’:}\zl}\;lﬁ) 2u for i#j 2?)) V \’ \' w’ \' \ \’ \
(O A
and (9)1 —KI/2 N | oK | |
(9); ——K f | | /
AUl K (10,
T (10, v 0L
occur, wherew is the shear modulus arndis the bulk modulus of (1D V 1#ind I oo
the infinitesimal theory.
In the limit case when the continuum degenerates to a single
point, the strain energy tends to positive infinity and the volumet
) 1eTgy STt U(J)/K
ric stress to negative infinity:
ap. A
U(J—>+O)—>+Oo and (9\]U|J*>+O—>_°o. (9) :. / )

Accordingly, a infinitely stretched continuum results in a positive
infinite strain energy and a positive infinite volumetric stress

U(J—+x)—+o and 9yU|;_ ;..— +=. (10)
These two limit cases lead to undeterminable isochoric stretche
(2) due to a product zero times infinity. Therefore no conditions

for W and JNW are available.

With respect to the requirement of polyconvexity of the strain
energy function the volumetric part has to satisfy the convexity
condition

#3,U=0 (11)

which appears in conjunction with the existence of soluti@es,
e.g.,[6]). Fig. 1 Curves U(J)/K
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Fig. 2 Curves of the first derivative  d;U(J)/K

cussed. These proposed extensions are closely related to the vekperimental data for nearly incompressible rubber rather well. In

metric strain energy function and can be interpreted in a similétis respect the violation of the conditions (3@nd(11) seems to

fashion. be acceptable because for nearly incompressible materials a large
For the given volumetric strain energy functions, the fulfillmenk has to be taken andi remains close to 1. Applications with

of the conditions(5)—(11) in Section 3 is given in Table 2. A 1 should be handled with care due to the small volumetric stress

denotes the fulfillment of the corresponding condition. In the cag@yained in this rangésee also Fig. ¥

of violation the limit value is listed instead. It is obvious that only

the behavior of the functiond; andU, is correct. The functions 4.2 Alternatively Proposed Functions. Before developing

U4, U,, andU5 show some deficiencies. In particulek; andUs  alternative volumetric functions their desirable properties must be

should not be used in applications with large compression whitfined: First, the functions must be conform with the physical

U, does not make sense in cases where large volumetric expasnditions(5)—(11) and, second, the functions should be as gen-

sions occur. In Figs. 1, 2, and 3 the functiddg, U,, (indexa  eral as possible. The fulfillment of the second requirement has the

stands forg=—2) and their derivativeg,U, 43,U are given(the advantage that a wide range of experimental data can be fitted

newly proposed functiontlg_g are discussed laterAll curves with only one general function. Then a wide range of elastic volu-

are plotted usingK to scale. The fulfillment of the conditions metric material behavior can be described with little effort—

(5)—(11) can be checked now very easily. It appears also that thgich can be seen as an advantage in conjunction with finite

functionsU; andU,, lead to very similar shapes. _ element codes. This means not each special material should have
The compressibility parametét only scales the functions but i s cial volumetric function but its special parameters within a

does not change their shapes. In thls_conl@m'an b_e_u_nterpreted g|eneral function. Generality of a volumetric strain energy function
as a penalty parameter that enforces incompressibility if large val-

ues are chosen. The functibh, seems to be superior compared t S only achieved, if some additional material parameters are incor-

the other functions given in Table 1 because it contains one adafgrated. In the following a class of volumetric functions with two

tional parameted which permits to fit the shape of the function to2dditional parameters is proposed. The design process of such

experimental data. However, only values@f —1 guarantee the functions is described in detail with respect to the fulfillment of

fulfillment of all conditions. In the literature the choige=—2 is the physical conditions.

very popular. As found by Ogdefi8] the valued=9«—1fits 451 Fynction With Two Additional ParametersThe pro-
posed starting point of the development is the following equation

a5, U)K

4 pe(1)=0,;Uq(J)

=K(J*=J A (a+p) " with[a>0 and B>1

(12)

for the volumetric stress. The index 6 indicates a new volumetric
strain energy function. Conditio(6) is obviously fulfilled. The
first term with the positive exponeliix>0) vanishes ad— +0.
The second term with the negative exponéft-1) vanishes as
J— +o0. Consequently the conditions (9and (10) hold. The
differentiation of Eq.(12) with regard toJ shows that conditions
(8), and(11) are fulfilled. It has to be noted, that starting with an
undetermined constant if12) the constanK(a+ 8) ! follows
directly from condition (8). The integration of Eq(12) with
regard toJ results in the following according volumetric strain
Fig. 3 Curves of the second derivative ~ @%,U(J)/K energy function:

0o
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Us()=K[(a+1) T+ (1)1 B D)(a+p)' —K(a+1) 1(B-1)""|.

(13)

The integration constant is chosen such that conditiory (5§) Because foww=1, B—1 the functionUg becomes identical to the
satisfied. Conditions (%) (9),, and (10) are directly fulfiled. well-known functionU,,, the applicability ofUg is confirmed
Differentiating or integrating(12) the negative exponent of the once more.

second term is preserved whereas the sign changes. This propery Assessment: As mentioned previously, the volumetric func-
holds asg>1 and ensures that the volumetric strain energy funtion Uy, (indexb meansf#=9) was found to fit experimental data
tion as well as the second derivative remain always positive. Thregher well in the compression range for nearly incompressible
in the limit Ug tends to infinity asJ—+0 or J—+«, as it rubber. But for this choice o, the violation of two physical
should. conditions must be accepted. The first derivativeJgf in com-

In Egs.(12) and (13) two special cases are contained. Settingarison with Eq(12) would suggest to use the values-—1 and
B=a the relationpg(J)=—pg(J 1) holds. That means in a ho- =10, which would violate the restriction for parametein (12).
mogeneously compressed brick with the stretch fagtoft(y Choosinga=0.001 and3=10 (referenced ablgq) the restrictions
>1) and in a homogeneously expanded brick with the streté@r «, 8 and all physical condition5)—(11) are fulfilled. The two
factor y volumetric stresses act with identical absolute values bv@lumetric stress graphs derived frdthy,, Ugg are given in Fig.
different signs—once as compressive and once as tensile strdsdn the compression rangd< 1) both graphs are nearly indis-
Using 8= a+2 the relationl(J) = Ug(J 1) holds, i.e., two iden- tinguishable. Thus once more a good parameter fit to experimental
tical bricks, the first compressed homogeneouslyyby and the data(see Ogdeii18] and referencess obtained, and the general

second expanded homogeneouslyjbgtore the same volumetric stabi!ity and versatility ofUg is confirmed. As a drawback the
strain energy. physically nonreasonable small stressesJferl should be men-

Figures 1, 2, and 3 contain the curves for functidg, (indexa tioned. Due to the fulfillment of all conditions the performance of
meansa=pB=2) and its derivatives. The identical constants refef'sa @Ppears to be somewhat more reasonable in this range.
to the first one of the special cases considered above. The fulfill-4 > 5 Generalization of the Two-Parameter Functiom fur-

ment of the condition$5)—(11) is obvious. _ _ther generalization of the volumetric strain energy funclibnis
The major task now is to assess the new volumetric functiQfyssible by the additive composition of single functions of the
Us. proposed typ€l2). The volumetric stress of the generalized func-

1 Assessment: The limit procegs—0 in Eq. (12) leads di- g is then given b
rectly to the pressure formula g y

-1

Z:l (a;+Bi)

> (Ja._\]ﬁ.)}

i=1

_ _ p69er(J):f9JUGQe,{J)=K
p(d)=K(1-3"#)p1 (14)

with ;>0 and B;>1. (15)

given in Murnaghan[24], pg. 73. Note, that in this contribution | eqration of Eq.(15) results in the generalized function

the compressive volumetric stress has a negative sign in contrgst (J). The integration constant has to be determined from
e ; ; ol J).

to the positive pressure in the cited papers. The advantage of é%%gz It is straightforward to verify thalgge{J) fulfills all con-
pressure formuldl4) is its excellent adjustment to experimentaljisions (5)—(11). Now more general strain energy functions with
data for sodium(see references in Murnagh§2d4] for informa-

. . : ; . an unlimited number of additional material parameters 3; can
tion concerning the experimentsSetting3=3.79 the experimen- be derived. P ters f

tal valuesp(J) are approximated at pressures up to 10GPa within ¢ ghoyid be mentioned that every additive composition of the
the accuracy of measureméittree percent Therefore the prac- gingje yolumetric strain functiond; _, which fulfills the physical
tical applicability of Us is proofed. On the other hand the volu-congitions is an admissible “generalization” of the single func-
metric strain energy function based on Murnaghan’s pressure f%‘ns; e.g., the functiony,+U,)/2 leads to an admissible new

mula(14) is a limit case(a—0) of the well-behaved more generalg nction which overcomes the deficiencies of the single function
function (13) which fulfills all conditions(5)—(11). In Fig. 4 the

volumetric stress curve derived fromJg, (index b means

a=0.001,8=3.79 is given. The curve fow=0 is omitted here,  4.2.3 Further Functions. In addition to functionUg, two
because no difference compareddtJg, is visible. Due to ex- further functions

perimental considerations the fit of the volumetric stress

(':prgssurbeseems to be supgrior_ over the fit of the energy func- UL())=K(exp(J—1)—InJ —1)/2
tion itself or the second derivative. Therefore the plots of the
U-curves ands5,U-curves are omitted.

2 Assessment: The task now is to fit the constantnd 3 in Ug(J)=K(J—1)InJ/2
Ug to obtain similar curves as given by the two frequently used
and well-behaved functiond; andU ,, (indexa meansf=—2).
Because both functions are similar, the attention is restricted here
to functionU,,. Looking at the first derivative of),, the com- are newly proposed here in the context of volumetric strain energy
parison with Eq.(12) would lead directly to the constantsfunctions. As reported in Table 2 these two functions fulfill all
a=B=1, which in turn would violate the second restriction inconditions(5)—(11) as well. However, they do not contain some
relation(12). But the choicex=1, f—1 (especially3=1.001 ref- constants to influence their shapes, which reduces the possibilities
erenced adJg.) satisfies the second restriction and a perfect pé#o fit experimental data in general. But both functi¢h6) seem to
rameter fit with respect t&J,, can be observed. In Fig. 4 thebe superior oved, U,, andUg because they do not violate any
volumetric stress curve;Ug. is plotted. The curve fo#;U,, (see condition. For further comparison the functiobls and Ug, re-

Fig. 2) is omitted here because it is indistinguishable frejdg..  spectively, their derivatives are also plotted in Figs. 1, 2, and 3.

(16)
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Two additional parameter fits of the single functidhy are
performed now with respect to the functiokls, and Ug. This

should give an idea of the possibilities and limits in the approxi-

mation of volumetric stress data usitfy. With «=2.3, =1.4
referenced asJge the functionU- is fitted and with a=0.45,
B=1.05 referenced adg; the functionUg is approximated. The

derived volumetric stress curves are plotted in Fig. 5. The com-
parison shows that bott; andUg can be nearly approximated by (12

Ug. To expect a perfect approximation in the whole range) of
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Melan’s Problems With Weak
Interface

S. Lenci The problem of a fiber attached to an infinite sheet (Melan’s problem) has been recon-

Instituto di Scienza e Tecnica delle Costruzioni, sidered under the hypothesis that the adherence between the two bodies is not perfect. We
Universita di Ancona via Brecce Bianche, have assumed that the link is guaranteed by the so-called “weak interface,” i.e., we have
Monte d'Ago, supposed that the jump of the displacement is linearly proportional to the interface stress.
60100 Ancona, ltaly The solutions of (i) the case with a concentrated force acting on the fiber and (ii) the case

of the redistribution of stresses as a consequence of the rupture of the fiber have been
obtained in closed form. We have discussed how the interface stiffness k influences the
solutions and, in particular, the interfacial stress. Emphasis is placed on determining how
the zone of influence of the applied load is modified by k. Approximate (though accurate)
simple expressions for the length of the zone of influence are given and discussed.
[S0021-893600)01001-1

1 Introduction semi-infinite plate. Their works are based on the hypothesis of

. - line contact between the bodies, a hypothesis removed initially by
In 1932, 'V'e'a”m _st_udlec_i the problem .Of. transmission OfLeFevre et al[13] and successively by Muki and Sternbéfig}|
stress between an infinite stiffener and an infinite, linear elast

heet B . tact adh bet the bodi y considering an area contact model.
sheet. by supposing periect adherence between the bodies an e numerous contributions of the Russian school, sometimes

treating the fiber as a uniaxial bar, he was able to obtain thgerapping with the previously cited works, are summarized in
c!osed-form.solutlon of the problemlwhen the gxte.rlor load Co%rigolyuk and Tolkachey15] (Section 3.2
sists of a single force directly applied to the fibig. 1). He g far, all the authors have considered perfect adherence be-
determined the interface tangential stress and he found that it Bgaen the plate and the string. Budiansky and /] and Ryba-
comes unbounded in the neighborhood of the force applicatiQly and Cherepanofil7] remove this hypothesis by considering
point. The singularity is of the logarithmic type, contrary to that ofhe case where the stiffener is riveted to the plate at discrete points
power type observed in the case of force directly applied to th@ith a constant spacing, while Rybak§e8] studied the same
plate([2]) (Article 148). This fact emphasizes one of the practicatase but with a broken stringer.
advantages obtained by introducing a stiffener to transmit a con-another different interface is that with friction. This case has
centrate force to a plate. Melan further considers the case of §&en analyzed, for example, by Antipov and Arutyunyas,
infinite edge-stiffener glued to the boundary of a semi-infinit4ho consider the simultaneous presence of Coulomb friction and
sheet, but this problem gives rise to the same mathematical fgerfect adherence.
mulation as the former. By experience, apart from perfect bonding, riveted contact, and
The pioneering work of Melan was successively reconsiderégction, another transmission condition is suggested. In fact, when
and extended by different authors, especially as a consequencenefstiffener is glued to the sheet by an adhesivihird materia),
its importance in the field of reinforcing aircraft structures andy jump in displacement proportional to the transmission stress is
later, in the field of fibro-reinforced composites. Koif&] ob- observed, although the continuity of the tensions is maintained for
tained a very involved solution for the case of a semi-infinite fibesquilibrium. In the framework of linearized elasticity, a natural
attached to an infinite and to a semi-infinite sheet, a probleway to model such a situation consists by assuming that the trans-
previously treated by Buell4]. Benscotel{5] and Erdogan and mission stress linearly depends on the jump of displacement
Gupta[6] studied the case of finite-length fiber, the first when it is
glued to an infinite shell and the second when it adheres to the

boundary of a semi-infinite sheet. Lee and KIdifg extend the 7= K(Utiper— Usheel @
work of Erdogan and Gupta, considering the presence of a circular
hole within the plate. Equation(1) is a particular case of a more general theory aimed at

The hypothesis of one-dimensional behavior for the string walescribing the mechanical properties of interphases, which was
removed by Muki and Sternber@] (infinite stiffeney and by initially developed by Goland and Reissri@0] and by Gilibert
Shield and Kim[9] (finite-length fibey, who consider the flexural and Rigolof21] and which was successively studied by Klarbring
stiffness of the fiber, and by Bufl¢i0] and by Muki and Stern- [22] and by Geymonat et g23]. In (1), the parametek summa-
berg [8], who, in the framework of two-dimensional elasticity,rizes the mechanical characteris;ics of t_he interface, and it can be
model the stiffener as an infinite strip attached to the boundary @@mputed from the elastic moduli of the interphase on the basis of
a semi-infinite plate. the formulas reported if23]. Equation(1) is called aweak inter-

A geometrically different problem was analyzed by Reissnd®C€transmission condition, and it describes also the behavior of
[11] and by Goodier and Hs{L2], who consider the case of theadhesives and of many kinds of nonperfect bondifigctured,

stiffener perpendicular, rather than parallel, to the boundary of t8maged etg. ) ] ] ) ]
The interface which allows jump in the displacement is some-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF tlm.es appositely deSIQneq' In fa(.:t’ I.t has at 'e‘f"St MO ad.vanta.ges’
MECHANICAL ENGINEERS for publication in the ASME durnAL oF AppLiep  WhiCh may be very useful in applications. The first is that it avoids
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov.the singularity of the stresses in the presence of a concentrate
18, 1997; final revision, Oct. 12, 1999. Associate Technical Editor: M. M. Carrolfgrce. Seconc”y, it relaxes the peaks of the interface stress, g|v|ng

Discussion on the paper should be addressed to the Technical Editor, Profe! o : ; ;
Lewis T. Wheeler, Department of Mechanical Engineering, University of Housto?%etter redistribution of the applied load. These facts, in general,

Houston, TX 77204-4792, and will be accepted until four months after final pubikOnsiderably reduce the probability of failure of the assemblage
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. and increase its ductility.
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In this paper Melan’s problem is reconsidergkction 3 by ~ p(s) #(s)
supposing that the interaction between the fiber and the sheet is —s?U(s)+ise*(s)+ EA EA O (6)
governed by Eq(l) and by the continuity of stresses. The plate is

supposed to be in a generalized plane-stress state and the fibergggations(3), (4), and(6) constitute an algebraic system of three

uniform uniaxial bar. We further assume that the fiber is so Nakguations in the three unknows), a(s), andU(s). We there-
row the hypothesis of line contact holds. ' '

. fore obtain
In the second partSection 4, we study the case of a broken

fiber embedded in the matrix, a problem which is common in o p(s)
fibro-reinforced materials and which is a nonclassical Melan’s ise*(s)+ —1

. . . EA
problem. First we study the case of a single broken fiber, and then 7(s)= ,
we analyze the reinforcing effects of the nearby fibers. We show Eser 1 SA+6p 19|+ 1
how the interface stiffness can be used as a design parameter to k 16u AN+ p EA

optimize the response of the composite with respect to the damage

due to the rupture of a fiber. o p(s)

The previous solutions are particular cases of a more general 1 5\+6p 1 ise*(s)+ EA
elastic solution, admitting force as well as distortion loads on the {(s)=— — . (D
fiber, which has been obtained in Section 2 and which can also be 16u Ntp s Esz+ _1 Sh+6u Is|+ 1
used to solve other situations. k 16p A+p EA
2 The General Solution . p(s)

. o ise*(s)+ ——

Let us consider an infinite sheet of a constant widthl, sup- ~ (1 1 5 A+6u 1 EA
posing that it is homogeneous, isotropic linearly elastic with Lam U(s)= K + @ AN ﬁ 1 1 5\+6u 1
constants\ and u, and that it is subject to a state of generalized Esz @ W|s|+ EA

plane stresqFig. 1). If a (averaged distribution of tangential
stressesr(x) =7(x) is applied to the matrix on the-axis, then  Gjven the external “loads’p(x) ande*(x), the general solu-
the (averagedl displacement on the same axis is given [  on of Melan’s problem with weak interface can be obtained from

(Article 148), (7) by using the inverse Fourier transformf(x)
1 5\+6u [ =(1/2m)[” f(s)e '¥*ds.
u(x):———f #(t)In|t—x|dt. @) ,
16muw N+p J_. Remark 1. The case of a stiffener glued to the boundary of a

semi-infinite sheet can be solved in the same manner. In(#ct,

In (2) 7(x) is positive if directed as th& axis. Considering the and (6) are still valid, while(3) is replaced by15] (Section 3.4

Fourier transformg (s) =/ _.f(x)e'**dx of the displacement and

of the 7(x), EQq.(2) can be rewritten afEl5] (Section 3.4 ) 1 2\ +2u 7(S)
s)=—s————-—, 8
1 B5A+6u X(s) " )= 3, 20, T8 ®)
S)= .
16w Mtp s which is equal ta(3), assuming
We suppose that, along theaxis, a uniform string is attached to L4 +20
the sheet and we suppose that the interface is governgd)by p=p N=—p 1T eV ©)
Denoting byU(x) the axial displacement of the fiber, and assum- L Y17N +22u,

ing that the interface stiffnedsis constant, Eq(1) can be ex-
pressed in terms of Fourier transforms as

7(s)=k[U(s)~0(s)]. “) Remark 2. We consider only problems symmetric with re-
Apart from the reactiorr(x) of the sheet, the string is subjected tespect to thex-axis and with in-plane loads. Thus, the bending
an external normal force per unit lengtiix) (positive if directed stiffness of the fiber and of the sheet are not involved in the
as thex-axi9 and to an axial distortion per unit lengi(x) analysis. This does not mean that we disregard them. We suppose
(positive if it produces compression on the fibeAssuming its that they are as large as required to avoid instability phenomena in

in (3). Therefore, the solution of this problem(ig) with x andA
given by (9).

axial stiffness isEA, the equilibrium equation is the compressed zones.
d?U(x) de*(x) p(x) 7(x) Remark 3. All solutions obtained in the following sections are
oy T Ea Ea =0 (5) odd or even functions of. Therefore, in order to simplify the
dx dx EA EA - X .
exposition, we will report only the formulas valid for>0. The
namely, extension to the negative part of thexis can be easily obtained

by symmetry.

T( e 3 The Single Force on the Fiber

; ! When a concentrated force acts on the fiber at, 30, we
‘ ‘ ‘ ‘ havep(x)=P4&(x) (8(x) is the Dirac deltaande* (x) =0. In this

. T - casep(s)=P, £*(s)=0, and the solution can be expressed in
‘ ‘ 1 f terms of known functions. In facty) furnishes

| X P 1

[ )= EAT , 1 5ra+éu 1
K5 160 N p

(10)

Isl+ =4
Fig. 1 The infinite sheet with a stiffener loaded by a single
force and therefore
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1 Pk [ cogsx) log (7b)
__J Z12astb S (1) T )

where we have assumed=(k/32u) (S5AN+6u)/(N+pu), b
=Kk/EA. Let us further definea;=a—+a’-b and a,=a
+a?—b. These relations assure that

1 Pk 1 *co *Co —
_1Pk s(sx)ds_ S{sx)ds . | log,(a/5)
mEA2./a%2—p o Stag o Stas g g S
- D D

(12)

The integrals which appear i12) can be computed explicitly

[24] (formula 3.722.% Fig. 2 The semi-length of the zone of influence

* cogSX) B
s sta ds=g(xa), a>0, (13) " 1o measure the region where the effects of the applied load
vanish, we define the “zone of influence” as the part of the fiber
where[25] (Section 5.2 which satisfies
o . _ . N(x
g(z)=—sin(z)si(z) —cog 2)ci(z), (14) ( +) ~0.10 21)
sin(t) cost N
si(z)=— f n dt, ci(z)=— f T dt. Thus, because in this cab§0*)=P/2, we assume that the effect
z z of the concentrated force can be neglected when the axial force in
Therefore, the fiber is less than five percent®f Considering the equality in

(21), we obtain an equation in the semi-lengttof the zone of
influence, and the results of the numerical solution are depicted in
T(X)— *[g(xal) g(Xap)]. (15) Fig. 2.
T2 Figure 2 shows that a fairly good approximation of the true
Before discussing Eq15), we wish to show the behavior of the CUrve is the bilinear function.

previous solution when the interface becomes rigid. From < h) = ; _
o log;o(Xy/b)=0.362, if logy(a/\b)<—0.724 22)
lim a,= 16ﬂﬁ ==, logyo(Xyb)=1.086+ logy(a/ \b),
K (16) if logy(al/\b)>—0.724.
. — . In terms of the original variableg22) can be expressed in the
lim a,=», |lM ——=—=—=ay, limg(2)=0, form
Koo koo 2 /A% — 7
. EA
we obtain 722.301\/T, if k<Ker,
_ Pa; _ (23)
lim 7(x)= —9g(Xay), (17) _ 5N+6u EA
koo ™ X=0.381 N if k>ke,

which, in different notation, is Melan’s solution, valid in the case
of perfect bonding.

In the positive part of the-axis, the transmission streséx) is
a decreasing function vanishing fer- . Its maximum value is
thereforer,,,=7(0). To calculate this stress, let us observe th
for x—0, ci(X)=y+In(X)+ ..., wherey=0.577 ... is the Eu-
ler constant. Using this relation, we obtain

where ko, =36.5uEA)((N+ n)/(5M+61))%. If k is greater

thank,,, the zone of influence no longer depends on the stiffness

of the interface and it is the same as in the perfect bonding case.
hus, from a practical point of view and in the case of a single
orce applied to the fiber, we may consider conditiork,, as the

definition of rigid interfaces.

The Fourier transform of the displacemerti) is

a 2a 1
arccos , 18 e —
Tmax= 7 ‘T '6[) (18) U =P ER [sFr2ablg" (24)
where we have used the identity[(a+a?—b)/(a—VaZ—b)] Which gives
=2 arccosh&/\b), a,b>0. Equation(18) shows that, contrary to P 2a (* cogsx)—1
the case of perfect bonding, the maximum interface shear is u(x)—u(O):——f #ds. (25)
bounded everywhere. This is one of the practical advantages of ™ EA Jo s"+2as"+bs
having weak bonding between the fiber and the sheet. Using the relations
The axial force in the stiffener can be computed integrating the
7(X). To compute this integral, we observe that 1 1 a, a;  a ay
3 = < t
df(z s*+2as+bs  2p.aZ—p S sta; St
g(z)=— ( ), f(z)=sin(z)ci(z)—cogz)si(z). (19) (26)
dz occossx)—ld wcos{sx)—ld
Equation(19) permits us to conclude o s 5T o Sta s
Pb f(xa f(xa =—y—In(xa) —g(xa), >0,
N(x) = B ( 1)+ (Xarp) - (20) . . y—In(xe)-g(xa), «a
2\a?-b oy a; permits us to obtain
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P a V)
U0~ (0)= 7 -l v Inixaz) + g(xa2)] c

—ag[ y+In(xay) +g(xay)]}. @7) T —

The displacement is unbounded for. In particular, it as-
sumes the form —1p0 o 100 x

-

—— [ RG) ko1 —
u(x)—u(0)=P const. Ifx)+---. (28) %: 4 fﬁ?é%

-5
-0.3; k=1000"

This is due to the fact that the sum of the forces applied to the ‘
sheet is not zero. Equatid@8) agrees with the general prediction
of Muskhelishvili[26] (Section 36.

3.1 A String Loaded by Two Forces. The property ex-
pressed by(28) is unsatisfactory from a practical point of view,
though it is exact within the framework of two-dimensional elas-
ticity. To overcome this difficulty, we consider the case of a fiber —bP fl(d=xX)as] f[(d=X)aq] f[(x+d)as]
loaded by two aligned, equal, and opposite concentrate forces.NX) = 5 \/ﬂ( +
fact, in a neighborhood of the force application point, the follow- .
ing solution has all the features of the one in Section 3, but it has f[(x+d)al]]

Fig. 3 The axial load in the fiber

an ay ap

a more suitable—and realistic—behavior at infinity. <d, (32)
The problem analyzed in this section may also deserve an in-
dependent interest. In fact, when a load must be transferred fréior a=1.2%X 104, b=1.76kx 10"°, andd= 100, we have the
a pointA to a pointB on a sheet, it is convenient to reinforce thecurves depicted in Fig. 3. When the interface is “softc=£0.1)
plate by inserting a string along the likeB. The solution of this the load is carried almost entirely by the fiber, while, on the con-
problem is required to design the strengthening, because it is n@ary, for “strong” interface =1000) is the sheet that assures
essary to know the part of the load carried by the string and tkige transmission of force between the two points. A quantitative
part of the load carried by the sheet. We will show that this intemeasure of the reciprocal participation in carryidgcan be ob-
action strongly depends on the properties of the interface, andtained by considering the axial load in the fiber in the point of

ay

the distance between the forces as well. symmetryx = 0, given by
The Fourier transform of two equal and opposite forPeact-
ing on the x-axis at the pointsx=—d and x=+d is p(s) N(0) = bP  [f(day) f(day) (33)
=2iP sin(sd). Inserting this expression and*(s)=0 in (7) (0)= ma2—pl o ap, |’
ields
Y N(0) varies fromP, when_d=_0, to 0, whend—cc. On the other
2iPk  sin(sd) hanq, lim_oN(0)=P yvhlle |Imka.N(0)=(2P/77)f(dal). _
7(s)= (29) Finally, the expression of the displacement of the sheet is ob-

, .
EA s*+2als|+b tained by inverting

Inverting (29) with the same procedure used in the previous sec- . _dia sin(sd)
tions, we obtain U(s)= Pﬁ—|s|3+2asz+b|s| , (34)
P b and it is
7(x)= — —=—={0(|x—d[ay) —9(|x—d| ) —g[ (x+d) 1] [=] + +
T 2\a2—b u(x) = 5N+6u n X d|
16mu A+p  |x—d|
+ol(x+d)az]}, (30)
P a
which is an odd function, vanishing far—c and with(absolute + ﬁ{alwx—dlaz)—g(IX+d|az)]
maximum value
—a[g(|x—d|ay) —g(|x+d[ay])]}. (35)
T _P_b arccos 2. 9(2da) —g(2day) . The displacement is everywhere bounded and tends to zero for
T Ja?—b Jb 2 x—o0. It is worth remarking that in Eq.35), the first term is the

(31) displacement without the reinforcement, while the second is due
to the presence of the fiber. Thus, the effect of the strengthening is

Comparing(31) with (18) it is possible to see how the presencemmediately recognized.
of the second force reduces,,,. In fact, the difference is given
by the second term in the square bracket§3df. However, when

dis sufficiently large, this term is negligible and we have the sam4é The Broken Fiber

maximum interface shear. One common failure of composites, in particular fibro-
To obtain the expression of the axial lod{x), we integrate reinforced with polymeric matrix, is related to the breaking of the
(30) obtaining fibers. In fact, when one fiber breaks, its axial force is transferred

to the matrix, which increases its prebreaking maximum stress. If
—bP [f[(x—d)az] f[(x—d)a;] f[(x+d)a,] the sheethas no extra strength, it fails, with the consequence that

N(x)= rupture of a single fiber causes the failure of the whole body.
2m\a’~b a2 ai @z Therefore, it is necessary to calculate the effects of the broken
fL(x+d)ay] fibe_r in the surrour_lding _matri>_< _an_d, if possible, i_t is useful to
+ 1 } >d, design the composite which minimizes the stress increment. This
aj problem is addressed in this section.
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Fig. 4 The sheet with a broken fiber Fig. 5 The semi-length of the zone of influence

Initially we study the rupture of a single fiber embedded in the Adopting the same definitio(21) for the zone of influence, we
sheet. The reinforcing effects of nearby fibdifsany) will be obtain the curve plotted in Fig. 5. Qualitatively, this curve is simi-
analyzed in the next section. Furthermore, we suppose that {he to that of Fig. 2, and can be approximated by the bilinear
load is applied far from the breaking point. Thus, the simplifiefinction

problem of an infinite sheet with a single broken fiber weakly
attached to the plate can be considered. log,(x\/b)=0.362, if loga/\b)<0.347,

The plate is supposed to be loadeddyy=%, oyy=0,,=0 at 9105\b) a(a/b) (42)
infinity. However, by the superposition principle, we can directly —
consider the case of a fiber open by a concentrated distortion such Ioglo(x\/5)70.089+0.787 logo(a/ Vb),
thatU(0™)—U(0~)=A and the strairfand the stregs/anishes at if Ioglo(a/\/5)>0.347,
infinity (Fig. 4). This action furnishes a nonzero compressive
force N(0*)=N(07)=—N(A). EquatingN(A) with ZEA (the or, in terms of the original variables,
axial force in the uniform cageve obtainA = A(z), which, added

to the constant strain solution, gives the solution in terms of the EA _
applied straire. x=2.301 o if k<k,
The situation of Fig. 4 is a nonclassical Melan’s problem, (43)
which can be solved on the basis @f). In fact, in this case 0.787
p(s)=0 and&*(s)=A and we have = 0.080/5A+6u 1 EAC893  if k=K
) K0-106 Ao u ) )
~ iskA -
= 5o - - ~
7(s) s?+2als|+b (36) wherek=5059(u?/EA) (A + u)/(5\ +64))?. In this caséis no
Inverting and rearranging as in Section 3, gives Ionge_r_ constant fok>k, a_nd it is not possible to give a practical
definition of perfect bonding.
) Ak f” sin(sx) f“’ sin(sx) g From (7b) andp(s)=0, ¢*(s)=A, it follows
T(X)= —————| — —_— a —ds]|.
( 2m\a’—b Yo stay 2Jo stap , ,
37) o iA2asign(s) 44
, , u(s)_524r2a|s|+b (44)
Computing the integrals af37) by means of formula 3.722.1 of
[24] (see(19) for the definition off(z)), we obtain and, inverting,
(X) o [—aif(xay) + asf(Xas)] (38) A
T(X)= ——F—7— — a7y Xal Ay Xa2 . a
2ma’—b u(x)= ——=—=[f(xay) — f(xa)]. 45
m ( ) 71_\/ﬂ[ ( l) ( 2)] ( )

On x>0, the interface shear stress is a decreasing function van-
ishing for x—o and 7,,,=m0)=Ak/2. Therefore, the maximum 4.1 The Effect of Nearby Fibers. The successive step con-
transmission stress is again proportionaktnd using soft adhe- Sists in analyzing the reinforcing effects of the nearby fibers. In
sives permits relaxing the peak of the extra stress due to the bretgiet, unidirectional fibro-reinforced materials have an array of par-
ing of the fiber. allel, equally spaced, and identical fibers embedded in the sheet.
Integrating the equilibrium equation gives the expression of th/hen one of these breaks, not all the extra load is transferred to
axial load the plate, but only a part which depends on the properties of the
composite. If the fibro-reinforced material is correctly designed,
Ak this extra load is modest and does not induce rupture in the sheet
m[fg(ml) +9(xaz)]. (39)  orin the adjacent fiber as well.
The reinforcing effects of the fibers decrease by increasing the
Therefore, distance from the broken fiber, so that, in the first approximation,
it is reasonable to consider only the case of the sheet with three
Ak i fibers, two reinforcing and the broken one. Therefore, let us con-
mﬁﬂ \/5 sider the sheet of Section 2 and let us suppose that on thg line
=+d is applied a line loadr(x), on the liney=0 is applied a
and line load 7,(x), and on the liney=—d is applied a line load
- \/m 73(X) = 71(X) (for symmetry with respect to the I_ir_r;ec_O)._Both
. (41) 71(X) apd 75(x) are parallel to the-axis and positive if directed
b arccoskia/\b) accordingly. Then

N(x)=

N(0*)=— arccos?é (40)

A(g)="%
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1 O5N+6u (*
u(x,+d)y=u(x)=— _— (1) In|t—x|dt

16mu N+ u

1 5N+6u —
_167T;L)\Tf, () In V(t—x) +ddt
1 3\+2u 7o(t)d? ot
167 N+u ) (t—x)%+d?
1 5N+6u
_ _ 2 2
Tomn Nt n f, m(H)In (t—x)Z+ 4d?dt
1 3n+2u [ 7(t)4d? ot
16mu N+tp ) . (t—X)%+4d?
(46)
0=tz = — e Nt oK t)lnft—x|dt
u(x, )_UZ(X)__].G#,LLT ) 7'2( )Injt—x|
2 5\t+6u —
T 16mm Nta j, 71(t)In J(t—x)+ddt
2 3\+2u [ 7y(t)d? dt
16mpu N+u ) (t—x)°+d?
The Fourier transforms af46) are
o 1+e BN +6u Fi(s) 2de 2% 3\+2u
Uy(s)= 16u Nuo s 16w N u 71(s)
e Ul 5N +6u Fo(s) de s 3aN+2u
Tl v 8 16z aip 29
L M L M (47)
1 5N+6u Ty(s)  2e U BA+6u Fi(5)
Ox(s)= 16,L.L Nuo s 6 N+pu g
de sl 3N +2u
16 At u 7(8).

Associated with(47) there are the interface equatiofzee(4))

71(8)=k[U1(5)—04(5)],  72(5)=K[Uyx(s)—0s(5)], (48)
and the equilibrium equations of the fibdsee(6))

71(9)
—s?04(s)— =5 =0,
EA )
—520,(s)+ise*(s)+ g— gz

Note that we have supposed that all the fibers are uniform and

1+e2dsl 5N+6u 2de2dlsl N+2u 1 1

Als)= l6uls|] N+u 16n N+ +E+EASZ'
e dsl 5hN+6u deds 3AN+2u
B(s)= , (52)
16uls| N+pu 16 ANt u
c 1 S\f6u 1 1
(= T6als "tp k' EAS

The general solution of the problem can be obtained inverting
(50) and(51) with p(s)=0 ande*(s)=A. Itis given in terms of
definite integrals, which cannot be expressed in terms of known
functions, but which can be easily computed numerically.

Usually, in fibro-reinforced composites the space between the
fibers is very narrow(it is the same order of the fibers diameter
andd is a very small number. Therefore, it makes sense to study
the limit cased=0 and to suppose that it represents a good ap-
proximation of the actual configuration. Assumiig=0 (p(s)
=0 and&*(s)=A) we have, after some simplifications,

s®+4as|s|+bs

T2(s)=1Ak s*+6als|®+2bs’+ 6ab|s| + b2’ (3)
and therefore
Ak (s®+4as?+bs)sin(sx) ds -
(0= o S*+6as’+2bs?+ 6abs+b? (54)
Expressing the integrand in the sum
s®+4as’+bs 2 . s
s*+6as’+2bs’+6abst+b? 3(s’+b)  3(s’+6asth)’
(55)

recalling the formula[24] (formula 3.723.3 [5(sin(sXs)/($

+b)ds=(m/2)e *P, and calculating the second integral as in Sec-
tion 3, we obtain the final expression for the interfacial shear

ﬁ Ee—x\ser = B1f(xB1) + Bof(XB5)

where 8;=3a—+9a’—b and 8,=3a+9a?—b. There are no
qualitative differences betwee®6) and (38), corresponding to
the case of only one fiber: on the positive part of thexis, 75(x)
is a decreasing function of vanishing forx— e and with maxi-
mum valuer.,=m(0")=Ak/2.

Integrating7,(x) we obtain the axial load in the broken fiber:

T2(X)= ., (56)

k(2P g(xB1)—g(xB2)
Na(X)=— 3 \/— 3ﬂ_m . (57)

identical and that the reinforcing fibers are not loaded. Also the

three |nterface§ are unlfgrm and identical.
Eliminating U(s) andU,(s) from (48) and(49) we have

. L 1 1
Uy(s)=—74(s) K + EAZ)
1 ig*(s)
EAZ) T s

(50)
p(s)
EAS’

a(5) =~ 7o()| 1 +

Inserting these expressions {47) we obtain a system of two
equations in the two unknowris (s) and 7,(s), the solution of

which is
F1(8) = — o(8) o)
7'1 S 7'2 S
A(s)’ (51)
. _(ié*(S) ﬁ(S)) A(s)
(9= 5 Y Ea2/A(s)C(s)—2B(s)2’

Journal of Applied Mechanics

From (57) we can compute

1 N arccosl3a/ \/E)
3Vb  3m/9a%-b

that with the equation-N,(0)=ZEA, furnishes the fiber gap
as a function of the applied lo&#t

N,(0)=— Ak (58)

3
A(E)=7 5 . (59)
b+ ———=arccosli3a/+\/b
Vb —— h3a/\b)
On the reinforcing fibers we hausee(51))
7 Ak 2asis| 60
7(8)= 1 s*+6a|s|®+2bs?+ 6ab|s| + b?’ (60)

so that
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llI-Posedness in a

Thermomechanically Consistent

Constrained Theory for Materials
a.wang | With Prescribed Temperature-
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We examine the local dynamics of nonisothermal viscous flows in the neighborhood of the
constant equilibria using the thermomechanically consistent constrained theory for ma-
terials with prescribed temperature-dependent density developed by Cao et al.. We dis-
cover that the linearized growth rate of small length scale, infinitesimal disturbances near
the equilibria is proportional to the reciprocal of their wave length, a classical phenom-
enon known as the Hadamard instability, indicating the local ill-posedness of the con-
strained theory. Therefore, the use of the theory to model transient flow phenomenon is
not advised[S0021-8936)0)01901-7

1 Introduction viscous fluids is known to be well-posed, i.e., all the constant

Cao et al[1] developed a thermomechanically consistent conequlllbrla are stable. A general proof can be found 0] for

strained theory for materials with prescribed temperaturéz‘ermomechamcal processes satisfying the Gibbs conditions

. : 11,12)). The local ill-posedness of the constrained thegfy)
dependent density. This theory successfully captures the exp nd in this study certainly contradicts both the unconstrained

sion cooling phenomenon observed in nonisothermal steady-stfh ory and the common experience with nonisothermal viscous

Poiseuille flows of viscous fluid§1,2]) while the ad hoc theories fluids. Consequently. its direct use in transient flow phenomenon
([3-5]) where a temperature-dependent density is a posteriori ‘lé'not' adviseg Y, P

serted into the classical theory for incompressible mate(jéls, In the remaining parts of the paper, we detail our near-

Lézlnlt.albnl ethtﬁ ergr%?ircdéltggvz‘%rlsgrﬁ:nri%éf;ﬁgry ;‘;gg({ set;t;g. rf onr:iiroﬁ %_uilibrium dynamical analysis for nonisothermal viscous flows
9 y Sing the thermomechanically consistent constrained theory,

mal flows. hich leads to our discovery of the catastrophic instability in the

When applied to transient flow problems, however, the theo o : ; .
is found to be pathological in that not only the constant equilibri\éi?;?r’aﬁ]nedd stﬁe'(t)sry'”'posed“essr following a brief review of the

are unstable at any experimentally attainable temperature, but a

infinitesimal disturbances of small length scales near the equilib-

rium grow proportionally to the reciprocal of their wave length2 Near Equilibrium Dynamics in the Thermomechani-

This catastrophic phenomenon has been referred to as the clasgigélly Consistent Constrained Theory

Hadamard instability[ 7]). . ) . . .
Examples of mathematical models exhibiting Hadamard insta-Fir'St: We briefly review the thermomechanically consistent con-

bilities include the “transient” Laplace equation, in which one oftr@inéd theory for materials with prescribed temperature-

the independent variables is treated as time-like, incompressigﬁépeno_Ient density developed by Cao e{Hl. Then, we study the
fluid models for inviscid interfacial flowsKelvin-Helmholtz, dynamical behavior of the theory near constant equilibria fol-
Rayleigh-Taylor instability, et¢.([8]) and some modelénterpo- lowed by a brief discussion about a more general constraint.
lated Maxwell model, etg.for non-Newtonian fluid€[7,9]). The
emergence of the instability in the models is often an indication
their failure to model the underlying physi¢g7,9]) or onset of ; : L
catastrophies. Regularization of the models is thus necess pstramed theory of Cgo et &l], the density of the materialis
sometimes, the regularization is done numerically. In most evol@®Sumed a given function of the absolute temperadure

tionary equations, where Hadamard instabilities are observed at p=p(0). (1)

any constant equilibrium, the corresponding initial or initial i : i

boundary value problem does not have a solution except that ifYith the prescribed density, the conservation of mass acts effec-
initial data are analytical. Evolutionary equations exhibiting thiVely as a thermomechanical constraint:

£2.1 Thermomechanically Consistent Constrained Theory
or Materials With Temperature-Dependent Density. In the

behavior are often said to be locally ill-posé€¥]). The con- '(6) - '(6) .
strained theory of Cao et &l1]) is thus locally ill-posed. div v+ p =1 D+p_ 6=0, 2)
The “unconstrained”(compressibletheory for nonisothermal p(0) p(0)

-1 Ty _of. ; ; _
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Julyresponses for the stress, free energy, entropy, and heat flux are
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free energy and heat flux are not affected by the constraint at all2.2 Linearized Stability Around Constant Flow Equilibria
With the constraint responses, the total stress, free energy, eh-Nonisothermal Viscous Fluids Using the Constrained

tropy, and heat flux are expressed as Theory. For a nonisothermal viscous fluid, the constitutive part
of the extra stress, satisfying the Clausius-Duhem inequality, is
T=topl, pmin epepZ D ga @ MY
. LT e T T=A(O)tr(D)+2u(6)D, (9)

\fvhere)\(e), m(6) are prescribed temperature-dependent bulk vis-
C?@gsity and viscosity, respectively, with+ %,uao andu=0 and

(D) is the trace ofD. We note that the first term was not in-
cluded in the original derivation of Cao et &l].

In consistence with the second law of thermodynamics, we

Where'f', zTZx 7, § represent the constitutive part of the physi
variables to be determined by the material properties. Acco
ingly, the total internal energy is given by

e=e+ O+ 0pm. (4) adopt the Fourier law for the heat flux,
p(0) 4=—K(9)Ve, (10)
Substituting(3) and (4) into the energy balance where K(6) is the heat conductivity, a prescribed function of
temperature.
pe=T-D+py—divg, (5) When the external force and the specific heat effect are ne-

glected, the governing system of equations for nonisothermal vis-
wherey is the internal heat per unit mass, Cao et al. arrived atcous flows, consisting of Eq&2), (6), (8), (9), and(10), admits a
constant solutiortflow equilibrium)

o+ op=T-D+py—div. (6) _ V=Vo. P=Po. 0=fo. (11)
p wherev, is an arbitrary constant vectguy an arbitrary constant,
and 6y an arbitrary positive constant.
In the derivation, an increase in the constitutive part of the internal We are interested in the local dynamics of the governing system
energy is assumed due exclusively to the increase of temperatigequations near the equilibrium. So, we linearize the governing
. Egs.(2), (6), (8)—(10) about the equilibriun{11), yielding a con-
de=c(6)do, (") stant coefficient partial differential equation system. We then seek
solutions of the linearized equations in forms of plane waves:

12
pn_zp_
p

po
c(0)+—
pc(0) p

wherec(0) is the specific heafa prescribed function of) corre- .
sponding to the constitutive part of the internal energy. ()(x,1)=e71"*5(e), (12)
Equations(2), (6), and the conservation of linear momentum where ¢) represents the perturbations of the physical variables
] . =(v1,02,03),p,0, X=(X1,X2,X3) is the position vector in the
pv=divT—gradp+g, (8) Cartesian coordinatex(,x,,X3), n=(n;,n,,n3) is the wave vec-
tor, and the real part of gives the growth rate.
where g is the external force per Unit}\VOlUme, along with the Without loss of generality, we proceed withy,=0 and n

constitutive equations for the extra strégsnd heat fluxj con- =(n,0,0). After some algebraic manipulations, we transform the
stitute the thermomechanically consistent constrained theory forearized partial differential equation system into the following
materials with prescribed temperature-dependent defjdify algebraic equation system farand the perturbations
|
0
“inso,+a? % 59—
p(6o)
ap( o) dv1=indp—n*(2u(6o) + N (o)) dv1, 13)
0, 29 (6
a{ p(80)c( ) + T2 <p"(00)2p ( 0)) 5942 L% 005p] — 2K (6,) 56.
p(0o) p(6) p(6o)
I
The dispersion equation of the linearized equation system is then 2u(0)+N (0
obtained as follows: g~ — an
0,
: O)Kw) | p(60) 4o
2 Pobo [ 2(p'(6p))? 2 as~* \/ 0 o .
N a| p(6o)c(6bo) + p"(00) ——————| | +K(bp)n (2u(80)+ N (80)) bo| ' (60)
p(6p) p(6o)
’ 2
POy (g at (2 +2)n?]=0 14
p(8o) oa’[p(fp)at(2u+N)n]=0. 149 The expression fow, indicates that there is a positive growth

rate proportional to the magnitude of the wave vector in the short

wave limit (|n|>1). Namely, the disturbance grows in proportion
This is a cubic equation fak. Although its roots can be expressedo the reciprocal of its wave length. The indication of this is that
explicitly in algebraic formulas, their expressions are tedious arlde smaller the spatial length scale is in the disturbance, the faster
not illuminating. Instead, we seek their asymptotic representatiotnggrows. This phenomenon is known as the classical Hadamard
in the range of largén|>1. The leading terms in the three rootsnstability ([7]). Its existence at any constant equilibrium implies
of the cubic dispersion equation are found either linear or qutat the governing system in the theory is locally ill-posed as an
dratic in wave numben, provided 2u(6o) +\(6y)>0, evolutionary equation system so that it cannot be applied directly
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to transient problems. In fact, its usefulness in steady states is af$fe real part ofe, , a3 are negative corresponding to decays,
questionable since all steady states are achieved through trangigptine real part ofy; is positive yielding a growth rate propor-

prcl)fcgsi(easc;)ﬂ\(eo):(), the leading terms of the three roots ofional ton_‘"3. Therefore, Hadamard instability persists and so does
the dispersion equation are the local ill-posedness in the theory.
" The “eigenfunctions” of the linearized systen(il3) give
p(OK(Gon* |7 the directions of growth corresponding to the three growth rates
1™ o' (80)%0, € o 1=012 (16) (15). Their leading order terms for larda|>1 are given by

a=o6v,=1, 6p=0, 66=0,
p(6o) (17)

ar=ov1=1, Sp=—in(N(6y)+2u(bp)), o6=in— .
p'(b)a=

So the disturbance in the direction dominated &y grows the When 2u(6,)+\(6,) =0, we have analogous growth rate formu-
most for larggln|>1 in time corresponding te, . las like (16), which are omitted here. Hadamard instability thus
Now that the constrained theory is locally ill-posed at any corpersists unlesa=0. If a=0, the dispersion equation of the lin-

stant equilibrium, we must regularize the theory before it is agarized system has only one nonzero rapyielding a negative
plied to nonisothermal viscous fluids. Next, we report our atrowth rate(decay ratgproportional ton? so that the equilibrium
tempts to regularize the constrained theory. is stable.
This analysis reveals that the additional téonV 6 in the con-
2.3 Thermomechanically Consistent Constrained Theory Straintis not enough to regularize the thermomechanically consis-
With a More General Constraint. Here, we adopt a more gen-tent constrained theory of Cao et gl]. It hints that the cata-

eral constraint of Green et 413] and Trapp[14] strophic instability may be intrinsic to the essential relation
. between the density and temperature implied by the constraints
I-D+b-V6+ab=0, (18) (2) and(18). We have also derived a thermomechanically consis-
tent constraint theory with the density modified to the following

in place of the constraint imposed by the conservation of r{ss
where the vectob and scalam are independent af9,Vé,D) and
the constraint is invariant under the superposed rigid-body mo- p=p(0)+pi(6,V06) -V, (22)
tions. We note that constrain2) corresponds tob=0, a

_ ; : : here the second term is assumed invariant under the superim-
=p'(6)/p(6) here. Following the same argument outlined in ca¥ o A o . .
et al.[1], we obtain the total stress, entropy, free energy, and heﬂﬂsed rigid-body motions. The modified theory again fails to

flux, including both the constrained response and constitutive paﬁYOid the Hadamard in_stability at th_e constant equilibria. Further-
as follows: more, we also looked into the possibility of density as a function

of temperature and the rate-of-strain, which is invariant under the
. pa A . superimposed rigid-body motions. We were unable to derive the
T=T-pl, 7= e =4, q=q+peb. (19) constrained responses then. This approach therefore seems infea-
) ] ) sible. Fortunately, by taking a different approach, we have been
The new constraint18) yields a nonzero constrained response igple to formulate a well-posed constrained theory for nonisother-
the heat flux, entropy, and stress, respectively. The additional tepga| viscous flows.

(b-V#) in constraint(18) is responsible for the constrained re-
sponse in the heat flux. Usin@) and(5), we arrive at the energy 2.4 Constrained Theory for Materials With Entropy-

form:

balance for the material subject to constrai®): Dependent Density. Recently, Rooney et aJ10], reformulated
al’ 1. R a constrained theory for nonisothermal viscous flows assuming
pc(6)+ (_) pl6+adp=T-D+py—V-q—V-(pbh). density a function of entropy. The constant equilibria are shown to
p be stable to infinitesimal disturbances, indicating local well-

posedness of the new theory near the constant equilibria. They
The other governing equations in the constrained theory(@re noticed an analogous approach had been taken by Bcatt§
and (18) along with the constitutive equations for the stress arf@r thermoelastic materials. Details about the new constrained
heat flux. theory and local dynamical analysis are reporte@lia.
For nonisothermal viscous flows, we repeat the linearized sta-
bility analysis around constant equilibriufi1) a}nd obtain three 3 conclusion
growth rates in the range of|r(>1), provided a#0 and

21(8) + N (6p) >0, given asymptotically by We have demonstrated analytically that the thermomechani-
cally consistent constrained theory for materials with prescribed

N (2u(60) +N(6p)) , temperature dependent density derived by Cao ¢flals locally
a~- N5, ill-posed for transient problems due to the existence of the cata-
p (21) strophic Hadamard instability, despite its promising predictions of
b, . K(6p) expansion cooling in steady-state Poiseuille flows of nonisother-

* + | . . T .
.~ ;' = N (2(60)+ N 60))a26 Inl, mal viscous fluids. This illustrates that a thermomechanically con-
0 0 0

sistent constrained theory cannot be derived by simply assuming
whereb;=b- e, ande, is the unit base vector in the-direction the material density a prescribed function of temperature. A sat-
in the Cartesian coordinate {,X,,X3). Analogous td15), there is isfactory regularization of the theory within the same framework

an unstable growth rate proportional to the magnitude of the walsg allowing explicit dependence between the density and tempera-
vector and independent of the new tehnVé in the constraint. ture as well as other additional thermodynamic variables remains
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Combined Torsion, Circular and
Axial Shearing of a Compressible
w.zidi § Hyperelastic and Prestressed
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UPRESA CNRS 7052,
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61, avenue du Général De Gaulle,

94010 Cretéil Cedex, France

e-mail: Zidi@univ-paris12.fr In this paper, we study the combined torsion, circular and axial shearing of a compress-

ible hyperelastic and prestressed tube. The analysis is carried out for a class of Ogden
elastic material and the governing nonlinear equations are solved numerically using the

Runge-Kutta method. The results reported present the effects of the torsion for different
shearing loads on the local volume change and the circumferential stretch ratio. The

effect of the second invariant-dependent behavior of polynomial materials is also inves-
tigated.[S0021-893600)01301-3

1 Introduction ics is rather tricky. Indeed, recent papers have explored the diffi-

The combined axial and torsional shearina of a circular cviirEUi€s taken into account the torsion when the circular cylinder is
9 Y riubjected to shearing. Hence, the combined problems of the tor-

drical tube for homogeneous isotropic incompressible nonlineary - . - O .
X . ) ) on with axial shearind[11]) or with circular shearing[12])
elastic material was first considered by Ogden efHl The as- Bave recently been solved. However, the exact solutions have not

s.ump.tion that the matgrial is incompressible was made in orderggen, ohiained when a class of Blatz—Ko material is considered
simplity th_e mathematlcal analysis. After, _the same _problem f nd the highly nonlinear coupled differential equations have been
compressible materials was solved numerically by Mioduchows

. : : tegrated numerically. This paper is a sequel to these previous
and Haddow[2]. They have considered the case in which they,dies and our approach is to give a solution to the combined

outer boundary does displace radially, and the results have bggijon circular, and axial shearing problem. The cylindrical tube
obtained for two strain energy functionighose proposed by js considered prestresséd3]) and made of a polynomial com-
Levinson and Burgegs] and by Blatz and K¢4]). Furthermore, pressible material in its most general form, taking into account the
Mioduchowski and Haddow?2] have discussed an approximatéffect of the second strain invariant. The hollow’s cylinder inner
numerical solution in which the cylinder is divided into a numbegng outer surfaces are fixed radially and are allowed to rotate by
of co-axial thin-walled tubes of equal undeformed wall thicknesgse torsion and the circular shear. Furthermore, the outer surface is
Distributions on the stresses and the radial stretch ratio of thfowed to displace in the longitudinal direction by the axial shear.
current thickness to the undeformed wall thickness have been qkpre Study is carried out using a particu|ar Ogden constitutive
tained. Ogden and Isherwo@8] have also presented the solutiorequation which was used by Le Tallec and Vidragt4] to apply

of some finite plane-strain problems for compressible, isotropife augmented Lagrangian techniques for the numerical solution
elastic solids by using the direct method. Carroll and Hor@dn of equilibrium problems of compressible hyperelastic bodies sub-
have also proposed several closed-form finite strain equilibriujscted to large deformations. Based on a recent approach
solution for the Blatz—Ko constitutive law. These solutions havg11,12,19) the coupled nonlinear differential equations govern-
been obtained by the semi-inverse method, and each of the defag this new problem are solved by the Runge-Kutta method com-
mations is a nonisochoric generalization of a deformation which jgeted with an iterative process to obtain the local volume change
controllable for homogeneous, isotropic, incompressible elastied the circumferential stretch ratio. We show the effects of the
solids. It must be emphasized that these previous st{ijéksdid torsion when the tube is subjected to axial and circular shearing.
not include the combined torsion with axial or circular shearinghe effect of the second invariafjtl6]) is also investigated.

for a thick tube. Soon after, Tao et fF] studied circular shearing

and torsion in generalized power-law neo-Hookean materials in . ) . .

the incompressible case. For certain values of the power-law ek- Formulation and Analysis of the Combined Torsion,
ponent, an explicit exact solution has been given and in genefircular and Axial Shearing Problem

cases the equations have been solved numerically. What is moresqnsider a nonlinearly elastic sector of a circular cylinder de-

they have shown that the equations lose e}lipticity for a certajqqg by the angl@®, (Fig. 1). Let us suppose that the tube un-
range value of the power-law exponent. This problem of 0SS €Js 4065 two successive deformations. First, the cylinder is closed,
lipticity has also been investigated for the generalized Blatz—Kghich induces residual strain13]) and then it is subjected to

materials and for a complete discussion, we refer the reader{0sion circular and axial shearing. The mapping is described b
Knowles and Sternber{8], Abeyaratne and Knowlef9], and ' g pping y

Horgan[1Q]. Clearly, the problem of a circular tube composed of

compressible elastic material and subjected to combined kinemat- r=r(R), 6=

O+yYZ+¢(r), z=Z+w(r), Q)

T
0o
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It follows from Eq. (1) that the physical components of the deformation gradierihe left Cauchy-Green tensBr, and its inverse
have the following representation in a cylindrical system:

r 0 0 N 0 0
|, T | =] Kon Nom ” >
F=|ri¢ §®—0 =| K1A; ®—0 ) )
rw 0 1 Ko, 0 1
N KN Ko\
2
_ 2 2 i 2 2
B= K1)‘r (Kl)\r) +(7\0®_ Jr(fl/l) KlKZ)\r—i_rw y (3)
0
Ko\ 2 KK N2+ (Koap)2+1
1 [ Npm\? ) Aot 2 Nom)?
|| T(=Ki+Kor)+| Ky —Kit Koty Kyrg—Ky| (rg)?+| ——
) A\ Og (ON (0N
Bflz(ﬁ) — Ky +Kory 1 —ry : 4
’ Ao\ ? Ao\ ?
Kar =Kyl (r)?+| —— —ry (r)*+| o5—
0, 0,

where the dot denotes the differentiation with respect to the argu-

O T
ment,K., K5, \,, and\, are, respectively, the local shear mea- o= C—=Bol+ B1B+pB_1B71, (7
sures, the radial, and the circumferential stretch ratio. 1
The principal invariants oB are where o is the Cauchy stress tensor ahds the identity tensor.
o 2 The elastic response functiog in the constitutive equatiofv)
I =TrB=AX1+K2+K2)+ o F(rg)?+1 for the strain energy equatigB) are given by
r @ 1
— 14w JJ+J+5E 2 ow 1
1 00 7. Qd2d3T VI3 1=~ 9. 51, 71
3,=TrB 1= x2+(>\ ) [14 (= Ky + Kor )2 R I3 Cls 91 Js
o — 2 dW ; o
+(r) A +1+K2, Pam"ga, % ®)
- where
J3=DetF=)\r)\a®—0. (5) c, 2a
a=—, y==
The deformation equatiofil) is inhomogeneous and thus is not Cy Ca
possible in all compressible isotropic elastic material. For thahd
reason, the material of the tube is assumed to be polynomial com-
pressible materia]14] whose strain energy density function is 0=—(1+2aty).
expressed as Using Egs.(3) and(4), the nondimensional stress components
C, from the constitutive Eq(7) with respect to cylindrical coordi-
W(J;,J5,d3)= ?(J1_3)+ ?(JZJ§—3)+a(J§—1) nates are found to be
—(Cy+2C,+2a)LogJs, (6) =Bo(J5., I+ sl ¢ ) [1-a(—K;+Korih)?]
whereC,, C,, anda are constant material parameters. o) 2
The constitutive equation has the fofi7] - 3 T\ R 3.K2
@0 32
_ — @ 1 7\077' 2 2
9= Bo(J2,J3) + I 3— (Kl a)+ 3|\ 0y +(r)el,

1

J3

— — ®0 2 2 )\977 2
0,7~ Bo(J2,d3) + I3 Mo a(ry)*—a 0, +

@ 2
A > Ura*Ja()\eﬂ_) [(1+ @)K, — aKyr )],

¢f

(0N
(R,@,Z) (‘L',(p,{:,) (r,e,z) UZ() ‘]3( ) (K K2+arl//)+

(a) ) (©

(ON
) ) ) 0= 33( ) [Ka—ar y(Ki=Kor )]+ adsKs,. 9)
Fig. 1 Cross section of the tube in the stress-free (a), un-

loaded (b), and loaded configuration (c)
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We user=r/R;, R= R/R;, andz=z/R; as nondimensional vari-

To complete the boundary value problem, we consider the

ables. From Eq(9), the equilibrium equations in the absence oboundary conditions such afR;)=R; and r(Rs)=R., which

body forces are

do Oy—0
rr rr 00
+

doy 207y

== (11)
do, or

=t ===0. (12)

Equations(11) and (12) can be solved for the circumferentialkinematics without radial displacement or local volume change

imply
Ny(r)=Ny(re)=1,

wherer;=1 andr.=R./R; .
Equations(17) and (18) subject to the conditions of E423)
form a boundary value problem for,(r) and J;(r) where M,

(23)

and I\Wz are fixed. The reader should consult Wineman'’s paper
[15] where a similar formulation of a related boundary value prob-

lem is carried out in complete detail.

Furthermore, it is instructive to obtain the necessary and suffi-

cient conditions on the strain energy function equat®rfor pure

shear stress and for the axial shear stress distributions as folloyy$s 18—21). In these cases we haxe=\ ,=J;=1.

(13)

Tro=

: (14)

Orz=

S| = Y=

where I\Wl and I\WZ are the nondimensional moments per unit
length. Then, from Eq<7), (13), and(14), the expressions for the

local shear measuré§, andK, are
M, M, 1
LA

Mz M,
K= c=-B=| ()

A T OTPA

with A=AC—B?, whereA, B, andC are expressed in terms of
the material element volume ratly, stretch ration , as follows:

0, Ao 2
A= J()\ ) 1+a| (TR )%+ ® )
0T 0 (16)
@ 2
B=—aJ3()\ )—RI,& C=1J, (1+a).

For pure torsion ;=M ,=0), it follows from Egs(15), (16),
(5), and(8),

Ki=K,=0, J,=3+(TR )% Bo=3a+y+s+aRp)2

(24)
Then, from Eq.(9) we obtain
Gru=2a+ y+ 6+ 1+ a(TR¥)? (25)
Goo=2a+y+6+1+(a+1)(TR)%
Substituting(25) in equilibrium Eq.(10), yields
(2a=1F(R;)*=0. (26)

This is verified ifa= % for any twist angley.
For pure circular sheaM,= = 0), it follows from Eqs.(15),
(16), (5), and(8),

Then, using Eqgs(7) and (15), (11) and (12) are automatically Then, from Eq.(9) we obtain

satisfied because the form of the constitutive equation.

On the other hand, using equatiap=(J3/\ ) (O /7) and on
substitution from Eq(15), the normalized Cauchy stress tensor

can be written fromr, J;, and\,, and the result is noted.

Then, it easily follows that from Eq10), we have a system of

nonlinear ordinary differential equations for,(r) and Js(r)
which can be written as

d\, X\, A2
Tr—‘?( "0, @n
d; (doy, 90, 9G, dNg|[da | 18
dr | dr  ar  an, dr )\ a3, (18)
where
d&rr— J3 @0 2 P KZ}\QW 2
dr_——T_ )\6—’77 l—a(—K1+K2TRil/l) -« @0
1 Ao TR #4092
*K +a (®0){1+a+( Ny . (19
Aa
= =2a) ( ) TR ¥)?, (20)
(75'” _2-]3 ®O 2 2
=3 | | {1teall+ (R} (21)
Ny N\
g, & [ 0
=3t [1+a 1+ (TR ) ]+aty. (22
XN
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K _ M J,=3+ L
1~ + 2 2 + —5|
(1+a)r (1+a)r @27)
Bo=3 P M,
Bo=3a+y+tota (1+a)?2
5o =2a+y+ 6+
o =2a+vy+do+1, 28)
- 2
o= 20ty 8414 (14 a)| —k
TooT LTy (T+ayr?
Substituting Eq(28) in equilibrium Eq.(10), yields
1 M2
T T Y (29)

This is not satisfied for any nonzero applied momﬁ\_t.
For pure axial shearM ;= #=0), it follows from Eqgs.(15),
(16), (5), and(8),

K= M, J,=3+ m, |
e e
e 2
- 2
Bo=3a+y+dta At ar (30)
Then, from Eq.(9) we obtain
- 2
= 2at gt 5L, Gogm2at yt O+ 1+ a| — 2
O =4caTtvy y Ogg=cary o (1+a)r .
(31)
Substituting Eq(31) in equilibrium Eq.(10), yield
“ Mgfo 32
- (1+ C!)Z r?_ ( )

This is verified ifa=0 for any applied momerﬁz.
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3 Results and Discussion perfectly smooth. This can be attributed to a loss of ellipticity of

Equations(17) and (18) are intearated numerically usin thethe governing partial differential equations as Suggested by Sim-
four?h-order (Rl?nge-K(utte)l method,gcomplete with anyiterati\?e préponds and Warng22]. Analogous examples for this loss of el-
cess([15]). Fifty-one points along the radial coordinate are usefpticity can be found in different pape(§12,15) and a compre-
in the numerical integration of the governing equations. First, félensive treatment of this problem may be found in the paper of
given values oM, andM,, J(T;) is estimated. Using these val-Horgan[10]. On the other hand, when the loading conditions be-
ues and the boundary conditian(r;)=1, Egs.(17) and(18) are come M;,M;)=(1,1), the results do not change qualitatively.
integrated for =[r; ,r.]. The value of the circumferential stretchindeed, as is shown in Figs. 4 and 5, only the intensities of dis-
ratio is checked against the boundary conditigiir)=1. Then, tributions are modified and become smaller. In that case, it ap-
iterations are used to adjust the estimateJ{or) until the bound- pears that the loss of ellipticity is less pronounced than in the
ary condition\ ,(r¢) =1 is satisfied. As an illustrative example,ghove case Whenﬁl,l\Wz):(O,l). Plots for (\Wl,mz):(l,o)

we taker,=2, ®,=180 deg,y=0, and three loading conditions »e omitted for the purpose of brevity. As we have observed, the
(M1,M2)={(1,0),(0,1),(1,1). We focus our attention when the egjts do not change qualitatively compared to the case

cylinder is subjected to different twisting moment — L .
=y{0 deg.15 deg,SJO deg 45 degrurthermore. Wegexamine theg,in-('vl—l’wﬁ) =(0,1) and the distributions lie between the above plots

fluence of the second invariant defined by the value of the paraﬁ(lMllMZ):(oll) and M1,M) = (1,1)). )

etera. For the purposes of comparison, we have also studied the case
To begin with, we give the results fer=0.25. Figures 2 and 3 @=0 which corresponds to neglect the second invariant in Eq.

show the distribution of circumferential stretch ratio and the vol6). Figures 6 and 7 show the distribution of the circumferential

ume ratio when1,,M,)=(0,1). As is made clear by the figures,stretch ratio and the volume ratio whell (,M,)=(0,1). As il-

an increase off modifies the results. For each angle of twjst lustrated by the figures, it may be seen that varyjngads to a

the material element volume is decreaséd () at the inner sup- variation of results. As a result, the above remarks when

port and increases with increasingFig. 3. Near the outer shell, =0.25 may also be claimed here. Note that relative to the above

material element volume is increasediX(1). At approximately casea=0.25, we have found the same results whéh, (M)

r=155, the material element volume is unchanged. Skeel, =(1,0) and M;,M,)=(L,1). This is plotted in Figs. 8 and 9.

the cylindrical surfaces move inward which is consistent with the * o oS case= 025, whena=0. the loss of

volume change as shown in Fig. 2. It follows from Fig. 2 that the

circumferential stretch ratio passes through a minimum. thllptlcny does not occur and the distributions are always smooth.

minimum is smaller asy is greater. Furthermore, the comple t'is comparable with th_e results of Wln_emar_l an_d Waldron, Jr.
nature of the system of Eq&L7) and (18 governing the equilib- L+5] when they have omitted the second invariant in the Blatz-Ko
rium problem of coupled deformations does not seem to pern§f@in energy function. Without going into further detail of the
one to study the existence and the uniqueness of the solution byP@ametric study, it is important to point out that the results re-
analytical method. However, it is worthy of note that the examported here do not change significantly when varying the intensity
nation of Figs. 2 and 3 shows that these distributions are naoftthe momentdM; andM,.
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Fig. 2 Circumferential stretch ratio versus radius for different angles of twist when a=0.25, I\Z1=O, IW2=1

36 / Vol. 67, MARCH 2000 Transactions of the ASME



1,05 +

AN S Y u s m
14 ST =ns s 4
<
J
0,95 4
@=025M,=0,M,=1
——y=0
-y =15
0,9 + ——y =30
=y =45°
0,85 } t t t
! 12 14 16 18

7

Fig. 3 Volume ratio versus radius for different angles of twist when

@=0.25 M;=0, M,=1

0,98 . : ! ;
1 1,2 1,4 1,6 1,8 2
r
Fig. 4 Circumferential stretch ratio versus radius for different angles of twist when a=0.25, Ml=l, I\Z2=1
Journal of Applied Mechanics MARCH 2000, Vol. 67 / 37



1.1
4
1,05 + ' g
oy m BT o= 2y f
1+ “,_—';”
J
0,95 +
4 a=025M,=1, M, =
——y=0°
-y =15
094 —h—Y = 300
——y =45°
b
0,85 } t f ;
1 1,2 1,4 1,6 1,8 2
r
Fig. 5 Volume ratio versus radius for different angles of twist when a=0.25, Ml=1, M2=1

— ()
0,96 + —-—y= 300
= =45
0,95 ' : : :
1 1,2 1,4 = 1,6 1,8 2
Fig. 6 Circumferential stretch ratio versus radius for different angles of twist when a=0, Ml=0, I\Z2=1

38 / Vol. 67, MARCH 2000 Transactions of the ASME



1,3
K
12 +
11+ g
14 - om = T = W-ET o omom b
v
J
0,9 4 a=0,M=0,M,=1
+1//=0°
~a—y =15
—a—y = 30"
08 % —e—y =45"
0,7 + - : :
1 1,2 1.4 5 1.6 1,8 2
Fig. 7 Volume ratio versus radius for different angles of twist when a=0, M1=O, M2=1

0,95 ; } t f
7

Fig. 8 Circumferential stretch ratio versus radius for different angles of twist when a=0,M;=1, M,=1

Journal of Applied Mechanics MARCH 2000, Vol. 67 / 39



1,3
1,2 +
A
1,1 +
- e = = a 4
1+ 5 "'v;-!‘ -
J
0,957 a=0,M,=1,M,=1
——y=0°
~a—y=15"
y —a—y=30"
08+ ——yr=45°
0,7 ; : : .
1 1.2 1.4 7 1,6 1,8 2
Fig. 9 Volume ratio versus radius for different angles of twist when a=0,M,=1, M,=1
References [12] Zidi, M., 2000, “Circular Shearing and Torsion of a Compressible Hyperelas-

) . ) ) tic and Prestressed Tube,” Int. J. Non-Linear Med%, pp. 201-209.
(1] ?gdgn, Ffsvr\: Ch"’f‘d_l‘_’v';k’ Pf”| and Haddo'rl;,l Ei W., 197% C(.)m’a'ned./'\l)ffal arj]d[l?,] Sensening, C. B., 1965, “Non Linear Theory for the Deformation of Pre-
M(gcséorfppl Math.26, p(:) gy s sotropic Elastic Material,” Q. J." ~ gyresqed Circular Plates and Rings,” Commun. Pure Appl. Magpp. 147—
SO s NG P, £97 S . . . 161.
2] Mioduchowski, A., and Haddow, J. B., 1979, “Combined Torsional and Axial . " . .
(2] Shear of a Compressible Hyperelastic Tube,” ASME J. Appl. Me48, pp. [14] Le Tallec, P., and Vidrascu, M., 1984, “A Numerical Method for Solving
223226, ' ’ Equilibrium Problems of Compressible Hyperelastic Bodies in Large Defor-
[3] Levinson, M., and Burgess, I. W., 1971, “A Comparison of Some Simple _ Mmations,” Numer. Math.43, pp. 199-224. )
Constitutive Relations for Slightly Compressible Rubber-Like Materials,” Int. [15] Wineman, A. S., and Waldron, Jr., W. K., 1995, “Normal Stress Effects In-

J. Mech. Sci. 13, pp. 563-572. duced During Circular Shear of a Compressible Non-linear Elastic Cylinder,”
[4] Blatz, P. J., and Ko, W. L., 1962, “Application of Finite Elastic Theory to the Int. J. Non-Linear Mech.30, No. 3, pp. 323-339.
Deformation of Rubbery Materials,” Trans. Soc. Rheél. pp. 223-251. [16] Ertepinar, A., 1990, “On the Finite Circumferential Shearing of Compressible

[5] Ogden, R. W., and Isherwood, D. A., 1978, “Solution of Some Finite Plane- Hyperelastic Tubes,” Int. J. Eng. Scil8, No. 9, pp. 889-896.
Strain Problems for Compressible Elastic Solids,” Q. J. Mech. Appl. Math.,[17] Beatty, M. F., 1987, “Topics in Finite Elasticity: Hyperelasticity of Rubber,

31, pp. 219-249. Elastomers and Biological Tissues—With Examples,” Appl. Mech. R49,,
[6] Carroll, M. M., and Horgan, C. O., 1990, “Finite Strain Solutions for a Com- pp. 1699—1734.
pressible Elastic Solid,” Q. Appl. Math48, No. 4, pp. 767-780. . d[ls] Polignone, D. A., and Horgan, C. O., 1991, “Pure Torsion of Compressible
[7] Tao, L., Rajagopal, K. R., and Wineman, A. S., 1992, “Circular Shearing an Nonlinearly Elastic Circular Cylinders,” Q. Appl. Math49, No. 3, pp. 591—
Torsion of Generalized Neo-Hookean Materials,” IMA J. Appl. Ma#8, pp. 607.
23-317. [19] Polignone, D. A., and Horgan, C. O., 1992, “Axisymmetric Finite Anti-plane

[8] Knowles, J. K., and Sternberg, E., 1975, “On the Ellipticity of the Equations
of Nonlinear Elastostatics for a Special Material,” J. ElaSt.pp. 341-361.

[9] Abeyaratne, R., and Knowles, J. K., 1987, “Non-elliptic Elastic Materials and
the Modeling of Dissipative Mechanical Behavior: An Example,” J. Elds,,

Shear of Compressible Nonlinearly Elastic Circular Tubes,” Q. Appl. Math.,
50, pp. 323-341.

[20] Haughton, D. M., 1993, “Shearing of Compressible Elastic Cylinders,” Q. J.
Mech. Appl. Math. 46, pp. 471-486.

pp. 227-278. ¢ _
[10] Horgan, C. O., 1996, “Remarks on Ellipticity for the Generalized Blatz-Ko [21] Polignone, D. A., and Horgan, C. O., 1994, “Pure Circular Shear of Com-
Constitutive Model for Compressible Nonlinearly Elastic Solid,” J. Ela2,, pressible Non-linearly Elastic Tubes,” Q. Appl. Mat0, pp. 113-131.
pp. 165-176. [22] Simmonds, J. G., and Warne, P., 1992, “Azimuthal Shear of Compressible or
[11] zidi, M., 1999, “Torsion and Axial Shearing of a Compressible Hyperelastic Incompressible, Non-linearly Elastic Polar Orthotropic Tubes of Infinite Ex-
Tube,” Mech. Res. Commun26, No. 2, pp. 245-252. tent,” Int. J. Non-Linear Mech.27, No. 3, pp. 447-464.

40 / Vol. 67, MARCH 2000 Transactions of the ASME



Modeling of Interphases in
v..uu' | Fiber-Reinforced Composites

Assistant Professor,

e | Under Transverse Loading Using
N f the Boundary Element Method

Graduate Student
Department of Mechanical, Industrial,

and Nuclear Engineering, In this paper, interphases in unidirectional fiber-reinforced composites under transverse
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der and square unit cell models of the fiber-interphase-matrix systems are considered.
J. F. Luo The effects of varying the modulus and thickness (including nonuniform thickness) of the
Graduate Student, interphases with different fiber volume fractions are investigated. Numerical results dem-
Department of Mechanical Engineering, onstrate that the developed boundary element method is very accurate and efficient in
University of California, determining interface stresses and effective elastic moduli of fiber-reinforced composites
Berkeley, CA 94720-1740 with the presence of interphases of arbitrarily small thickness. Results also show that the

interphase properties have significant effect on the micromechanical behaviors of the
fiber-reinforced composites when the fiber volume fractions are large.
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1 Introduction men) concept are usually employed in micromechanics analysis,
Interphases, or interfacial zones, in fiber-reinforced comp03|l eWhICh the fibers are assumed to be infinitely long and packed in

; . . - a square or hexagonal pattefsee, e.9.[10,11,13). Although
?ﬁézga}lri;reh?:etshglréa% ?Ee%egﬁietgt?grlbf;gng nlfé?;ii; | reonl_y one fiber and the surrounding matrix are modeled in the unit
P ! e, G approach, the presence of the interphase between the fiber and

tions between the fiber and matrix materials, or the use of proteﬁétrix still makes the finite element method and boundary ele-

itlsvznﬁofgll%stgnretmofrlgsrtﬁgrrlr?gtrrizar?]lzﬂ:ﬁ%r:E%Hg?iiglrbgirr’e\clzvt?(l)c ent method modeling difficult, simply because of the thinness of
ploy: e interphases which are at the micrometer level or below.

is usually much stiffer than the matrix material. Different levels of Many finite element models based on the two-dimensional elas-

stresses and deformations can develop in the fiber and ma y theory have been developed to study the micromechanical

mat(_erlals, because of this m'sm?‘tCh in the ma_terlal properties. | IPoperties of fiber-reinforced composites under transverse loading
the interphases that bond the fiber and matrix together to ens with the presence of an interphase, for examplEl 306,14
the desired functionality of the composite material under extern d[8], and most recently if9]. In aI’I these finite élémént

loads. Although small in thickness, interphases can significan ethod models, a layer of very fine finite elements was used

affect the overall mechanical properties of th? fiber-reinforc tween the fiber and matrix to model the interphase. Because of
I(i:r?IT‘i)r?StltgzsioEias dObZﬁ:Vzdnljn ::T:)?]nsé sﬂﬁfﬁ&ﬂzé);'?;:;Sr(‘;vse?rlﬁisgethe thinness of the interphase, a large number of small finite ele-
reinforced compopsite’s such as dgbondi)ag fiber pullout, and Fm_ants are need_ed in these models,_ in order to e_1v0|d elements with
trix cracking, occur in,or near this region lThus it i cr’ucial {ngrge_ aspect ratios which can deteriorate the finite element m_ethod
fully underst:emd the mechanism and effeéts of t’he interphase %olutlons. Thls-’ n tu.rn, causes a large number O-f .element.s in the
. . . . ) Silfer and matrix regions because of the connectivity requirement
fiber-reinforced composites. Numerical techniques such as the

. _~in the finite element method. For instance[®), more than 3500
hite element m‘?thOd apd thg boundary element method are 'n(hﬁl'te elements were used to model owlye quarterof the chosen
pensable tools in serving this purpose.

; - ) s . ._unit cell. With further smaller thickness of the interphase as com-
Numerical modeling of fiber-reinforced composite material

ared with the diameter of the fiber, or nonuniform thickness,

presents great challenges to bOt.h the finite elemgnt methoq \/tj—zn more elements will be needed in the finite element method
boundary element method especially for the analysis at the MICHRHdel. Thus, using finite elements based on the elasticity theory

structural level. The main issue in the micromechanics analysis @t modeling of interphases can be costly and inefficient.

fiber-reinforced composites is to predict the interface stresses Ofrhe boundary element method has been demonstrated to be a
Surabllltyh ass?t?sm?fnt,t_andYto de’termlr:je |Fh|ea e_ngln?erlntg PrORGLbIe alternative to the finite element method due to its features
1es, such as the efiective roungs modull, Folsson's ratios, a boundary-only discretization and high accuracy in stress analy-
thermal expansion coefficients needed for structural analysis. | &s especially in fracture analysisee, e.g.[15—18). For the
alized models using the unit cefor representative volume ele- analysis of micromechanical behaviors of fiber-reinforced com-
— posites using the boundary element method, there are very few
To whom correspondence should be addressed. publications in the literature, and all of the boundary element
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Interphases, as in fiber-reinforced composites, are thin shell-
like structures. For this class of structures, there have been two
major concerns in applying the boundary element method. The
first concern is whether or not the conventional boundary integral
equation for elasticity can be applied successfully to thin struc-
tures. It is well known in the boundary integral equation/boundary
. fiber element method literature that the conventional boundary integral
equation will degenerate when it is applied to cracks or thin voids
in structures because of the closeness of the two crack surfaces
(see, e.g.j16] and[22]). One of the remedies to such degeneracy
in the conventional boundary integral equation for crack-like
problems(exterior-like problems, is to employ the hypersingular
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boundary integral equatiofsee, e.g.[18,23—-25). Does this de-
a unit cell x interphase generacy occur when the conventional boundary integral equation
—— is applied to thin structure@nterior-like problems, such as thin

/

e e

shells? It was not clear in the boundary element method literature
and the boundary element method based on elasticity had been
avoided in analyzing thin shell-like structures for a long time due
Fig. 1 The interphase in a fiber-reinforced composite to this concern. Recently, it was shown [ig86] and [27], both
analytically and numerically, that the conventional boundary inte-
gral equation will not degenerate, contrary to the case of crack-

a square unit cell using the boundary element method. To stu'dsﬁ problems, when it is applle_o_l to thin sheII-I|I_<e structures if the
the effect of the interphase, the continuity of the tractions acrodiplacement boundary conditions are not imposed at all the
the interface of fiber and matrix is maintained, while a linedpoundaries. Further discussions on this nondegeneracy issue for
relation between the displacement differences and the tractidhg boundary element method applied to shell-like structures can
across the interface is introduced. This simple relation representeéafound in[26] and[28]. Based on these new results, the degen-
spring-like model of the interphase. The proportionality constangsacy issue should no longer be a concern when the conventional
used in this model characterize the stiffness of the interphag@undary integral equation is applied to thin structures, once the
Based on this model, it was shown that the variations of the isecond concern, that is, the numerical difficulty is addressed.
terphase parameters can cause pronounced changes in the strégse numerical difficulty in the boundary integral equation is the
distributions in the fiber and matrix. The initiation, propagatiomearly singular integrals which arise in thin structures when two
and arrest of the interface cracks were also analyzed. The sgpaets of the boundary become close to each other. Detailed studies
approach to the interphase modeling was extend¢d]ito study on the behaviors of the nearly singular integrals and comprehen-
hexagonal-array fiber composites, and 4} to study the micro- sive reviews of the earlier work in this regard can be foun®sj
mechanical behaviors of a cluster of fibers. Oshima and Watafid [30]. One of the most efficient and accurate approaches to
[19] calculated the transverse effective Young's modulus usingggal with the nearly singular integrals in the boundary element
two-dimensional boundary element method for a square unit celethod for three-dimensional problems is to transform tiisse
model. No interphase was modeled and perfect bonding betwagBe integrals to line integrals analytically before the numerical
the fiber and the matrix was assumed. Nevertheless, the boundgf¥gration([22,26,31). A similar approach can be established for
glement method results using constant'elements were shqwn ta\bS-dimensional elasticity problem@27]). It has been demon-

in very good agreement with the experimental data. Gulrajani a8fated in[27] that very accurate numerical solutions can be ob-
Mukherjee[20] studied the sensitivities and optimal design ofained for thin structures with the thickness-to-length ratio in the

composites with a hexagonal array of fibers. A two-dimensiong{icrq and even nanoscales, using the newly developed boundary
boundary element method model with the same spring-like intggj,

. e ement method approach, without seeking refinement of the
phase model as if2] was used. The sensitivities of stresses at tr}ﬁ shes as the thiclfr?ess decreases 9
interphase were calculated and employed to optimize the value o )

the stiffness of an interphase in order to minimize the possibili nce the degeneracy issue for the conventional boundary inte-
> P P . Z%ral equation in thin structure problems has been clarified and the
of failure of a composite. Most recently, Pan, Adams, and Riz

o It ; early singular integrals can be dealt with accurately and effi-
[21] developed a similar two-dimensional boundary GIerne'It;:]tlently, it is believed that the boundary element method can now

reinforced composites. A main component in this research was ffigulations of thin shell-like structuref26]) thin-film, and coat-
development of a library of Green's functiorier matrices of N9S in the micro or nanoscaléf27]) and in particular, the inter-
boundary element method equatipngor analyzing fiber- Phases in fiber-reinforced composite materials. ,
reinforced composite materials, which can be used by engineers ji" this paper, detailed two-dimensional models for the inter-
the design of such composites. Although successful to some @hases in flber-relnforc(_ad_ composite materlals_ haye been de_vel-
tent, all the above boundary element method models of the ufRed based on the elasticity theory to study their micromechanical
cells for fiber-reinforced composites with the spring-like interbehaviors under transverse loading. All the regions—the fiber,
phase relations are incapable of providing other important infoiatrix, and interfacial zone contained in a unit cell, are modeled
mation about the properties of composites, such as effects Using the advanced two-dimensional boundary element method
changes of the thickness and nonuniform distribution of the intetith thin-body capabilities[27]) and extended to multidomain
phases. Furthermore, in order to avoid overlapping of the fiber ag@ses. The interphases can have uniform thickness of any arbi-
matrix in the spring-like model, an iteration approach is needed.trarily small values or nonuniform thickness. Interface stresses in
trial calculation needs to be done first to check the sign of tibe interphases and effective elastic moduli in the transverse di-
normal traction at the interface. If the spring is in compressiorections are computed using this approach. This two-dimensional
continuity of the normal displacement is resumed and the boungodel of the interphases can provide more accurate interface
ary element method is applied again. This procedure is inefficiestresses and therefore a more accurate account on the microme-
and can be costly. An improved boundary element method moddlanical behaviors of fiber-reinforced composites than the current
of the interphases based on elasticity theory is desirable. spring-like models in the boundary element method literature.
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2 The Boundary Element Method Formulation ([32,33), before doing any numerical work. However, when the
structure becomes thin in shape, such as the interphase shown in

e oo 2, 10,2 oth el n Ex ) ar il o sl with e e
. g Y gral €q . i source point is on one side and the integration is carried out on the
ity problems can be applied in each material don{adex nota-

R S ' Lo ther side of the thin structure. These types of integrals are called
tion is used in this section, where repeated subscripts imply su(F:ha'arly singular integrals since the distamcs very small in this

mation): case but is still not zero. Most techniques for dealing with the
(8 8 8) 8 singular integrals do not work for nearly singular integrals and
Cij(Pou”(Po)=| [Ui(P,Po)t;”(P)=Ti(P,Pq) special attention is needed. Recently, several techniques, includ-
S ing singularity subtractions, analytical integration, and nonlinear
Xu}‘”(P)]dS(P), (1) coordinate transformations have been developed for the two-

dimensional elasticity boundary integral equation to calculate the
in which u{® andt!® are the displacement and traction fieldspearly singular integrals arising in thin structufga7]). The com-
respectively;ufjﬂ)(P,Po) and Ti(]ﬁ)(p,po) the displacement and bination of these techniques is found to be extremely effective and

traction kernels(Kelvin's solution or the fundamental solutipn efficient in computing the nearly singular integrals in the two-
respectively;P the field point and®, the source point; ang the dlmen3|onal boundary integral equation, no matter how close the
boundary of the single material domaitFig. 2. C;;(Po) is a Source point is to the element of integration. Very accurate bc_)und-
constant coefficient matrix depending on the smoothness of & element method results have been obtained using this ap-
curve S at the source poinP, (e.g., C;;(Po)=1/25; if S'is proach for thin structures, such as coatings on macroscale struc-
smooth at poinP,, whered; is the Kronecker deltaThe super- tures, with the coating thickness-to-length ratios in the micro to
script 8 on the variables in Eq(1) signifies the dependence ofhanoscales and with a small number of boundary elements. The
these variables on the material domains, as specified below: Same approach ifi27] is applied in this paper to compute the
nearly singular integrals arising in the modeling of the inter-
pB=f: fiber domain(S=S,); phases.
B=i: interphase domair(S=S,US,); Employing the boundary elementdine elements in two-
' * ’ dimensiongl on the boundary and interfac8s, S,, andS;, the
B=m: matrix domain(S=S,US;). discretized equations of the three boundary integral equations as
) ] given in (1) for the fiber, interphase, and matrix can be written as
The two kemel functionsU{#'(P,Po) and T{(P,Po) in  foliows (cf., e.g.,[17]):
boundary integral equatiofil) are given as follows for plane-

strain problems: T =u"t", (in fiber domain )
Ui (P.Po) = 8P (1 D) (3=4v) 4 In| — +r,if,1}, TOUP+ TP =uPtD +udtd | (in interphase domajn
4
1
Tif(P.Pg) =~ dm(1—vP) Aral(1=2vP) 5+ 211 ] TEU+ T =uime™ + U§™t™ , (in matrix domain
5)
+(1=20B)(r jmi—r inp}, (2

in which U and T are matrices generated from th¥f)(P,Py)

and TP(P,Py) kernels, respectivelyy andt the displacement
and traction vectors, respectively. The superscripts indicate the
material domain, while the subscripts indicate the interface or
boundary §;, S,, or S;3) on which the integration is performed.

where u(? is the shear modulus and? the Poisson’s ratio for
the three different domains, respectivetythe distance from the
source pointP, to the field pointP; n; the directional cosines of
the outward normah; and ();=d()/dx; with x; being the coor-

dinates of the field poine. Assuming perfect bonding at the fiber/interphas®)(and

In Eq..(l) the |nt_egral contalnlng.theJl) (P’PO)_ kernel is interphase/matrix$,) interfaces, one can write the following in-
weakly singular, while the one (:ontalnergfyj (P,Py) is strongly  erface conditions:

singular and must be interpreted in the Cauchy principal value

sense. There is a vast body of literature on how to deal with the ons: ufl=yi=y continuit 6
Cauchy principle value integrals in the boundary element method St . v % ©
formulations for bulky-shaped structures, either analytically for ; e

y-shap ’ ylcaty t"=—t"=t;, (equilibrium) (7)

some special cases or numerically for other cases. An alternative
approach is to transform the boundary integral equation in the _ o
form of Eq.(1) into a weakly singular form by using some simple on S,: uy=uf"=u,, (continuity) (8)
solutions or integral identities for the fundamental solution

tV=—ti"=t,, (equilibrium) (9)
matrix whereuy, t;, Uy, andt, are defined as the interface displacement
/ or traction vectors.
Applying the interface condition&)—(9) in Egs.(3)—(5), one
terthse obtains the following system:
— " (f) (f)
e T3 0 0 Uy U3 0 0 t,
< & TV TY 0 [{up=|-UP U o |{t
1 2 2( = 1 2 2(
o T Tym]lUs 0 —um ugm]lts
\ fiber

whereuz=u{" andt;=t{" have been used for simplicity. Rear-
Fig. 2 Two unit cell models of the fiber-interphase-matrix sys- ranging the columns and moving all tienknown interface vari-
tem ables to the left-hand side, one finally arrives at
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T —u" o 0 0 C

T U TP —uP 0 [{uy= ?) {ta). B
m

0 o Ty o ougm Ty | LUs o

(10)

The last column in the matrix on the left-hand side and the matrix
on the right-hand side may need to be rearranged again according
to the boundary conditions specified 8g.

Equation(10) is the global system of equations for the fiber- e
interphase-matrix model. The system has a banded matrix due to
the multidomain nature of the problem. This system of equations A
satisfies both the continuity and equilibrium conditions at the in- D — I<—
terfaces explicitly, which is an advantage of the boundary element é
method approach over the finite element method in which only the
continuity of displacement fields can be satisfied explicitly. By Fig. 4 Square model under tension
solving Eq.(10), one can obtain the displacements and tractions at
the two interfaces and the boundary, and then calculate the inter-
face stresses based on the traction and displacement fields. UEf ):0_(0f ) =k(HAM),

(O=r=a)

3 Two Unit Cell Models With the Interphase

Two unit cell models are used in this paper, namely, the con-
centric cylinder model and the square motkde, e.g.[12]) both B()
of which include the interphasgig. 2). For the cylinder model, a(,})=k“>[A<”+(l—2v(”) —
analytical solutions are obtained for the displacement and stress r
fields, which can be employed to validate the boundary element
method results. For the square model, many finite element and oM = (m)
boundary element solutions are available in the literature for the '
effective elastic moduli which will be compared with the data
from the present boundary element method approach. a(g””:k(m)

) . . ) (i)
0-5')=k('{A('>—(1—2v(')) r_z}'

, (asr=<b) (12)

B(m
A<m>—(1—2y<m>)r—2

B(m
A<m>+(1—2u<m>)r—2}, (b<r=c)

3.1 Concentric Cylinder Model. For the concentric cylin-
der model, Fig. 3, the response of the composite inxtyeplane  Where the constan&s®, B¥), andk® (B=f, i andm) are given
is axisymmetric if the applied load or displacement on the bount® the Appendix.
ary S, is also axisymmetric. Here it is assumed that a radial dis- From the above expressions, one can compute the radial dis-
placements is given onS; (atr=c, Fig. 3. Applying the theory placement and stress components at any point in the three do-
of elasticity for plane strain case in the polar coordinate systefins within the cylinder model for any small values of the inter-
(r,0), one can derive the following expressions for the radidhase thickness.
displacement and stress fields in the fiber, interphase, and matri
respectively(see the Appendix for detajts

uP(r=A"r  (0<r=<a)

X3 2 Square Model. As shown in Fig. 4, the boundary con-
ditions for the square model undemsionare

along AB:  u,=94, t,=0;

(i)
u(i)(r)=A(i)r+ BT’ (asrsb) along BC: Uy:_CO, tx:0;
. along CD: u,=0, t,=0, (13)
m
u™(r)y=AMr+ — (b<r=<c) (11) except aty=0 where u,=u,=0;

and along DA:  u,=Cqy, t,=0;

whereu,, uy, t,, andt, are the displacement and traction com-
ponents, respectively§ the given displacemenFig. 4); andC,
an unknown constant. This unknown constant is meant to keep the
edges BC and DA straight after the deformation. This represents
the constraint of the neighboring cells to the one under study. In
the literature, there are several ways in dealing with these subtle
boundary conditions along the top and bottom edges. For ex-
ample, in[9] C, is chosen as zero in one case and nonzero in
0 another case. This is equivalent to another given displacement
condition besides the one imposed along the two vertical edges. In
[2] and recently in21], C, is regarded as an unknown and the
condition fELaydx:O along the top or bottom edges is used to
provide the additional equation needed for solving this unknown
together with other unknown boundary variables. Discretization of
this simple equation using shape functions is needed.19,
however, this straight-line constraint is totally ignored, agd
=t,=0 (traction-free conditionsare assumed. It is found that
results for the unit cell model is not very sensitive to all the
Fig. 3 Concentric cylindrical model different techniques mentioned above. In this papggy,is as-

=Y
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along AB:  u,=0, u,=7%;
L y I _+_ 9 X y= 7
T = - n_ along BC: u,=0, t,=0;
g Bf along CD:  u,=0, u,=0;
e
g along DA:  u,=0, t,=0. a7
g The average shear stress along edge AB can be evaluated by
A r=a - __ 1 (L
f X Txy= 51 Txy(l-xy)dys (18)
2L ),
r=b
________ and the effective shear modulus in the transverse plane and under
————————— the plane-straincondition is
B A or Ty _{Eum(Ly)dy 19)
Fig. 5 Square model under shear deformation © Yxy 7

wherey,,= 7/2L is the average shear strain.

Finally, one recognizes that the material const&fjts vy, , and
Gyy given in Egs.(15), (16), and (19), respectively, are deter-
ned under theplane-strain condition which accounts for the
nstraint in thez-direction ,=0). These constants are related
the intrinsic material properties by the following relatidio§,
g.,[35] and[21)):

sumed to be unknown, but a different approach is employed
enforce the straight-line condition, instead of solving for this ursg
known constant with additional equations. Here the penal%
method used in the finite element method for multipoint cons
straints (see, e.g.[34]) is introduced in the boundary element”

method equations to enforce that all the nodes along edges BC 1+ 2v;y . u;y )
and DA remain along straight lines after deformation. To imple- Ex:m Exo vy=1,7 Gu= G (20)
ment this penalty method in the boundary element method equa- a4 Xy

tions a very large numbépenalty with a proper sign is placed in which are the effective Young’s modulus, Poisson’s ratio, and
the locations in the matrix corresponding to the related displacghear modulus, respectively, in the transverse direction for the
ment components. Then these displacement components will hageposite.

the same value after the system of equations is solved. It is very

easy to implement this penalty method in the boundary element .

method equations and no additional equation is needed. Numerical Examples

Once stresses on the boundary are determined, the average tep-1 Cylinder Model. The cylinder modelFig. 3 is studied
sile stress along the edge AB is evaluated by first to validate the developed boundary element method formula-
1 (L tion and the solution strategy, since for this idealized geometry the
[ ay(L,y)dy. (14) analytical solutions are availableee Eqs(11)—(12) and the Ap-
2L ), pendiX. The specified radial displacement on the boundaty

. . o =) is 8. The following material constants for a glass/epoxy com-
The effective Young’'s modulus in the transverse direction a’]Sjosite are used:

under theplane-straincondition is thus determined by
. for fiber: E()=72.4 GPa(10.5x10° psi), »''=0.22;
. Ox JZLo(Ly)dy . (i) N0
EX:Z:T' (15) for interphase: E"=36.2 GPa(5.25x10° psi), »V=0.30;
&
_ _ " _ _ ~ for matrix. E™=345 GPa(0.5x1CF psi), »™=0.35:
wheree,= /2L is the average tensile strain. The effective Pois-

son’s ratio under thelane-straincondition can be determined by Where the Young's modulus of the interphase has been taken as
half of that of the fiber; and the dimensions used are

U)/(yzf % (16) a=c/2, b=a+h,
X with h being the thickness of the interphase, which is varying.
in which &, is the average strain in thedirection. Quadratic line elements are employed in the discretization and
For the square model undeshear deformation, Fig. 5, the two meshes are tested, one with 24 elemégitght on each circle
boundary conditions are and another one with 48 elemeli$ on each circle Differences

Table 1 Results of the radial displacement u(X10724) for the cylinder

model
h=0.1a h=0.0la h=0.001a
Point 2 Point 3 Point 2 Point 3 Point 2 Point 3
BEM 8.2961 7.0833 6.7379 6.6225 6.5909 6.5794
Analytical 8.2958 7.0830 6.7378 6.6224 6.5925 6.5810
Error (%) 0.0036 0.0042 0.0015 0.0015 0.0243 0.0243

Journal of Applied Mechanics MARCH 2000, Vol. 67 / 45



Table 2 Results of the radial stress o, (X E(™ /c) for the cylinder model
h=0.1a h=0.0la h=0.00la

Point 1 | Point2 | Point3 | Point 1 | Point2 | Point3 | Point 1 | Point2 | Point 3

BEM 3.6515 4.2806 4.3550 3.4215 4.0636 4.0714 3.4009 4.0442 4.0449

Analytical | 36513 | 42803 | 43544 | 34214 | 40633 | 40711 | 3.4006 | 40461 | 4.0458

Error (%) | 00055 | 0.0070 | 00138 | 00029 | 00074 | 00074 | 00088 | 0.0470 | 00222

in the results from the two meshes are less than five percent aftéctive Young’s modulus. It should also be pointed out that for
the results from the refined meéh8 elementsare reported. The the finite element results if®], the only thickness considered is
radial displacements and stresses at selected p@tigs 3) are h=1.0um which is relatively large compared with the fiber ra-
given in Table 1 and Table 2, respectively. It is observed that tlkus (a=8.5um). If a smaller thickness were used in the finite
maximum errors of the displacement and stress using the dewelement model, a much larger number of elements would have
oped boundary element method are less than 0.05 percent inb@en needed in order to avoid large aspect ratios in the finite
the cases with different thickness of the interphase. These reselisment mesh, as demonstrated in a similar stadg[27]). How-
demonstrate that the developed boundary element method aper, for the boundary element method employed here, the same
proach is extremely accurate and effective in modeling the intefumber of elements can be used no matter how small the thick-
phases with any small thickness, as has been confirmed in H&s of the interphase is.

context of single material problentg27]). ) )
(b) Effect of the Interphase Thicknesgzigure 6 shows the

4.2 Square Model effect of different interphase thicknesses to the effective Young's

. . , . . modulus. In order to compare with the data[#1] and[19], the
(a) Calculation of Effective Young’s Modulus With Varyings, 1o material constants as listed in Section(ff the cylinder

mterpgaset.Prolperty. Fc'jrSt’ thge siua_lr_i model ”tr.‘der fatﬁtretch "Pnodeb are used. It is found that the effect of the thickness is not
e x-direction is consideredig. 4). The properties of the con- significant on the effective Young’s moduli when the fiber volume

stituent materials considered are fraction V; is small (50 percent and legswhile significant effect

for fibper: E(f)=84.0 GPa, »')=0.22; is observed wheW; is large(70 percent This may be due to the
) 0 0 fact that the effective elastic moduli are obtained by evaluating the
for interphase: E"'=4.0~12.0 GPa, »''=0.34; average stress on the outer boundary of the mésxdge AB, Fig.

for matrix: EM=4.0 GPa, »™=0.34; 4). When the fiber volume fraction is small, the interphase is away
from the matrix outer boundary and thus changing the interphase
and,a=8.5um, b=a+h, 2L=21.31um (fiber volume fraction thickness does not considerably affect the stresses on the edge
V=50 percent). Young's modulus for the interphase is changing. This will change if the fiber volume fraction is large.g., 70
in the range between 4.0 and 12.0 GPa. The effect of the varjgercent when the interphase becomes closer to the outer bound-
tions in the interphase material on the effective Young’s modulggy of the matrix. It should also be pointed out that when the fiber
of the composite is of the primary interest here. A total of 64olume fraction is large, it will present additional difficulty in the
quadratic boundary elements are used, with 16 elements on egafdeling using the finite element method and earlier boundary
of the two circular interfaces and 32 elements on the outer bounglement method formulation, because of the thinness of the matrix
ary. Table 3 shows the effective Young's moduli obtained froregion. However, for the current boundary element method for-

the boundary element method stress data using E9j.and then mylation, this additional thinness of the matrix domain does not
Eq. (20), and compared with those from the finite element methggtesent any problem.

quarter model with 3518 linear triangular element§9i for the

thicknessh=1.0um. The boundary element method results are (€) Effect of Nonuniform ThicknessNext, the effect of non-
slightly lower than those from the finite element method dat&lniform thickness of the interphase on the interface stresses and
This may be caused by the use of linear triangular element in tfective elastic moduli is investigated. The starting modeég.

finite element method which tends to overestimate the stiffness4fis the same as the one used for Table 3 with the material
the structure. It is noticed that the different boundary conditiormnstants listed at the beginning of this subsectoith E(
along the top and bottom edges of the square m@dss-traction =42.0GPa). To form the nonuniform distribution of the inter-
or straight-line conditionshave very little influences on the final phase, the outer boundary of the interphase is shifted to the left

Table 3 Effective transverse elastic modulus (GPa) using the square unit cell

model

Interphase Current BEM with Current BEM with FEM

property traction-free conditions | straight-line conditions (191)

EY (GPa) on BC and DA on BC and DA
4.0 11.61 11.61 12.25
6.0 13.18 13.02 1371
8.0 13.97 13.89 14.68
12.0 15.04 14.93 1591
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8.0

i — ¥ - Without interphase
701 | --3-- With interphase (h=0.01a)
— -A— -With interphase (h=0.03a)
601 | — .o~ Other BEM ([21])
5.0 | —8— Self-consistent ([19])
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%y 30
>
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1.0
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Fiber volume fraction (Vp)

Fig. 6 Influence of the thickness on the effective Young’s modulus

slightly (see Fig. 7. When the offsefA is close toh (the initial,

face stress at point twhich is the maximum interface normal

uniform thicknesy the change of the interphase thickness in thetres$ increases for about 50 percent while the stress at point 2
x-direction is the largestX=0 corresponds to the uniform inter- (the second largest interface stieisereases for about 30 percent.

phasé. The interface normal stresses at points 1 an@ig. 7),

However, the effect of the nonuniform thickness of the interphase

normalized by those in the uniform case, are plotted in Fig. 8. Dua the effective Young’s modulus is found to be less than three
to the misalignment of the fiber and interphase centers, the intpercent. This, again, is largely due to the averaging process on the

Fig. 7 The interphase with nonuniform thickness

1.60

edge AB which is away from the interphase.

(d) Calculation of Shear Modulus With Varying Interphase
Thickness. Finally, the effective shear modulus in the transverse
direction is calculated using the square unit cell model shown in
Fig. 5. The boundary conditions applied are listedlif and Egs.
(19—(20) are used to compute the shear modulus. In order to
compare the results with those in the literature, the following ma-
terials properties for a Kevlar/epoxy composite are used in the
current boundary element method calculation:

for fibper: E(")=7.0 GPa, »'=0.30;
for interphase: E'=5.0 GPa, »'=0.35;
for matrix: E™=3.0 GPa, »™=0.35.

Table 4 shows the results of the effective shear modulus by the
current boundary element method with and without the presence
of the interphase. The data without the interphdse @) agrees
very well with the results from the finite element methpél]) and

1.50 - —6—Increases in stress at point 1

1.40 1

— H — Increases in stress at point 2

1.30

1.20

Normalized stresses

0.0 0.2 0.4

0.6 0.8 1.0

A/h

Fig. 8 Effect of nonuniform thickness on the interface stress
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Other BEM ([21]) 1.294 1513 1798
Current BEM (£ = 0.0) 1.2939 1.5133 1.7981 1.9866 Appendix
Current BEM (4 = 0.001a) 1.2941 1.5139 1.7994 1.9885 . i i .
Analytical Solution for the Concentric Cylinder Model.
Current BEM (k= 0.01a) 1.2964 1.5196 1.8111 2.0059 Here the analytical solution for the concentric cylinder model
Camen BEM (=010 735305 555 oA used to validate the boundary element method results is derived.
For the concentric cylinders, the response of the composite is

axisymmetric. Thus the equilibrium equation for two-dimensional
elasticity in the polar coordinate system reduces to

do,

the other boundary element meth@#é1]) both of which used the
perfect bonding condition and did not model the interphase. With dr

the increase of the thickness of the interphase, the shear modyliere the stress components, (o) are functions of only, and

deviates from the perfect bonding case slightly, with the largegie shearing stress,, is zero. The stress-strain relations for the
change(about eight percebccurring at the fiber volume fraction plane-strain case are

V;=0.6, for the interphase property considered. WRgr-0.7
andh=0.1a, the interphase will be outside the boundary of the
unit cell. This is not permissible and thus no boundary element
method data are generated.

+ o000, A

Oy [(L=v)e +veyl,

B E
T(1+v)(1-2v)

Ty —v)egtve]. (A2)

A oi=2v)

5 Conclusion The strain-displacement relations are
The advanced boundary element method formulation with thin- u du

body capabilities for elastostatic problems has been extended to gg=—, &

)

multidomain problems and applied to model the interphases in r dr’
fiber-reinforced composites under transverse loading. Compar@ﬁuations(Al), (A2), and(A3) lead to the following equation for
with the current spring-like models for the interphases in thge radial displacement:

boundary element method literature, this new interphase model is

based on the elasticity theory and thus provides a more accurate du 1du wu
account of the interphases in fiber-reinforced composites within F"r rdr 2
the linear theory. The developed boundary element code using the . . . o
object-oriented programming languag@++) can be utilized in  Whereu is the displacement in the radial direction.

analyzing the micromechanical properties of fiber-reinforced com- The solution of the above equation has the following form:
posites with the presence of interphases of any arbitrarily small B

thicknesguniform or nonuniform. The approach is very accurate u(r)y=Ar+ —, (A5)

as is validated using the concentric cylinder model for which the r

analytical solution has been derived. It is also very efficient as which A andB are determined by the applied boundary condi-
only a small numberless than one hundrgaf boundary ele- tions. The above form of the solution is the general form which
ments are needed to modelvwénole unit cell for the boundary valid for the fiber, interphase, and matrix. Thus for the three do-
element analysis, compared with the large numipeore than a mains, one has

few thousands of finite elements often needed for quarter

(A3)

=0, (A4)

model in the finite element method analysis. The approach pro- u®(r)=A"r, (assumeB!’’=0) (0<r=<a)
vides a greater flexibility in parametric study of the interphases as . ) g
well, since the geometry, size, or material property of the inter- uP(r)=Ar+ — (a<r<b)
phases can be changed very easily to investigate their effect on the r
micromechanical behaviors of the fiber-reinforced composites. () () B(m
Numerical studies in this paper show that the thickness, non- U =A"r+——, (bsr=c). (A6)

uniform distribution, and material property of the interphase can
have significant influences on the micromechanical behaviors I6fB(")#0, then atr =0, the displacemeni(")(0) will approach
the composites, such as effective elastic moduli and interfaicdinity, which is not warranted.

stresses, especially when the fiber volume fractions are largeBoundary and interface conditions are

These observations are consistent with the findings in both the

= (Mic)=
finite element method and boundary element method literatures on atr=c, u™(c)=4,

this subject. atr=b, u?(b)=u™(b), (A7)
Considerations of interface cracks in the present boundary ele- .

ment model and extension of the boundary element code to three a(b)=a{™(b),

dimensions to study the fiber-pullout failure modes will be inter- 0 )

esting and challenging next steps, both of which will further dem- atr=a, u'(a)=u’’(a),

onstrate the robustness of the developed boundary element
method approach as compared with the finite element method or
previous boundary element method approaches to the micromdiere § is the displacement applied on the outer boundary of the
chanical analysis of fiber-reinforced composites. matrix.

o (@)=01" (@),
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Analysis of a Sector Crack in a
ws ws | Three-Dimensional Voronoi
= g Polycrystal With Microstructural

J. Guo

Graduate Student Stresses

Department of Engineering Mechanics,

University of Nebraska-Lincoln, The Mode | stress intensity factor of a sector crack in a three-dimensional Voronoi
W317.4 Nebraska Hall, polycrystal is computed by the body force technique. Microstructural stresses arising
Lincoln, NE 68588-0526 from the elastic anisotropy of grains (cubic and hexagonal) and the random grain orien-

tations are estimated using the Eshelby procedure and incorporated in the stress intensity
factor calculations. For metallic polycrystals, it is shown that the stress intensity factor
depends significantly on the elastic anisotropy ratio, the grain orientations, the remote
stress state, and the microstructural stres$&§021-89360)03401-2

1 Introduction as a function of grain orientation and the degree of elastic anisot-

. N . fopY- For cubic crystals, the degree of elastic anisotropy is mea-
Microstructural stress distributions can be generated in a POl e by R=(Cipt+2C)/Cyy and Q=2Cy,/C where
crystglllne aggregate plue to the elastic anisotropy or thermal “ =12 6}5 are ﬁelal;tic consiants é? . lczljbic orystal
pansion anisotropy mismatch between the constituent grains. Fder’:l ’th’e.J.-iln’tegraI associated with a triple junction crack iﬁ
Instance, (?00“”9 from the processing temperature gives rise t8materia;| under uniaxial plane strain was shown to be less than
residual microstructural stresses in ceramic materials due to ther- value for the isotropic case R>1 and more than it iR
?al pransmnksz(a[ms%ropy an% cand result in _spont_aneoui_ %@ Subsequently, the probability density functions of the re-
oundary crackg[1,2]). Grain boundary misorientation, which .~ L . . : N s
gives rise to stress concentrations due to the different orientatiosﬁgual stresses in ceramic materials due to elastic anisotropy, ther
mal anisotropy, and microcracking were shown to be Gaussian
of elastically anisotropic grain neighbors, is also known to hav(flo]). The con%putations were carried out by the finite element

an influence on corrosiofi3]) and intergranular stress corrosion -
. ; method on planar hexagonal grains. It was also shown that the
cracking of metallic alloy€[4,5]).

There exists a large body of literature on estimating microstrugauss'an nature of the distributions and the magnitude of the re-

tural stresses due to thermal expansion and elastic anisotroﬁ)'d.ual stresses were not affected by random distortions of the
Xagonal grains.

Evans[2] computed the thermal stresses in a two-dimensiona A two-dimensional polycrystal modeled by the Poisson-

polycrystal of regular hexagonal grains by the procedure of cyt: . . . .
ting, straining, and welding[6]). Assuming that the grains alreL{goronm (or simply Vorono) tessellation was used by Wu and Niu

elastically isotropic and thermally anisotropic, the complete stregsl] to investigate microstructural stresses in polycrystalline S2

o L . ._ice with hexagonal structur&2 refers to a type of ice wittraxes
distribution was shown to be logarithmically singular at the tIrIIOI(rgandomly distributed and confined within planes perpendicular to

junctions. Evang 7] simplified these calculations by extracting,[h{e growth direction Using the Eshelby procedure, they showed

from t_he cor_nplete stress d'St.”bUtlon the constant COMPONEHY: the microstructural stresses due to elastic or thermal anisot-
which is dominant over the major portion of the grain boundar¥

in s Tater work, the stess singularty was neglected in YY1 CALSSAn Wit Zero means A, e andard devatone
calculations of the stress intensity factors of the triple junctio% P P

cracks. Subsequently, Laws and L& obtained the microstruc- on positions on the g.rain bpundary. Fgrthermore, stable qacks
tural stress field in a polycrystal of regular hexagons using ikt g\lﬁjéelc(ienu?ﬁerrongglgiﬂlte géﬂgﬁat}ﬂﬂcﬁgﬁu?z h;v: n?oggsig“l/:g
complex potentials of elasticity and on the same assumption gth p y y Lo

thermally anisotropic but elastically isotropic grains. They showet an the mean. Subsequently, Wu and(8g] studied crack sta-

that about 200 grains surrounding a point of interest are necessaryCS under .the same meChan.'Sm in polycrystal!lne alumln_um
for accurate estimation of the stress at that point. They al¥gng a two-dimensional Voronoi polycrystal, but without consid-

showed that the stress intensity factors of grain boundary cradkd9 th_e microstructural stresses. Th? focus in tha_t paper 1S the
are sensitive to the orientations of the surrounding grains. Interaction between the p”? ups of grain bouqdary d'SIOCat'.OnS on

Investigations of microcracking in ceramics using a polycrystdlt€'Secting grain boundaries and the nucleating crack. This work
of regular hexagons while taking into account elastic and ther counts for redistribution of stress acting on the site of the crack

expansion anisotropy were pursued by Tvergaard and Hutchinjlﬂpr to its formation. It was found that the probability density

[9] using the finite element method. Planar orthotropic and cu Mnctions (.)f the stable and uns.table crack lengths are positively
crystals were considered. The order of the stress singularity at negatively skewed, respectively.

triple junctions, taken to be of the power-law type, was computed n several recent works, microstructural stresses due to elastic
' ' anisotropy in three-dimensional Voronoi polycrystals were com-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF puted by the finite ‘?'e'.“e”.t methOdf For instance, Kozaczek et al.
MECHANICAL ENGINEERS for publication in the ASME durNaL oF AppLiep  [13] analyzed the distributions of microstructural stress measures,
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr.i.€., the von Mises stress and the hydrostatic stress, as a function
21, 1999; final revision, Sept. 15, 1999. Associate Technical Editor: M. Ortiz. Digsf grain orientations, microstructure, and loading conditions. Up
cussion on the paper should be addresseq to the Techmcal_ Editor, Professor Lew'ﬁ)TSOO three-dimensional grains were analyzed. The grain shape,
Wheeler, Department of Mechanical Engineering, University of Houston, Houston, . X
TX 77204-4792, and will be accepted until four months after final publication of thelZ€, anq Or!ent?‘tlon were found tq have a more pronounced efff—’Ct
paper itself in the ASME GURNAL OF APPLIED MECHANICS. on the distributions than the loading conditions. The hydrostatic

50 / Vol. 67, MARCH 2000 Copyright © 2000 by ASME Transactions of the ASME



stress showed greater dependence on the disorientation angle than 0.44
the von Mises stress. Also, Kumar et Fl4] studied the depen-

N ) [ 04
dence of several micrcstructural stress measures on the elastic e
anisotropy of fourteen cubic materials, as characterized by the £ 036
Zener anisotropy parametér=2C,,/(C,;— C;,). Their calcula- S 0%

tions were based on the use of the finite element method on a 0.32

three-dimensional polycrystal with 200 grains. For G<2%<9, 065 5o 065
stress measures such as the average principal stress and the aver- oy ) =05 °% ,
age von Mises stress were shown to be dependerA with a ) T o4 x(arb-“‘“ﬁ

minimum just beyondA=1. The largest values of the average

maximum principal stress and the average maximum von Mises

o s o ey, € 2. 1A typca Vorono grin enerate by he aigrihm ce-
Investigations of a crack within a three-dimensional polycrystaf:

with microstructural stresses due to elastic or thermal expansion

anisotropy are limited. Ghahremani and Hutchingd8] investi-

gated the exponent of the stress singularity at conical wedge ver2 Select thdth nucleusN;, i=1,2,... M.

tices with consideration of elastic as well as thermal expansion3 Select a spherical regidhof radiusr aroundN; . Denote by

anisotropy. Super singularities with exponents greater than the the number of nuclei withirs.

classical crack singularity of 1/2 were found. They also studied 4 within S draw a straight line betweeM; and N, |

the energy release rate of an axisymmetric conical crack, andi 2, ... M;; j#i. This yields a set oM;—1 lines.

concluded that the nucleated crack is highly stable and its size iss Construct theM;— 1 planes perpendicular to and which bi-

typically a small fraction of the grain diameter. In this paper, theect the above lines.

effects of elastic anisotropy and random grain orientation on ag Determine the coordinates of the™1C, intersection points

planar crack in a random and topologically accurate polycrystal —1 2 . Mi~1c, of groups of three planes generated from

model are analyzed. A three-dimensional Voronoi polycrystal &iep, 5.

1139 grains is constructed, out of which the central 300 grains are7 compare the distanas, betweenN; and I, with all other

used to determine the microstructural stress distribution at the S@tancest,, betweenN: andl, in S If die=dj Vj#i, I is a

of an interface crack. The microstructural stresses are estima{ghex associated with thigh nucleus and the three associated
by the Eshelby procedure and used in the calculation of the Moggsin planes are infinite planes containing the grain faces. Al
| stress intensity factor of the crack. The crack is assumed to bgéytices and grain planes for thith grain are determined in this
sector of a penny-shaped crack, i.e., a crack bounded by tWpnner. Let andF be the number of vertices and distinct faces
edges of a grain face and a circular front. The body force methggl e ith grain, respectively.

is used to compute the stress intensity factor. The dependence of Repeat Steps 3—7 for differed;’s so that vertices and
the stress intensity factor on the elastic anisotropy, the grain ofnes of allM grains are determined.

entations, the remote stress state, and the microstructural streSsgs an, infinite grain plane becomes a finite grain face when de-

is investigated for metallic materials with cubic and hexagonghited by the vertices lying on it. It is a simple matter to deter-
structures. mine which of those previously found vertices of thib grain

The paper is organized as follows. In Section 2, the algorithgytisfy the equation of a specific grain plane. In this manneF, all
for generating a three-dimensional Voronoi polycrystal is OUlrain faces are exactly determined.

lined. In Section 3, the method of estimating the microstructural 19 T determine if two vertices of a grain face should be con-
stress is described. In Section 4, the fundamental equations fQigxted to from a grain edge, check if these two vertices belong to
three-dimensional sector crack modeled by body force densitigSoiher face of the same grain. If they do, they must connect to
are summarized. The numerical results are presented in Sectiofopn an edge and these two faces must share this edge. In this
and the conclusions are given in Section 6. manner, all edges of a particular grain face are exactly deter-

mined. Avoiding repeat counting, the total number of edges for a
S- given grain can then be determined and denoted.by

F=17,V=30,E=45

2 Generation of Three-Dimensional Voronoi Polycry
tal For each grain, the topological constraints given by Euler's
lationV+F—E=2 and the relatio’vV=2F—4 ([17]) are veri-
li%d. Grains that do not satisfy these relations are typically those
hlying at the edges of the cube. Occasionally, one or two grains in
e central region of the cube may not satisfy these relations due
inaccuracies in comparing distances. This is resolved by repo-
itioning the associated nuclei randomly within a small radius

The three-dimensional Voronoi tessellation is topologicall
equivalent to the microstructure of real metals and ceramics. It
the following main characteristics: All grain nuclei appear at t
same instant of time at random spatial positions which remﬁ
fixed in time, and the growth rate of each grain is the same in il

directions. Voronoi grains satisfy the following basic property? IO .
All points closer to a given nucleus belong to the grain with thaﬁr_ound their original locations. Also, the purpose of the splere

nucleus. Points on grain faces, edges, and vertices are share(yvﬁp radiusr is to limit the number of searches around atty

two, three, and four grains, respectively. The grains are conv@_&!o |§L_l$ft0 Véithi'g rea?fpr}ablef computation f'f;gs A vlaluer of
polyhedral cells with planar faces. Kumar et [d6] have devel- _ ~- Is found to be suflicient for generating complete grains

: ; : : total of 1500 nuclei.
oped an algorithm for generating a three-dimensional VoronBP™M @ . . .
polycrystal containing several hundred thousand grains. In thismigure 1 shows a typical grain generated by the algorithm. The

: . . : ber of faces, vertices and edges is givenFsy17, V=30,
paper, a simple algorithm based on the basic property is deveHMP€! . )
oped. It can be used to produce several thousand grains with e 'E_4b5' Bafsfed on t?e sample ofh1139_grle:u_ns,2t_k|1_ﬁ probability of
The algorithm is based on finding the vertices of a grain asso i-eg%li{g ero aceds 0 ﬁgralln IS Sf f;VQB'ES '%> ; g tr)nean 1S |
ated with a nucleus, from which the faces and then the edges are2043: compared to the value of 15. obtained by a simula-

: g : : : : ; n study of 358,000 graing16]). The maximum number of
?Oe”tg\;/rmgzed by post-processing. The algorithm is outlined in t g)ces is 27 and the minimum is 7. By the topological constraints,

the mean number of vertices and mean number of edges of a grain
1 Define a unit cube containirg randomly distributed nuclei. are 25.8086 and 38.7129, respectively, compared to the values of
The nuclei positions are assigned by a random number generagd.0710 and 40.606%ased onF=15.5355. Furthermore, the
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Ae™= (S-S e )
The corresponding misfit stregs®™ is
a°M=C"Ae™=(C"S—1)0", ©)

wherel is the six-by-six identity matrix an€™ is the six-by-six
stiffness matrix of themth grain. Each separated grain is then
subjected to the additional straihe™ so that it has the same
average strain of the polycrystal. This is done by applying trac-
tions T™" on the grain faces=1,2,3 . .. ,n; of the mth grain:

TMN= g-Om. ymn 4)

wheren™" is the unit normal to theth face of themth grain. In

0 5 10 15 20 2 30 the last step, all grains are placed back in the polycrystal and the
surface tractions are removed by the application of body forces
equal in magnitude but opposite in directionTt®", see Fig. &).

The body forces- T™" induce additional stresses’ in the poly-
crystal. The total stress at the point is thus given by

m Ny
oo+ Y D o'). 5)
m=1n=1

The term within the parentheses is the microstructural stoess
due to elastic anisotropy.

The microstructural stress averaged over space yields a zero
mean so thato'y=(o"). This has been shown numerically by
Wu and Niu[11] for a two-dimensional polycrystal, in which at
all positions of the same type is found to be normally distributed
with zero mean. The positions of the same type refer to, for in-
stance, midpoints of all grain boundaries in the sample, or points

3 4 85 6 7 8 98 101 12 at distances equal to a thousandth of the grain boundary lengths
Number of Edges of a Face from the triple junctions. This latter result also suggests that the
stress singularities at triple junctions can be tensile or compres-
Fig. 2 The probability distributions of (a) the number of faces sive, or that they do not exist.
of a grain and (b) the number of edges of a grain face in a To computes ', it is noted that the stress components in the
three-dimensional Voronoi tessellation cylindrical frame r—#—z due to a point loadP along the
z-direction in an infinite isotropic medium argL8])

probability of the number of edges of a grain face is shown in Fig.
2(b). The mean is 5.195, compared to the value of 5.¢26]). o=
The maximum number of edges of a grain face is 12 and the 8m(1-v)
minimum is three. These comparisons show that for the limited (6)
sample size simulated in this study, the major statistical charac-

teristics of a theoretical three-dimensional Voronoi tessellation are oy
essentially reproduced.

Probability

Number of Faces of a Grain

ost (®

0.25 ol=0"+0o=0"+

027

0.15

Probability

0.1

0.05

[(1-2v)z(r?+2%)~3%=3r%z(r?+ %) %],

e p— (1-2v)z(r?+2%) "%, ©)

[(1-2v)z(r?+2%) 324+ 323(r?+2%) 757,

(8)

. . . 0=~
3 Microstructural Stress Estimation 8m(1-v)
The microstructural stress is estimated on the assumption that
the elastically anisotropic grains are randomly oriented, i.e., the 2, 2 —a2 2,2 | 2v—52
polycrystal has no texture. Thus, the polycrystal is globally isorz= ~ g1— ) [(1=2v)z(r"+2%) "=+ 3rz*(r"+2%) 7],
tropic and all equations for the polycrystal are written using linear (9)

isotropic elasticity. Anisotropy elasticity is only used for indi- i . , . . . .
vidual grains. wherev is the Poisson’s ratio. Because of axisymmetric loading

The Eshelby procedure of cutting, straining and weld(i&d) is about thez-axis, thge abovg are the _nonvan_ishing stress compo-
used to estimate the microstructural stress, as was also used'gjts: To perform integration associated with body forces acting
Evans[2] and Wu and Nif[11]. Assume that a remote streg&  OVer the entire grain face, ‘It is expedient to worI§ with a local
is applied to a polycrystal and the stress state at an interior poin{Gartesian frame’ —y’ —z" with 2’ normal to the grain faceFig.
of interest. Figure @) shows a group of graingenerated by the 4). First, consider the call\lse whePeis normal o the grain face. In
algorithm) surrounding the point. A certain numbemy) of these the local frame, leP=o"dA act at the positioni{,q,0) parallel
grains are removed from the polycrystaiutting and strained to z', wheredA is the elemental area over whiaH' (defined
freely under the remote stresstraining, see Fig. ). The de- laten acts. Suppose the stress components at another point
formation €™ in the grainsm=1,2,3 ... m; is therefore M(x',y’,z") are desiredsee Fig. 4a)). Then, it is straightfor-

R ward to show that the stress components in the local frame are

whereS" is the six-by-six compliance matrix for theth grain in 0= 07 0OS' 0+ 7y SirF 0, (10)
the global coordinate systeii—Y—Z. The deformation in the oy =0, Sif 0+ 0,4C0S 6, (11)
mth grain differs from the average deformation in the polycrystal

of complianceS by 0y =0, (12)
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Step 1: Remove grains around the point of interest.

® tor

4 i

Step 2: Subject removed grains to remote stress and
each nth face of the mth grain to tractions T™

Step 3: Re-insert grains in body and apply
body forces-T™ .

Fig. 3 The Eshelby procedure of (a) cutting, (b) straining, and (c) welding
for estimating microstructural stresses in a polycrystal

0wy = (0= 0y)Sind coso, (13) where the cylindrical components are given in E§$—(9). Also,
Oy 41 =0y, COSH, (14) z=7'r’=(x"—p)?+(y’'—q)?, (16)

Ty, = 0, Sinﬁ, 15 ' '

y'z rz (15) o y'—q - X'—p

sinf= - > - >, Cosf= - > - .
VX' =p)2+(y'—q) VX' =p)?+(y' —q)

Y9

grain face Next, consider the case where the body fdPeec "dA is tangen-

tial to the grain face, see Fig(B). The stressr' is defined later.
In this case, lex’ be perpendicular to the grain face aRdbe

alongz’. Also, ther-axis is now in thex’ —y’ plane. In the local
cylindrical frame, the stress componentdVagx’,y’,z’) due toP

M, y',2") is still given by Eqgs.(6)—(9) but with z'—q replacingz and r?

given by

r2=x2+(y'=p)>. (18)

In the x'—y'—2z' system, the stress components take the same
N9 PO ; form as Eqs(10)—(15), except that sim and cos) are now given

m ©.5.7) grain face by

Y
St
z' M,y z") r— N
o sin = A, c0Sh= ————. (19)
WAty —p)® VX'EH(y = p)?
Fig. 4 Pointforces P acting on a grain face: (a) Pisnormalto  In the global frameX—Y—Z, which is fixed in position and ori-
the grain face, (b) P is tangential to the grain face entation in the polycrystal, the stress components can be obtained
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1 6z 157
F§+_r5*_r7 f, A& n)dA
M\l 1 1

from the components in the local frames—y’ -2z’ by transfor- 5 H
mation using the direction cosines between the local axes of Figs. 05 (X,y,0)= 2—[ f (
4(a) and 4b) and the global axes. A 20

In the above equationg;" and o™ are the magnitudes of the (23)
normal and traction vectorg N ando' determined from the nega-
tive of the tractionT™" of Eq. (4), i.e., where

O_N:_(nmn®nmn)-|-mn’ O_T:_(l_nmn®nmn)-|-mn. (20)

The .direqtion (?f o' determines the. direction of the local r=[(x—&)2+(y—9)2+22]¥2, H= —,

z'-axis in  Fig. 4b). To obtain the stress o 4(1-v)

={0y 05,0500, 05,05} (Tis the transposein the

polycrystal due tarN ando" over a grain face, the stress compoandA. is the region of the crack. The crack region is divided into

nents must be integrated over the polygonal fAge i.e., triangular elements, and the density of the body force doublet over
the elements is assumed to be

(24)

O_rr(xr’y/’zr):f Ur(X’,y,,Z,,p,q)dA, (21)
A

f W(¢,7)
where the integrands’ ={o: 0y 05 ,Gy1z Oy ,Oxry}' IS fod & m)=——V2ce —&7, (25)
the stress due to eithe or o' (see Eqs(10)—(15)). The above

area integral is computed numerically by Gauss quadrature.
inegrat ! Pu umerically by auss qu n whereW(¢&, ) is a weight functionc is a specific length of the

crack, ande is the shortest distance from the poiidt#) to the
crack front. The weight$V;, at thekth vertex(nodal poin of the
4 Mode | Stress Intensity Factor of a Sector Crack jth triangle are taken as unknown. The value of the weight at a
P%int inside each element is assumed to be a linear function of the

It is assumed that the crack has the shape of a sector oqﬂgrdinates of the three vertices of the element

penny-shaped crack and is embedded between two grains on
interface. Only the Mode | stress intensity factor is considered. It

is calculated by the body force techniq(i&9,20), which is out- W(&, ) =cjé+djn+e;, (26)
lined in the following. The crack is interfacial, and although the
stress intensity factor of an interfacial penny-shaped crack can be .
calculated by using a bimaterial mod@R1]), theoretical tech- Wherec;, d;, ande can be expressed in terms & and the
niques for treating a sector crack in a multigrain ensemble are ff@ordinates of the three vertices.

presently available. Consequently, it is assumed that the sectof" the gracé( surface, it is required that the resultant force as-
crack exists in an isotropic polycrystal and the anisotropy effect§ciated witho;(x,y,0) in each subregion should compensate that

are incorporated through microstructural stresses superimposedgg to the remote and microstructural stresses. If the original tri-
the remote loading. angular elements are taken as the subregions for these resultant

Define a Cartesian coordinate systemy— z having thex and ~force conditions, the number of equations differs from the number
y-axes in the plane of the crack. The crack problem is then treatedunknowns. Consequently, polygonal subregidpsare formed
as the problem of an uncracked solid subjected to remote af connecting the centroids of the triangular elements and where
microstructural stresses in addition to certain body force distribpecessary, the midpoints of the crack frégete Fig. 8)). Assum-
tions over the site where the crack is to form. The body forcdBg that the crack is traction-free, the resultant force condition
consist of the force doublet with densify,(£,7%) and in-plane ©OverA, is then given by
forces with densities,(&,7) andf (&, 7) such that

14

oA &) v fAén f :

=— 22> 7 = 222 7 P,+ o,(X,y)dA=0, 27

fx(€m) 1—» 9E ) fy(gvﬂ) 1—» an ) z AX.Y) (27)
(22)

where ¢ and 7 are the coordinates of the location of the bodyvhere the integral represents teeomponent of the total stress

forces(see Fig. §a)). It can be shown that the normal stre%on (remote and microstructural, see E§)) acting overA,, andP,
the crack face due to the body forces is given by the area integisithe resultant force ovek, due to the body forces

Ap

crack front

polygonal
region A,

%

( a) (b) triangular

element

Fig. 5 (a) Body force doublet of density  f,, and body forces of densities  f,
and f, acting at the point  (,#,0) within the crack plane. (b) Triangular finite
elements and polygonal regions within crack used to obtain the resultant
force boundary conditions.
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PZZJ’ O'ZB(X,y,O)dA - Number of elements
AP
1 1+622 1574
- ap ACE r3 o
XW(E m)V2ce—s°dA|  dA. (28)
z—0

000575 02 04 0.6 038 10
Normalized Distance , xj/a, a= 0.02 pm

na

Equation(28) is a quadruple integral containing the unknowns
Wiy in the expression foW(é, 7). Substituting Eqs(5) and (28)

©
4

into Eq. (27), a system of algebraic equations is obtained corre- \°~ 100
sponding to all the polygonal subregioAs . For details, refer to M oot §
Isida et al[20]. The Mode | stress intensity factor along an arbi- g
trary point(£,7) can be computed from the expression "3 060 F
Ki=W(£, ) \/mc, (29) £ owf ]

whereW(¢, ») is the weight at this point. In this investigationis =
chosen to be the radiusof the sector crack. 4 0201 ]

By the superposition in Eq27), the redistribution of the re- = 000 :
mote and microstructural stress due to the formation of the crack & w10 06 02 02 06 10
is taken into account. The stress intensity factor computed should § Normalized Distance, x3/a, a = 0.02um
be more accurate than that obtained by integrating the Green’s 2 1.00

functions due to concentrated loads over the crack surface, since
the latter method assumes that the total stress acting on the site o 080 [
the crack is unperturbed by the nucleating crack.

5 Numerical Results

A polycrystal containing 300 cubic or hexagonal grains is ana-
lyzed. A remote stressy is applied in the globat-direction. The
grain orientation is defined by the three Euler angle, andx,

which are assigned to each of the 300 grains by using a random 00005 W) 07 Y3 03 10
number generator. Using standard notation, the three independen
elastic constants of a cubic grain &g;, C,, andC,,, while Normalized Distance, xp/a, a = 0.02um

the five independent constants of a hexagonal graitCgre C,,,

Ci3, Cg3, and Cyy. Assuming random grain orientations, therig. 6 Convergence of the normalized Mode | stress intensity
Lameconstantsu and\ for the polycrystal are given by factor along the crack edge with increase in the number of tri-

angular elements
2C4+Cpp—Cypy

m=Cyy— 5§
2C4+Cp—Cyqy for hexagonal materials. The Young’'s modulus is given By
AN=Cpopm ———% (30) =pu(38\+2u)/(;+X\). For the cubic grains, the Zener ratfo
=2C44/(C11—Cyy) is used as a measure of the degree of elastic
for cubic materials and anisotropy. The value oA=1 corresponds to isotropy. For the
1 hexagonal grains, the simple ratfg,=C,,/Cz3 is used instead.
u=55(7C11=5C1p+2C 33+ 12C44— 4Cyy), Four cubic(Al, Cr, Cu, and W and three hexagon&Cd, Co, and
30 Zn) materials are considered in this paper. The values of the ma-

1 terial parameters are listed in Table 1.
N=-=(Cy11t C33t5C1,+8C13—4Cyy), (31) To determine the number of elements necessary for conver-
15 gence of the numerical stress intensity factor, simulations were
carried out for a sector crack using 54, 252, 464, and 740 ele-
ments. The crack is located in an infinite homogeneous body and

Table 1 (&) Cubic materials (Cy;, Cyp, Cas» g and E are given has a radius o&=0.02um and an angle of 138 deg. The crack

in GPa) plane is normal to th&-axis. Figure 6 shows an example of the
mesh pattern. Microstructural stresses are omitted in these calcu-
Cn Cy, Cus v i E A lations. A uniform stress of 1 unit is applied in tEedirection. In
Cr 350 578 101 013 121 27346 0.69 the Ligure,_ the normaliged Mode | s_tress intepsity factor
W 521 201 160 0.278 160 408.96 1 K,/o;/7a is plotted against the normalized coordinateda
Al 108.2 61.3 28.5 0.347 26.5 71.39  1.21 andx,/a along the straight edges, and againsta, the projected

Cu 1684 1214 754 0324 546 14458  3.21osition of a point of the circular edge onto an imaginary diameter
] parallel to the tangent at the midpoint of the circular edge. It can
(b) Hexagonal materials (Cyy, Ciz, Cis, Cas, Cass moand Ea@re  he seen that numerical convergence is attained on both the circular
given in GPa ) and straight edges, except near the peipta=x,/a=0 where

Cyuy Ci Ci3 Cy3 Cyy v o E A, the straight edges meet. Also, the results for the circular edge are

ymmetric abouks;/a=0, while the results for the straight edges

83 ?gi 125’.1 122‘2 322:2 Ig:g g:gg; gg:‘lﬁ Zgg:gsg g:g re approximately symmetric with respect to each other. Based on
Zn 161 342 50.1 61.0 38.3 0.245 4457 110.98 2.64hese results, a total of 252 elements are used in all subsequent
calculations. Other than convergence, these results also show that
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Fig. 7 Two grains used to investigate the dependence of the stress inten-
sity factor of a sector crack on crack length, elastic anisotropy, crack angle,
and remote stress state; (a) the crack plane is almost normal to the
Z-direction, (b) the crack plane is about 45 deg to the  X-axis and Z-axis

the normalized stress intensity factor has a maximum in theFigure da) shows a Voronoi grain with the orientation
middle of the circular edge and decreases sharply near the eni#s74.67 deg,$=82.51 deg, ank=99.37 deg. The sector crack
The maximum normalized stress intensity factor-i8.51, which is located on a face with normal almost parallel to Zhdirection;
is less than the value of 0.64 calculated by the same program foe direction cosines of the unit normal beimg=0.04, ny
a circular penny-shaped cragixact value is 0.6366 to four deci- =0.06886, and,=0.9968. The crack on this grain face is used

mal places in most of the following investigationd-igs. 8—10. To study the
x107°
<107 110.0 T T T T
2000 T " " T ~ loor Zn « 1
é -------------- No microstructural stress g 900 I Cr w 4
. Microstructural stress 'a 800 F 4
< | i & Co Al
£ 100 2 0t ]
= ¥ 6o .
5 g
2 - -
g 100.0 | ] g 500 cu
<
= 2 40 1
£ 2 300 4 A -
L | i . Cu 321 Zn 264 i
E 50.0 4 00T Al 121 cd 236
2 = ool ¥ 1 Co 086 ]
£ - Cr 0.69
0.0 . . . . 0010 05 ) o3 05 1.0
1.0 -0.6 02 0.2 0.6 1.0 : ’
Normalized Distance , x3/a Normalized Distance x3/a, @= 0.01 pm
Fig. 8 Variation of the Mode | stress intensity factor along the Fig. 9 Dependence of the Mode | stress intensity factor on the
circular edge with the projected position xzl/a, and depen-  elastic anisotropy ratio (A for cubic materials and A, for hex-
dence of the stress intensity factor on the crack length agonal materials )
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%107 grain boundary lengthare normal with zero means, and have
100.0 T T T T standard deviations two to three times larger than those of the

stress distributions at the midpoints of grain boundaries. Unlike
~ 90.0 F - . ; . - .
gE this previous investigation, however, the stresses mo!uced by the
. 800 f 7 negative of the body forces of E¢4) are not obtained in closed
& 700 b i form, but their accuracy is consistent with the approximation as-
= sociated with the Eshelby procedure as applied here to a globally
N 600T ] isotropic polycrystal without detailed considerations of the stress
5 sof . singularities between contiguous grains isolated from the sur-
g rounding polycrystal. A further point of interest is that although
B 400T ) 300 surrounding grains are used to determine the microstructural
E, 300 F 1 stress, the results have converged when the sample reaches a size
= A as small as about 50 grains. The larger sample 200 necessary
8 nor Grain orientation: 6 = 74.64°, ¢ =82.51" 1 for convergence in the case of a two-dimensional polycrystal can
“» 100 | . be attributed to the decay of elastic stresses with inverse distance
00 ) , , \ in two-dimensional bodies but with inverse square distance in
10 06 02 02 06 10 three-dimensional bodies.
In Figs. 8-10, the sector crack is located on the grain face
Normalized Distance x3/a, a = 0.01um shown in Fig. 7a). The sector angle is-123 deg. The remote

stresso; =1 MPa. The polycrystal is assumed to be aluminum
with A=1.21, unless otherwise specifi€fig. 9).

Figure 8 plotsK, in MPa/m versus the projected coordinate
Xz /a for a=0.003, 0.015, and 0.0@m. The stress intensity fac-
tors computed with and without microstructural stresses are both
shown in the figure. It can be observed tKatalong the circular
edge increases with The effect of microstructural stress nis
h;emall for aluminum, but its effect increases for larger crack

lengths. Furthermord, is smaller if the microstructural stress is
nincorporated in the computations. This can be rationalized since

4 | dcl h £ th le of 300 the corresponding microstructural stress is compressive for the
grains are located close to the center of the sample o gra'Bﬁrticular site under consideration. In general, howeecan be

The sample lies within a cublontaining 1139 complete grains either underestimated or overestimated. AlSpis approximately

with edge lengths of Jum. _The average grain_size, caI(_:uIated 8Symmetric abouk;/a=0. This is likely due to the fact that any
the edge Iength_of an equivalent grain of cubic shape in a Sam‘r-*hélacrostructural stress asymmetry over the very small crack re-
of 1139 cubes, is therefore0.1 um. ions is not very significant

The microstructural stress distribution on a grain face is founCH :

to have the following characteristics. It does not vary greatly over Figure 9 shows the variation &, with x, /a for four cubic and
the grain face, and its average magnitude dependA.dfor A ree hexagonal materials. The crack length is Qual For the

=1.21(aluminum), current calculations show that the microstruc-CUbIC materials Cu, Al, W, and Cr with=3.21, 1.21, 1, and

tural stress is about 2.5 percent of the applied load, butAfor 0.69, respectively, is shown to be a strong function &t As A

= . o . increases from 0.69 to 3.21, the maximuin decreases by-30
=0.69 (chromium), it is about 20 percent of the applied load, ercent. For the present case, the gre@eralle) A is compared

Near the corners of the grain face, it is conjectured that the strfss1 (isotropic casg the more compressivétensile the micro-
components may or may not be singular. As shown by Wu a ructural stress and the smallargen K, becomes. Whethek is

Niu [11] for two-dimensional grains, the stress distributions a%reater or smaller than 1 depends on whetBgj is larger or

. . . . = g
points very close to the triple junction®ne-thousandth of the smaller than €y, Cy,)/2. Hence, whethek, computed without

microstructural stress is an overestimate or underestimate depends
on whether the shear resistané&,f) on a(1 0 0 plane is larger
X107 or smaller than the shear resistanc€{{—C;,)/2) on a(1 1 0
i ' ' ' plane. For the hexagonal materiaks, for Zn (A,=2.64) or Cd
(A,=2.36) is greater than the value for the isotropic case while
K, for Co (A,=0.86) is less than it. A, increases from 0.86 to
2.36, the maximuni, increases by-25 percent. For Zn and Cd,
oy =0.5MPa C11=Cy>C43, but for Co,Cq;=C,,<Cs3. Hence, whethekK|
41 is an overestimate or an underestimate depends on whether the
SN stiffness in the basal plane is larger or smaller than that in the
63 =025MPa perpendicular direction. It should be emphasized that these results

Fig. 10 Variation of the Mode | stress intensity factor with the
orientation « of one grain

effects of remote biaxial tensidirig. 11), the second grain shown
in Fig. 7(b) is used, for which9=72.46 deg,$»=79.32 deg, and
x=102.36 deg. The unit normal to the grain face on which t
sector crack is assumed to exist has the direction cogiges
=0.7036,ny=0.02546, anch,=0.7102. The grain face makes al
angle of about 45 deg with both th¢ and Z-axis. Also, both

100.0

)

gy =1MPa
800

TJm

60.0

1 are obtained for a specific crack on a specific grain face for
uniaxial loading. For different orientations and shapes of grains
‘ around the crack, completely different results may be obtained. It
................. No microstructural stress is clear, however, that the elastic anisotropy of the grains has a

Microstructural siress strong effect on Fhe stress in.tensity factor of a crack. Also, Fig. 9
00 ) ) X . shows that negligence of microstructural stresses in the calcula-
10 0.6 02 02 06 L0 tion of K, leads to serious errors. The results for W correspond to
the case of isotropy and hence no microstructural stresses. If mi-
crostructural stresses in the other six materials were not taken into

Stress Intensity Factor, KT (MPa
&
=

Normalized Distance , x3/a, a =0.01 pm

Fig. 11 Dependence of the Mode | stress intensity factor on account, their stress intensity factor would have the same values
the remote biaxial tension stress state. Discrepancies between as those calculated for W. Figure 9, however, shows that the
results computed with and without microstructural stresses maximumK; value for Zn is~150 percent of the value for Cu
can be very significant. when microstructural stresses are taken into consideration.
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Figure 10 shows the influence of grain orientation. In this study, 4 Computing the stress intensity factor without microstruc-
the orientations of all grains in the sample are held fixed, excefiral stresses may lead to serious errors. The error magnitude and

for the orientation of the grain Containing the crack on one of |T§gn depend on the morpho|ogica| and Crysta”ographic details of

faces. For this graing=74.64 deg¢=82.51 deg, buk assumes ¢ grains around the crack as well as the remote loading.
five different values: 0 deg, 45 deg, 90 deg, 99 deg, and 160 deg.

The case of weak anisotropy=1.21 is considered. The crack

length is again 0.0Jum. It can be seen that the maximui

depends quite significantly on the grain orientation, although the

difference diminishes near the outer ends of the circular edggknowledgments

front. The results fok=0 deg and 90 deg are identical because of . . i
cubic symmetry. The largest difference in results, which is about T "€ @uthors would like to express deep gratitude for the finan-

10X 108 MPa/m, occurs betweer=45 deg and 0 deg or 90 Cidl support of the National Science Foundati@rant No: CMS-

deg. 9523028, and the Department of Engineering Mechanics and the
Figure 11 shows the dependencekgin the remote stress stateCenter for Materials Research and Analysis, both of the Univer-

(biaxial tension. The crack analyzed is that shown in Figh)z  sity of Nebraska-Lincoln.

The radius is=0.01um and the sector angle is125 deg. Also,

A=1.21 ando;=1 MPa. The lateral stress assumes five values

ox=0, 0.25, 0.5, 0.75, 1 MPa. The results computed with and

without microstructural §tresses are mclupled in Fhe .flgu.re. It cC8¥aferences

be seen tha, does not increase monotonically witt, if micro-

structural stresses are included in the calculations.

Specifically, the maximumK, decreases substantially from
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Effects of Mixed-Mode and Crack
Surface Convection in Rapid
Crack Growth in Coupled

_werocx | Thermoelastic Solids

Fellow ASME
Department of Mechanical Engineering, Two Green’s function problems for rapid two-dimensional steady-state crack growth
University of Kentucky, governed by fully coupled (dynamic) linear thermoelasticity are analyzed. In Problem A,
Lexington, KY 40506 normal and in-plane shear line loads move on the insulated surfaces of a semi-infinite
crack growing at a subcritical speed. Problem B involves only normal line loads, but
crack surface convection is allowed. Problem A involves, therefore, mixed traction/
displacement boundary conditions, while Problem B also exhibits mixed thermal bound-
ary conditions. Robust asymptotic forms based on exact solutions for related problems
reduce Problems A and B to coupled sets of integral equations. Both sets exhibit both
Cauchy and Abel operators, but are solved exactly. The solutions show that Mode I
loading couples the tangential crack face separation and discontinuity in crack-face tem-
perature changes, while crack surface convection enhances thermal response, especially
at large distances.S0021-89360)03101-9

Introduction lem A is seen to involve mixed traction/displacement boundary

. . L conditions, while Problem B exhibits mixed thermal boundary
The fracture of linearly thermoelastic solids is generally]) conditions in addition. Related problems that involve unmixed

viewed as a quasi-static process, thereby allowing the governiidhditions are addressed, therefore, and exact integral transforms
equations for temperature to be uncoupled from those for line

AR tained. Robust asymptotic forms are then extracted and used to
momentum. If, however, loading is time-dependent and crag

rowth Is rapid, then fracture is a dynamic proc@63) and linear duce both problems A and B to coupled sets of integral equa-
gro S rapid, then fracture 1S a dynamic proc a €4l tions. Each set displays both Cauchy and Abel operators, yet trac-
thermoelasticity([3,4]) fully couples the temperature and linear,

" " R t studies) h found that stead table exact solutions are possible. These solutions show that
momentum equations. Recent stu avefound that steady- o 5¢y face separation and thermal behavior are coupled in Mode
state crack growth is sensitive to coupling effects, especially

: ﬁ‘,t and that crack-surface convection allows crack-surface tem-
high crack speeds.

. . . . rature changes where none are seen for an insulated surface
However, these studies are complicated by the inclusion

. > . d, in general, results in steady-state crack-plane temperature
crack-edge inelasticity, yet they also treat only Mode | loadingyanges which are more prominent at large distances than those
and assume a negligible crack surface heat flux, i.e., the crag

an insulated surface. Both solutions also exhibit characteristic

faces are insulated. This article, therefore, extends and combi@:ﬁgths which are proportional to the characteristic length of

preliminary efforts([6-9]) and considers two Green's functiongq pjeq thermoelasticity, but which also depend on material prop-
problems of two-dimensional steady-state crack growth whicQies and crack/load speed.

variously, are mixed mode and allow crack surface convection. As
in the work of Brock 5] the cracks are semi-infinite, are driven by
mechanical line loads, and grow at subcritical speeds in Upprmulations for Problems A and B
bounded solids that obey the fully coupl&tynamio equations of . . ) .
thermoelasticity. To focus attention on the effects of mixed-mode Consider an unbounded linear isotropic homogeneous ther-
loading and convection, crack edge inelasticity is neglected. moelastic solid, initially at rest under a uniforfabsolute tem-
Problem A depicts mixed-mode crack growth by treating load¥ratureT,, and containing a crack of infinite width and semi-
which are constant normal and in-plane shear tractitine loads infinite length. The_crack then opens and grows in its original
in the out-of-plane directionapplied to opposite faces of thePlane under the action of normal and in-plane shear line loads of
crack. These loads move at the safmenstantspeed as the crack, Magnitudes Ry, P), respectively, which are applied to opposite
thereby justifying a steady-state analysis. Problem B treats offif€S Of the crack and then moved toward the crack edge at a
normal (Mode ) line loads, but incorporates the idea that crackonstant subcritical speed This wedging action eventually pro-
surfaces[10]) may have an effective layer of fracture-altered maduces a steady-state situation in which the crack also grows with
terial. While perhaps negligible in modeling elastic response, sugReedv, and the line loads remain a fixed distaricéehind its
layers can cause heat flux by convection. Problem B includé¥lge. This two-dimensional process is represented schematically
therefore, a standard3]) convection law that enforces propor-in Fig. 1, where it is seen that only Cartesian planar coordinates
tionality between crack surface heat flux and temperature changéy) are needed, and can be fixed to the moving crack edge so
Both problems are formulated in the next section, where Profiat (/=0, x<0) always defines the crack. )
In the two-dimensional steady state, only the chadge tem-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF perature fromil,, displacement Co.mponentBX(’uV).and traptlon
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLED ~COMPONENts ¢ ,ay ,oyy) are required. Because time derivatives
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Marin the moving coordinate system can be neglected, these fields
2, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: J. W. Ju. DiSCL@epend 0n|y on )(’y)’ and time derivatives in the inertial frame

sion on the paper should be addressed to the Technical Editor, Professor Lewi ; ;
Wheeler, Department of Mechanical Engineering, University of Houston, Housto%ngn be written as—vﬂ(. .)/(9X. Then, the results of ChadWI(ﬂﬂ

TX 77204-4792, and will be accepted until four months after final publication of thean be adaPt§d to give the governing field equations of coupled
paper itself in the ASME GURNAL OF APPLIED MECHANICS. thermoelasticity
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Fig. 1 Schematic of crack growth driven by moving line loads

2

Vz—mzczi (Uy,uy) + S [((M*—1)A+x60]=0
ax2) T ax ay
(1a)
J m2e
hv20+c—| 66— —A|=0 (1b)
X X
1 du, du
_ny:_x+_yl
)7 ay ox (10)
! P auy)+ 2—2)A+x6
M("’Xia-y)* IX 1 (?y (m ) XU.
In (1), (V2,A) are the 2D Laplacian and dilatation, and
T 2 k
X= Xo(4—3m?), 8:_0(& h= —
c,\ m umc, 2
Uy v
m=—, c=—
Uy Ud

In (5), h. is a length which characterizes convection; if the con-
vection represents a layer of effective thicknéssn the crack
surface, then the Biot numbér3]) for the crack is

Related Problem Formulations

Problem A, in effect, involves the two half-plangs-0 andy
<0 whose boundary conditions arise frqd) and continuity of
(ug,uy,0,04y,0y,00/dy) for y=0, x>0. That is, it exhibits
mixed traction/displacement boundary conditions. In keeping with
a standard procedur§l2]), it is convenient to first treat the re-
lated problem with the unmixed conditions

ud T=UX), ull=V(x), 607=0(x), @
+ + 80 i
ny]—:[o'y]—: @ =0

for all y=0. Here[ ]© denotes a discontinuity as theaxis is
crossed fromy=0— to y=0+, and the discontinuities
(U,V,0)—0 continuously ax— —(0,»), are no worse than in-
tegrally singular forx<0, and vanish identically fox>0. Prob-
lem A is reduced, therefore, to solving this related problem and
using the results for eithgr>0 ory<0 in (4) to find (U,V,0).
In this light, these quantities are, respectively, the tangential and
normal crack face separation and the jump in temperature from
one crack face to the other.

For Problem B, crack-planeyE0) symmetry exists, so that
only the half-plane/>0 need be considered by requiring fr@&)
that

36
oy=—Pyd(x+L), ———=0 ®)

ay he
for y=0+, x<0 while o,,=0 and (,,d6/9y=0) for, respec-
tively, y=0 andy=0, x>0. Here, the thermal boundary condi-
tions are also mixed, so that a related problem imposes for all

where (y,,C, .k, u) are, respectively, the thermal expansion co=0 the unmixed conditions

efficient, specific heat, thermal conductivity, and shear modulus.
The parametersu( ,v4) are the rotational and isothermal dilata-
tional wave speeds, whiléh(¢) are the thermoelastic characteris-

1 a0

_V(x)l W_

5 G(x) ©

Ty=0, U=

tic length and dimensionless coupling constant. It can be shown

([4,11]) that for many materials

e~0(10"2), h=~0(10"%) um,

m> /2. (3)

where {/,G) vanish identically forx>0, are no worse than inte-
grally singular forx<<O and remain finite ag&— —o°. Problem B

is reduced, therefore, to solving this related problem and using the
results in(8) to find (V,G). In this light, (V,h.G) are the normal

In light of (3), we will assume thatL/h>1. We expect crack-face separation and the crack-surface temperature change.
(04,0 ,0%y,0) to vanish asyx?>+y?—= and to be nonsingular Thus,V should vanish continuously as-0—. o _
everywhere except perhapsyat 0, x=0 andy=0,x=—L. The _ For both related problems, the boundedness/continuity condi-
fields (uy,uy,6) should also be continuous everywhere exceftons imposed on the original problems are retained.

perhaps the region= 0, x<0. At this juncture, critical crack/load

speed is taken to be, ; that is, 0<c<<1/m.

In Problem A of this scenario, the insulated crack surface CORransform Solutions for Related Problems

ditions are

y=0%, x<0: o, =—Psd(x+L),

(4)

6
0y==Pad(x+L), S5=0

where &..) is the Dirac function. In Problem B, only the normal
loads are imposedR;=0), and crack surface convection occurs,

so that the crack surface conditions are

a0 0
y=0=, X<0: 0,=0, oy=—Ppd(x+L), o+ ==0.

(6)

60 / Vol. 67, MARCH 2000

To treat the related problems, the bilateral Laplace transform/
inversion operationg 13))

g*=r g(x)e”P*dx, (10a)

—®

1
- * APX
900 =5~ f g*e™ dp (100)
are introduced, wherp is generally complex and integration in
(10b) is along the Bromwich contour. Application ¢f0a) to (1)
gives a set of three coupled ordinary differential equationg in
that can be solved for the relevant transforms
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Ux e (s - B et ey 2 (160)
0 I ALeT A e oo B S e VT
p? =| o, . 0 ||B,e*Y+B_e *Y 8
1 .| L-kp —kp -2l C.eP+Ce? m?c2Ct==v*, (160)
up Y P
(112) Asymptotic Inversions for Related Problems
u;,* Ly ey With (11)—(16) available, the two related problems are essen-
1 96 —1 -1 —p]| @+(Ae"-Ae ) tially solved. Solution of Problem A requires in view 6f) and
2oy |=lw, o 0 a_(B.e*Y-B_e ) (7) that expressions foro, oy ,d6%/dy) for eithery>0 ory

<0 be inverted fory=0, x<0 by means of(10b). Similarly,
solution of Problem B requires in view ¢8) and(9) that expres-
sions for (o§ ,0*) be inverted fory=0, x<0. The inversions,
(11b)  however, give expressions that lead to semi-numerical determina-
for each half-plane, where the coefficiens.(,B.. ,C.) are ar- tions of the unknown functions{,V,®) and (v,G). We make
bitrary functions ofp, and use, therefore, of asymptotic results: Bilateral Laplace transforms
valid for |hp|<1 give inversions that are valid foix/h|>1
m? ([13]); becausg2) and (3) show thath is of micron order, such
a.=a.\py-p, B=bVpV-p, w.=—(1-c*-al) inversions are robust.
X (123) For the problem related to Problem &,4) and(15) are substi-
tuted into(11) and, in view of(12), the results are expanded in

c Taylor series forlhp|<1. Keeping the lowest-order terms then
a.=\/1+ —(r,*7.)% b=y1—- m2c?, K=m2c2-2 gives the asymptotic form. For example, it can be shown that the
- p

1
1. -2 -2 Kp E(C+eﬁy—c_e*5y)
up

relation
(120)
- K Jp I
2 * = *p— —— | eayVPV=P
1 P m?c3e 0" =Ty | PUT oo pV )e
27’+_\/ —cprt—| +—-, wiow_=——. (1% x(1+e) a VTP
+ ( p h) h + Xth ( ) X
€ TRV
Here Reg.,B)=0 in the cutp-plane, so that boundedness + mpu*_T ey veihiel=p 17

requires
holds fory<<0. In view of (10a) and the restrictions onJ,V,0)
A=B("=c("=0(y>0), AU'=B")=Cc)=0(y<0) noted earlier, one can write
(13)

0 0
where the superscripts signify a coefficient associated with half- (pU* ,pV*)=f (U, Ve Ptdt, ©* =j Oe Pldt
planey>0(+) or y<0(—). o o

For the problem related to Problem A, application(b®a) and (18)
_(11) to (7) gives the six equations needed to determine the remajf- (17), where( )’ denotesx-differentiation. The appearance of
ing coefficients as the crack-face separation gradient$ (V') as the functions to be

5 K o* determined presents no difficulty since a unique solution to the
ZUut— ) +—  (l43) steady-state Problem A can be obtained only to within an arbitrary

w_
2w, —w ) AN =—
(0 —w-)A- p ay rigid-body motion. In(17) the positive real quantity

m-c

C

2 K 0* [ ¢
_ S el EaR YT IRAN Y - _
2(w_—w,)B" mzcz(p U*——Vv* |+ 7 (14b) a -1 (19)
is a manifestation of the asymptotic dilatational wave speed
K 2
2m2c?C ) =—Ur 4+ — v+ (14c) vavIte. _ o _
p B If it is assumed that the orders of inversion dridtegration can
for y>0 and _be int(_erchanged, then inve_rsion (df7) is reduced to finding the
inversions of the four functions
20 —w AT =22y K |+ 1) 1T =e Prran®=p, (208)
- 0 T n2c? p a, pz
@ (200 K ) e '§=£l’{ , (200)
2(00_*_*(1)_)84r :W EU +ZV +F[ (15b) V=P
K ) @~ Pt+y\eh(I+:)v=p
2.2+~ _ gk S = (20c)
2m“cC', pU +,8V (15¢) J-p
for y<0. For the problem related to ProbleB only the half- . Jh di}
planey>0 is of interest, so thatA’,B{),C{ ) can be dis- s :md_y (20d)
carded. Application of10a) and(11) to (9) then gives three equa-
tions that can be solved to yield where ¢,y)<0. In view of the requirements that Re(,8)=0 in
K 5 the cutp-plane, we must have R@g, /—p)=0 in the plane with
w_ — —
_ (+)— * 1 Z % branch cuts Ing)=0, Ref)<0 and Img)=0, Rep)>0, respec-
20 (0~ )A mez VT p2G (162) tively. Therefore the Bromwich contour ifLOb) for the forms
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(20) can be taken as the entire IpMaxis. The results are real 1 1 1 JO [ 4ab K?2
V/
— o (

integrals that can be carried out with standard taljl&4]) to give ;Uy:m p 021022 (T—x)7t a%y?
1 —ay 1 t—x Khy 1 (9 G(t—x)dt
ll_; (t_X) +ay ’ IZ_; (t_x) +a.y ’ (21) X(t_X)dt+ mzcza(l“l‘&‘);f,w(t_x)2+a2y2
Substitution of(20c) into (10b) produces the integrand branch cut (25a)
Im(p)=0, Re@)>0, so that use of Cauchy theory to change the 0 ,
contour givesl ;=0 for x>t, but a real integral fox<<t which o= —Ke i V' (t—x)dt
yields ([14]) 2x(1+e)a 7 ) _ (t—x)°+a’y?
1 2 vh 0 —c(1+e)y2/ah(t—x) dt
o= @ (c(1+a)y?) At (t > x) 22 - —f Ge y ——. (2%
e (t>%) (22) oo s e
The functionl, follows by differentiation. Use of these resultsSolution for Problem A
gives With (4) and(24) available, Problem A reduces to the equations
—-e 1 (0 , K , dt MmR 14}0 V’dt_ B S(x4L 26t
0= are) =) | YV T 22V 0z an omcZa m)  t—x  TnoxtL) (262)
+iij° v’ 9}e—<c<1+s>y2>/<4h<t—x)> pR_1(0Udt py h  d roedt
Ja dy Jx[x(1+e) 2 2m’c’b 7wl t—x M’ [rc(1+e) dX ), i—x
dt = —PS(x+L) (26b)
X \/Tx(y<0)' (23)
e d (ou’'dt 1d fo Odt . (260
By the same procedure, the fields of more immediate interest are x(1+e) dx J, Jt—x 2dx [, Jt—x
obtained as . o )
for x in (—,0—), wheref denotes Cauchy principal value inte-
1 a 1 (° dt gration. In(26)
;ny: m2C2 ; f,m[Z(t_X)U + KyV ] (t_X)2+ a2y2 R=4ab— K2 (27)
K 1 (°[K dt is the asymptotic thermoelastic Rayleigh function which exhibits
T f_ %(t—X)U'*”byV' e the rootsc= =+ (0,cg) in the cutc-plane. The constanty lies in

the range (0,1) and is the asymptotic thermoelastic Rayleigh
Jh 5 (00 speed, nondimensionalized with respeci o and can be written
12 J' e—c(1+e)y2an(t—x) gt ([15)) as

m 7TC(1+8)& x V=X —
” VAR 1 1 e 1 [T odt
(243) R M 17e meF,’ NFo=7 um T
1 K 1J0 L P dt (289)
—O0yT o7 — ayV = oo =XV o 22
W) Y 2a (t—x)7+a?y aTre_ymii—1
d=tan?! . (280)
dt V1+e(m?t2-2)2

b 1 J’O
+—=— [2(t—=x)V' =KyU'] ——5—5—>
mee’ ), (t=x)*+b%? Because the nature ¢26a,b) changes wheiR vanishes, we now
N restrict the range of subcritical crack speeds to
X J

T omc(1te) ox 0<c<cg. (29)

ay [0 Odt
7 ) _(t—x)%+a%y?
Equation(26a) definesV’, is uncoupled fron{26b,c) and is of the

n \/H i @ecll+e)y2an(t—x) t (24b) Fredholm type with a Cauchy operator. Its solution is found by
[mc(1+e) 9Y Jx Jt—x standard method§16]) to be
90 [c(l+e)d (O  eU dt A < S T (x<0)  (30)
c e U’ ’ = _-_—_n X
Y = |ac(l+e)yThh(t-x) m-c J= 7R J=
ay 7h  ox L 2 x(1te)® x ™ BT

(24c) whereC, is a real constant. The integral EQ6c) is of the Abel
type for a linear combination of the functiond (,®), and can be
for y<<0. Comparison of23) and(24c) illustrates the asymptotic solved for the relation
nature of the expressions.
For the problem related to Problem B,6) is substituted into 2eU’ C,

(11) and, in view of(12), the results are also expanded in a Taylor x(1+¢) 0= X (31)
series forlhp|<1. Based on keeping the lowest-order terms, in-
version of the expressions fou ] ,6*) by means of10b) gives whereC, is a real constant. Finally, linearly combinirigéb,c)
for y>0 and introducing the variabldg= —x, 7= —1) yields the equation
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=U’'dr s§U'dr

. \F d
mly é—7 ,/
onU’ for £in (0»). In (32) d is a characteristic length ar@, is
a constant defined as
d B 4be)\?
h 'R

=Coo(6-L) (32

8 2m2c?p Py
G TR @

C
1+¢

for x<<0,|x/h|>1. For—L<x<0 the second term it#0) is taken
in the Cauchy principal value sense. Becauge®() should also
be bounded ag— —, one can conclude froni30), (31), and
(40) that

Equationg30), (31), (40), and(41) illustrate the coupling inherent
in (26): That is, for mixed-mode loading, the normal crack face

The integral Eq.(32) exhibits both Cauchy and Abel operatorsseparationV is, as in the isothermal case, dependent only on
and the magnitudes ofh(e) in (3) suggest that the latter is aMode | loading @,,) and is independent of the thermal response

perturbation. However(27) and(33) show that

0 d { 2¢e 21
C—U.—= Vi ,
te)— +
h [m“(l+e)—1| (1+¢)cC (34)
d bRS 2 1
R R T M Fa(cr—0)| (1+e)3
where
2 (VT¥e tdhdt
br=vV1—m?c3, InFR=—j oy (35)
T Jum 1—CR

and (gr,P) are given in(28). That is, for low and near-critical

of the crack surface. The tangential crack face separdfiate-
pends only on Mode Il loadingR), but it and the discontinuity
0 in temperature between the crack faces are coupled.

Solution for Problem B
With (8) and(25) at hand, Problem B reduces to the equations

crack/load speeds, it is the Cauchy operator that can be seen as the

perturbation. Thereford32) is treated directly by introducing the

unilateral Laplace transform/inversion operatidfts7])

e St d¢, (36a)

1
9&=5—~ j ge* ds. (36h)

Here Re§)>0 and is large enough to ensure existencé36h),

and integration ir(36b) is along a Bromwich contour. Application

of (36a) to (32) and the use of standard tablg48]) gives the
integral equation
1 °°0’du
, u=s

sU =C,e SY(Re(s)>0) (37)

for the transformU’. This equation is of the Fredholm type with

a Cauchy operator and, by following standard methidd§ its
solution can be written as

- C Vsd 1[=el du
TR N L. _f e
(sd) 1+sd 7/, U—s Jud

In (38) s has the branch cut Ire=0, Re§)<0 in order that its
real part be positive indefinite in the cut plane, &glis a con-

stant. Boundedness & as £é— o (x— —o) requires thatU'/s
have a nonsingular integral as-0. In this light, behavior 0f38)
demonstrates that

C,;=0. (39)

Use of(33), standard table§ 18]) and re-introduction of the vari-
ablex gives the inversion

_2m 2c2p Py l/d(X+L)f71/d(x+L) eu J Jd
= — u——
Rz nd 0 Ju J=x—L
2m?c?b Ps ex’d *X’de du
XH(=x-L)+ —F%— R
—u

(40)
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pR 1[0 Vidt  uKhy 1[° Gdt
2m%ca /| __t-x  mPca(l+e) ] __t—x
=—P,d(x+L) (42a)
Ke 1}0 vidt vh PGt L eo
2x(1+e)am) t—x  mc(l+e) Jxt—-x °©
(420)

for x in (—%,0—). Equation(42a) is of the Fredholm type for a
linear combination of the functionsV(,G), and its solution is
readily found by standard metho({46]) to be

1 Khyc C m?c2a P L
v g P L (x<0)
2 (1+&)R —mx TR @ \—x(x+L)

(43)

whereC, is a constant. Linearly combining@2a,b) and introduc-
ing the variableg¢é= —x, 7= —t1) gives the integral equation

1(>Gdr 1 ¢ Gdr

;/ﬁ) —F + \/ﬁ \/5_7_+AG:C05(§—L) (44)
on G for £in (0,%), where now

_aR (1+g)? _h o d [cK*)? g%

“ck?Z xe " he holaR] (1+e)¥ 45)

_m’ca(l+te) P,
° Khy  u’

In (45) the positive real parameter#\(d) are, respectively, a
dimensionless constant and a characteristic length(33¥, while
\ is a dimensionless convection parameter.

Equation(44) exhibits both Cauchy and Abel operators, but the
transform(36a) reduces it to an integral equation

»Gdu
- —+

sL
>
7], u=s GCe (Re(s)>0)

1
—+A

Jsd

of the Fredholm type. By again using standard metHddy, its
solution is found to be

(46)
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) Equations(51a) and (52) give in view of (8) and (9), of course,
% (sd)e i Co\/aj the temperature change on the crack surface. The temperature

G=
sd change ahead of the crack follows fra@ba) as
\/sd+(1+A\/§i)2 \/sd+(1+AJ§j)2 g o@ca)
B —Ke 1 (0 Vv'dt —ox/hs1 -
y (1+Aysde st 0= ire) 7 _tox Y=ox¥h=D. (59
*/sd+(1+A\/§1)2 Substitution of(43), (49), and(51a) into (53) and use of Cauchy
residue theory produces a result whose dominant terms are
eQ ® udefuLfﬂ du 2.2
st (\l/J:)“(u—s) (47 6=— Rmrc’ea Po L
7 Jo Vud+ (1+ Aud)? x(1+e)R o \x(x+L)
where the parametefs,()) are defined by Km?c%ea P, A 1 Km?c?sa P, 1

1 T YAt e)R g 27(1+AD) x+L | x(1+e)R p 7
a=;tan’lA(0<a<1/2;A>0),

; (48) me Jdt cosw(L t)r du
1 (> dt 1 ——==cos¥(L, =
Q:;J/o t—sdtanflA+(1+A2)ﬁ' Py " (UL VL (At )7

54
In this instance boundedness\6fas &— oo (x— — ) requires that ®4)

Unlike (40), the transform(47) is best inverted by direct use of COMparison of Problem B With Insulated Limit

(36b): The entire Im§)-axis is suitable as the Bromwich contour In view of (5) and (8) the limit case of an insulated crack
but, despite their forms, the terms {47) have no roots in the surface occurs wheh,— e (\—0). In this limit it can be shown
plane cut along Ing)=0, Re€)<<0 in order that Rg(S)=0, nor that the functiorG itself vanishes, but that the produgiG given
any branch cuts save that fgs itself. Thus, Cauchy theory canin (51a) behaves as

be used to change the integration path to one collapsing onto the Km2cZe P

branch cut. The result is, upon use @b), introduction of the h.G— € —"5(x+L) (y=0x<0/x/h|>1) (55)

for y=0x/h>1.

robust approximation x(1+e)R p
0 1 | a0 q 2 (* Intdt and that only the first term it64) remains, i.e.,
= _— -+ p— S —
a=5|insd+ 0o, Qo= fo o 1tan? 0 KmP?e P 1 L
. . . . o=~ — = (y=0x/h>1). (56)
valid for |hs|<1(&/h>1), and re-introduction of the variable X(1+&)R w7 x(x+L)
mPca(l+e) P, H(—x—L) Comparison of(55) with (51a) shows that crack surface convec-
G= —; tion creates a temperature change over the full extent of the crack
KxA MO 7y —x-L surfaces, while for an insulated surface, the change is asymptoti-
" A2 _ud cally negligible except at the moving line loads. EquatibBb) is
[x+L+(A-A )t]\ﬁe dt also identical to the steady-state temperature change generated on
o [X+L+(1-A%t]*+4A%? an insulated thermoelastic half-space by a moving normal line
load ([8]). This implies that the asymptotic steady-state crack-
N m’ca(l+e) P, H(—x) (* Jte Ve gt surface temperature change is independent of the fracture process
Ky\ _d 2 Ry itself.
X K m 0o Vp(=x.1) Comparison of(56) with (54) shows that convection allows a
ud Jue"d  du more extensive temperature change field to arise ahead of the
% A, sifW(—x,t)+¥(L,u)] moving crack edge and, in particular, that the convection-induced
o Vp(L,u) XutLt field is more prominent at large distances from the crack edge.

(513) That is, (56) behaves a®(x~%?) for x/L>1 while (54) behaves
only asO(1/x). A similar weakening in decay with distance has

pla,B)=\[a—(1+A?)B]°+4A%ap, been no'ged[Q]) for a line qud moving on a ther.moelastic. half-
(51b) space with surface convection. Indeed, compariso(64f with
. 2A\/a_,8 (52) indicates that the temperature change on the crack surface
2V (a,p)=tan m with convection decays more rapidly with distance than does that
on the plane ahead of the crack. In this sense, crack surface con-
for x<0|x/h[>1. For|x/L|>1 (51a) behaves as vection does not alter the fact, demonstrated ¥ and (56) for
m2ca(l+e) P, [d 1 the insulated case, that steady-state temperature changes generated
h.G~ — _n 5 ahead pf the crack are, asymptotically at least, more prominent at
KxA  2p Va(=x-L) large distances than those generated on the crack surface itself.

m’ca(l+e) P, 1
KX)\ 7 772( _X)3/2
g
0

X

Some Observations

This article considered two Green’s function problems for sub-
1 /md /d critical two-dimensional steady-state crack growth in an un-
1+ 5 Te‘ erfe(\t/d) bounded solid governed by the fully coupl&tynamio equations
of thermoelasticity. In Problem A, mixed-mode loading was
achieved by moving normal and in-plane shear line loads along
sinW(L,t). (52) insulated crack surfaces at a fixed distance from the edge. In Prob-
Vp(L,t) lem B, only Mode | loading was considered by dropping the mov-
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ing shear loads, but crack-surface convection was allowed. Thagivity to crack/load speed. Moreover, the development of exact
Problem A involved mixed traction/displacement boundary corsteady-state transform expressidh$)—(16) provide the basis for
ditions, while Problem B exhibited mixed thermal boundary core more exact treatment in the future.
ditions in addition. Exact integral transform solutions for two re- While the study of Problem B made use of symmetry argu-
lated unmixed boundary value problems were obtained, antents to reduce the analysis to a single half-plane, the study of
robust asymptotic forms inverted and used to reduce both PrdroblemA did not. This approach was adopted to avoid the need
lems A and B to sets of coupled integral equations. Despite tf@ considering the two separateymmetric and antisymmetjic
presence of both Cauchy and Abel operators, exact solutions wpreblems that would arise, and because the additional difficulties
derived. of dealing with the full unbounded solid were minor. Indeed, the
The solution for Problem A demonstrated that the normalnalysis allows insight into the interface crack problem.
crack-face separation depends only on the Mode | loading, and ig=inally, it is noted that key mathematical operations in both
unaffected by the thermal response of the crack surface. That ifRibblems A and B reducedia unilateral Laplace transforms,
behaves as if the solid were isothermal. The tangential crack-fanéegral equations with both Cauchy and Abel operators to those
separation depends, analogously, only on the Mode Il loading, mfta standard Cauchy type. The original equations followed from
it and the discontinuity in temperature change between the cratie inversions of bilateral Laplace transforms, which suggests that
faces are coupled. corresponding equations in that transform space could have been
The solution for Problem B showed that crack surface convefsrmulated, and addressed by standd&0]) Wiener-Hopf tech-
tion creates a more extensive temperature change field in the cragkues. However, it is notef 7]) that such an approach requires
plane than that generated for an insulated crack surface. Mopeeduct-splitting operations and resultant transforms whose inver-
over, the field generated ahead of the crack decays less with dions would require some effort to produce expressions as trac-
tance from the crack edge than does its insulated crack surfaable as those developed here.
counterpart.
The solutions for both problems depended, of course, on tigferences
thermoelastic characteristic "?”g"“ defined in(2), WhiCh arises [1] Noda, N., Matsunaga, Y., Tsuji, T., and Nyuko, H., 1989, “Thermal Shock
from the fully coupled equations of thermoelasticity. However, Problems of Elastic Bodies With a Crack,” J. Therm. Stres$@spp. 369—
this length was manifest in each solution as a characteristic length 384.
d. The expression633) and (46) for d for the solutions to Prob- [2] Freund, L. B., 1993Dynamic Fracture Mechani¢csCambridge University

; i ; Press, New York.
lems A and B, respectlvely, were similar in form, and both de [3] Boley, B. A., and Weiner, J. H., 198Fheory of Thermal Stressekrieger,

pended on material propertiem(h,e) and crack/load spee@). Malabar, FL.
In particular, the speed dependence involved the asymptotic their4] Chadwick, P., 1960, “Thermoelasticity: The Dynamical TheorPtogress in
moelastic Ray|e|gh functiorR’ whose nonzero romR was the Solid MechanicsVol. 1, I. N. Sneddon and R. Hill, eds., North-Holland,

; ; ; i : Amsterdam.
nondimensionalized thermoe.laStIC Raylglgh speed. An ex.aqt.forfk_)] Brock, L. M., 1996, “Effects of Thermoelasticity and a von Mises Criterion in
mula for the root was provided, and it served as the limiting "~ Rapid’ Steady-State Quasi-Brittle Fracture,” Int. J. Solids Str&s,, pp.
crack/load speed for both problems. 4131-4142.

Clearly, the analysis involved Green's function problems, [6] Brock, L. M., 1999, “Rapid Crack Growth in a Thermoelastic Solid Under
which arede factobrittle fracture studies, and two-dimensional ~ Mxed-Mode Thermomechanical Loading,” IMA J. Appl. Matt&2, pp. 31—
steady-state situations were treated with asymptotic solutiongz) grock, L. M., 1999, “Effects of Crack Surface Convection for Rapid Crack
Nevertheless, the results provided do indicate that some thermal Growth in a Thermoelastic Solid,” Int. J. Solids Struct., to appear.
effects in rapid crack growth in a fully coupled thermoelastic solid [8] Brock, L. M., and Georgiadis, H. G., 1997, "Steady-State Motion of a Line
may be more sensitive to Mode Il loading, and that crack surface m,icwﬂ‘écﬁ'ék'fa;pi?uﬁsd? o g‘}p”;‘gf_‘},%"f + A Thermoelasodynamic Solu-
qonvectlon enhances _thermal response. That convectl_or_l IS JUSt[9] Brock, L. M., and Georgiadis, H. G., 1999, “Convection Effects for Rapidly-
fied followed from the idea that crack surfaces may exhibit layers  Moving Mechanical Sources on a Half-Space Governed by Fully Coupled

of fracture-altered materig]10]) while perhaps negligible in elas- Thermoelasticity,” ASME J. Appl. Mech66, pp. 347-351.
tic modeling, such layers can give rise to heat flux by convectioh? iﬁﬁflﬂhdﬁh and Wanhill, R. J. H., 198%racture Mechanics Edward

([3]) ) . ) . [11] Brock, L. M., Rodgers, M., and Georgiadis, H. G., 1996, “Dynamic Ther-

In closing, several other observations are in order: First, the moelastic Effects for Half-Planes and Half-Spaces With Nearly-Planar Sur-
convection law employed did not explicitly feature the Iayerpz] fEa%es,” J. Elaité% pr:\)l _223—8254-d Value Problems in Mechanid

. : : : rdogan, F., , “Mixed Boundary Value Problems in Mechani -
thicknessl, which does appear in th? crack surface BIOt. numbe chanics TodayVol. 4, S. Nemat-Nasser, ed., Pergamon Press, New York.
(6). However, one should assume that both small and uniform.  [13] van der Pol, B., and Bremmer, H., 198Dperational Calculus Based on the
The former assumption, of course, justifies neglect of the layer in ~ Two-Sided Laplace IntegraCambridge University Press, Cambridge, UK.
modeling elastic response, but the latter assumption is also impd#4l SfagShtteyAfh 'd- S., algd RyZ,\fI"ky L N||< 1980able of Integrals, Series and

. H H H H _ roducts Academic Press, New York.

.tan.t’ transient StUdle@ll]) of insulated the_rmoelastlc half spaces 5] Brock, L. M., 1996, “Some Analytical Results for Heating due to Irregular
md'C_ate that even small-scale nonplanarity of the surface can af-~ sjiging Contact of Thermoelastic Solids,” Indian J. Pure Appl. Ma2t,, pp.
fect its thermal response. 1257-1278.

Then, comparison 0f23)—(25) with the corresponding exact [16] Carri%rl, G. F, Krookl,I M., and Pkearson, C. E., 19B6nctions of a Complex

_ i i f ; i Variable, McGraw-Hill, New York.

trz.in.Sforms(ll) (16) indicate that thermoelastlc coupling is di 17] Sneddon, I. N., 1972The Use of Integral TransformdicGraw-Hill, New
minished through use of asymptotic forms. Indeed, the Cauc York.
operators in the integral Eq$26) and (43) suggest similarities [18] Abramowitz, M., and Stegun, 1. A., 1976{andbook of Mathematical Func-
with classical equilibrium([19]) treatments of thermoelasticity. tions Dover, New York.

However, besides the advantage of tractability, the present analy®! (")’;”ég‘sfi'gg"mbg'(;Hoﬁfgﬁf,‘d’g‘: Basic Problems in the Mathematical Theory

sis does preserv_e_elements of coupling, and iIIustrqtes, in fa%o] Stakgold, I., 1971Boundary Value Problems of Mathematical Physisl. 2,
through the coefficients of the operators(#6) and (43), its sen- MacMillan, New York.
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Critical Wavelengths for Gap
Nucleation in Solidification—
Part |: Theoretical Methodology

A theoretical model of the gap nucleation process during pure metal solidification on a
deformable mold of finite thickness is presented. Both surfaces of the mold follow a

F. Yigit sinusoidal lay for which the ratio of the amplitude to the wavelength, or aspect ratio, is
Department of Mechanical Engineering, much less than one. This makes the aspect r_aFio_a (_:on\_/enient perturb_ation parameter for
King Saud University, the thermal and mechanical problems since it is indicative of the spatial variation in the
P0. Box 800 surfaces. The thermal and mechanical fields are coupled along the upper surface of the
Riyadh 11421, Saudi Arabia mold through a pressure-dependent thermal contact resistance. The main goal of the
model is to develop a means for examining the contact pressure along the mold-shell
L. G. Hector, Jr. interface and how variation of the mold surface wavelength affects the time and location
Surface Science Division, of gap nucleation. Gaps, which result from irregular distortion of the shell due to the
Alcoa Technical Center, modest variation of the mold surface geometry, are assumed to nucleate when the contact
Alcoa Center, PA 15069 pressure locally falls to zero. The model leads to two coupled differential equations for

the shell thickness and contact pressure perturbations which are solved with a numerical
scheme. Using a series solution methodology, it is shown that the contact pressure per-
turbation predicted by the present model reduces to that for a rigid, perfectly conducting
mold (which was considered in another work) in the limit of zero mold thickness. In the
companion paper, we specifically examine various combinations of pure materials acting
either as the shell or the mold material. The concept of a critical wavelength, which
separates those wavelengths that lead to gap nucleation at the crests, from those that lead
to gap nucleation at the troughs, is introduced. The potential for development of design
criteria for mold surface topographies using the present theoretical model as a limiting
solution for finite element models of more complex casting processes is discussed.
[S0021-89360)03201-3

1 Introduction since the internal surface of the shell contains “humps” which are

ﬁ)f the order of several centimeters in span and exceed the sur-

One of the most challenging problems associated with a nding ingot thickness by at least an order-of-magnitude. Cel-
metal casting process is the control of heat extraction through g ingot y i . ag e
ar undulation is observed both in static and continuous casting

mold-shell interface during the early stages of solidification. kperﬁcesses([4]). Cracks develop in the shell which can greatly

heat extraction is, on the average, too rapid along the metal-s i the intearity of duct f dqf th + NGOt |
interface, then gross contraction of the ingot from the mold occuffgduce the integrity of a product formed from the cast ingotin a
bsequent forming operatidgauch as rolling or extrusion[5]).

leading to macro-gaps which can span much of the contact leng{h. >~ . . .
g gap P onuniform casting thickness and crack nucleation and growth

If heat extraction is locally nonuniform due, for example, to sto- thouaht to be bri tibuting factors to breakout. in which
chastic variations from parting agents, surface topography, oxid e thougnt to be prime contributing tfactors to breakout, in whic
ﬁ shell is unable to retain the residual molten metal upon extrac-

or lubricants, then micro-gaps, which have a lateral span less t ¢ th Ids i i i Surf
the nominal wavelength of the mold surface topography, nuclea fon from the molds In continuous casting processes. surtace re-

A R Iting and exudatiorfor bleeding out of molten metal into the
In both cases, the thermal conductivity in the gap region is |8 . .
than adjacent solid-solid contacts thereby constricting heat fIdWerfalce have been found beneath the thinnest regions of the

through these contacts. This leads to locally elevated temperatﬁ@i”tﬁlong the ?OIQ'Slhe" Cﬁ“tf%@])]; th t of cellul d
and ultimately remelting of portions of the ingot surface adjacent ermomechanical mechanism for the onset of cefiuiar undu-

. f : : i d by Halliday7] and further developed by
to the gap region or regions. The ingot surface can become rich jon was propose - :
alloying agents and related geometrical defects, which sub chmond and Huangg8]. They proposed that stochastic varia-

quently have to be removed through such process-intensive te fns in metal'.She” h_ea_t extraction led to IocaI_Iy no_nuniform tem-
niques as surface milling or “scalping.” perature gradients within the shell. Irregular distortion of the shell

Irregular contraction and associated gap nucleation are a éulted in chal variations_ in the metal-shell contact pressure.
thought to adversely impact the growth of the shell. For exampl¥icroscale air gap nucleation was assumed to occur when the

it has been observed in decanted steel and aluminum castings H#ﬁ?sure fell to ZEr0. S.he” growth rates in regions adjace_nt to the
the shell can grow with a nonuniform thickne§d—2]). This gaps were greatly diminished. If shell distortion acted to increase
IPp contact pressure above the hydrostatic stress from the residual

phenomenon, which has previously been referred to as cellu 4 th h h h d L | h of th
undulation([3]), is indicative of a macroscale growth instability! U!d. then the growth rate was enhanced. Lateral growth of the
gaps across the metal-shell interface, and hence continued varia-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF tlonhOf She” growhhbraées lfe(:] to Ce.”l‘”lar unlgu'atlr?n' Il d
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF APPLIED There is a small body of theoretical work on the cellular undu-

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar.lation phenomenon that follows the spirit of the proposed mecha-
9, 1999; final revision, Sept. 30, 1999. Associate Technical Editor: J. R. Barbgfism. For example, Richmond et 89 developed a beam theory

Discussion on the paper should be addressed to the Technical Editor, Profe! ; HH B
Lewis T. Wheeler, Department of Mechanical Engineering, University of Housto?RSdeI to explore the onset of growth instability assuming that

Houston, TX 77204-4792, and will be accepted until four months after final publflickness nonuniformity of a pure metal shell was due to a peri-
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. odic heat extraction profile. It was proposed that gap nucleation
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occurred when the contact pressure along the mold-shell interfasteell thickness, while in others, gap nucleation might occur in the
fell to zero. They found that gap nucleation occurred beneath ttreugh or valley regions, which suggests the onset of undulatory
thinnest regions of the shell, which presumably diminished furthgrowth and ultimately, cellular undulation.

growth of these regions, with a corresponding increase in contacfThe only prior work on the mold distortion problem is due to
pressure beneath the thickest regions of the shell, the thicker Yégit [26] who extended the Li and Barbgt0] formulation for a
gions subsequently growing at a faster rate. Li and Bafhgf mold of finite thickness with planar surfaces. Yip26] examined
extended this work using a stress function approach and foud@ly the perturbation quantities resulting from a spatially nonuni-
that the Richmond model was appropriate for the earliest staged@im cooling profile along a planar mold surface, and hence he did
casting when the shell is very thin. Their model assumed that tAgt €xamine the evolution of the total contact pressure at the
temperature and stress fields in the growing shell were coupl@tpld-shell interface. It is therefore not possible to draw any de-
along the mold-shell interface through a pressure-dependent tHHtive conclusions from his work about gap nucleation at the
mal contact resistance. Additional models, which address su&p!d-shell interface and how the topography wavelength affects
added complexities as strain rate relaxation due to viscous cr nucleation time and location. o

([11]) and Stefan numbef12]) have been developed. he present work is divided into two parts. In this first part, we

Experimentalists have addressed the issue of gap nucleation 4iif) (e Hector et al22] methodology to reformulate Yigit 26|

shell thickness nonuniformity with a number process-related eW—Zd:llo?]f a”lﬁ:(rj] %Is;g::%o;tﬂgvniolcgazl\?iir Ss?rl:gggﬁgg?gu(r)fggeg%ieth
hancements. One of the most common enhancements involvesmwé ! 9

application of a specific mold surface topogragisge[13—21) € same wavelength or center-to-center spacing between adjacent
PP P Pog ¥ . __crests. Both surfaces are of low aspect ratio and hence the ratio of

Eeonr dee)éazﬁll(ise(ﬂo:'é dg&?vgnéohpgggzp;'liivt]?;t rmm’(;g(:eﬁgnxtqe amplitude to the Wavelength is ml_Jch less than_on(_e. Thl_s ratio
. . . E used as a perturbation parameter in the analysis since it is in-
heat flow at the mold-shell interface, have been routinely invesfiiaiiye of the extent to which lateral heat flow occurs along the
gated with empirical methodologies. Unfortunately, there are jye face due to the modest spatial variation of the topography.
process models of the mold-shell interface that point to topograg|iowing Li and Barber10], the heat conduction and thermal
phy des!gn criteria for the selection of important parameters sugheasg problems in the mold and the shell are coupled along their
as amplitude and wavelength. interface through a pressure-dependent thermal contact resistance.
In light of existing experimental work on the mold surface toThe analysis leads to two coupled differential equations for the
pography effect on shell growth uniformity, Hector et B2]  shel| thickness perturbation and a function that represents residual
reformulated the Li and Barbdil0] model so that nonuniform stress. The solutions of these equations are used to calculated the
heat extraction at the mold-shell interface was due to a sinusoi@ahtact pressure perturbation at the mold surface crests. This so-
mold surface that was held at a uniform temperature. Their modgtion is valid for all times. A method for calculating series solu-
assumed that the mold was a rigid, perfect conductor of hegibns of these differential equations is presented: These solutions
Clearly, this was a very restrictive assumption since most castiage valid for short times after the start of solidification. It is shown
processes involve a mold of finite thickness which undergoes thétat the resulting expressions for the shell thickness and contact
moelastic distortion. A methodology was presented for the calcpressure perturbations reduce to the result developed by Hector
lation of the total contact pressure. It was found that gaps alwagsal.[22] for the limit of zero mold thickness. In the second part,
nucleate at the lowest points of the surface troughs, while thee use the theory developed in Part | to examine the gap nucle-
evolving distortion of the shell increased the contact pressure [@ion process when the mold and shell materials are combinations
yond the hydrostatic pressure at the highest points of the cresigeither pure aluminum, copper, iron, or lead. The effect of mold
They also found that gap nucleation time and the mean sheWirface wavelength on gap nucleation time and position is ex-
thickness were influenced by the topography Wave|ength such tﬁgtl’Ed for a given material combination. The concept of a critical
gap nucleation was delayed or even prevented over the time fra@velength, which separates those wavelengths that lead to gap
of interest with increasing wavelength. Gap nucleation was fasf@icleation at the crests from those that lead to gap nucleation at
for a pure iron shell than for a pure aluminum shell, given ththe troughs, is introduced. .Futurg development of deS|gn criteria
same process conditions. for mqld_ surface tppograp_hl_es using the present theoretical model
Based upon the work of Comninou and Dund[28], Zhang &S 2 limiting soluthn fc_;r finite element models of more complex
and Barbef24], and others on steady-state thermoelastic contd@Sting processes is discussed.
problems, it is expected that mold distortion will play an impor-
tant role in the gap nucleation process. For example, Comningu
and Dundurg23] found that the interface between two dissimilarE The Thermal Problem
thermoelastic half-planes can involve periodic contact and separalhe system to be modeled is shown in Fig. 1. Heat is with-
tion zones in addition to a state of uniform contact pressuré[awn from the bottom of a thermoelastic mold of mean thickness
Zhang and Barbel24] found that growth of a sinusoidal pertur-ho. Both the upper surface of the mold, which is contact Wlth the
bation in the contact pressure between two dissimilar materigiell alongy=0, and the lower surface gt=—h,, have sinu-
depends upon the direction of heat flow, and, specifically, tif@idal surface topographies of wavelengttMolten metal, which
distortivity of the materials, which relates the distortion to thés initially at its fusion temperaturel;, perfectly wets the upper
local heat flux. They also found that when the system becomgdiface of the mold at=0. The modest spatial variation in the

unstable, the growth of the instability depends upon the spatfPer mold surface leads to a corresponding spatial perturbation
f the temperature fields in the shell, the mold, and the freezing

wavelength of the perturbation. The work of these authors su T . . .
ont once solidification begins. The location of the freezing front

gests that the location of gap nucleation along the mold-shell i d d b Al - : dtob
terface may be controlled by the wavelength of the perturbation ffy denoted bys(x,t). All material properties are assumed to be
fgnstant and independent of temperature.

the thermal field. In casting, the thermal field at the interface, a . . F=

hence distortion of both the mold and shell, can be affected by the' "€ tempera(}ure field in the solidified shalf(x,y,t), and that
surface roughness of the molih addition to the other effects, N the mold, T°(x,y,t), are governed by the heat conduction
such as ingot extraction rates, surface oxides, fluid flow, meniscg@uation

behavior and surface tensigsee[25])). In practice, this is typi- 1 9T¢ 1 979

cally a ground finish which consists of a spectrum of roughness V2 Te=— — Vsz:k r Q)
wavelengths. Hence, in some situations gap nucleation may occur

at the peaks or crest regions, which suggests planar growth of thieich are subject to the following initial and boundary conditions:
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liquid y Ny T(X,y,1) =To(y.t) + T1(y,t)cogmx) (11)
freezing front upper

shell mold S(X,t) =s(t) +s4(t)cogmx) (12)
/;F\Q// . surface R(P(x,t))=Ry+ Ry (P(x,t))cogmx) (13)

q \h X
/T\tsw OWf\(;\\

1€08 (Mx) planar referen Y QX 1) =Qo(t) + Qu(t)cogmx). (14)
Mo mold — a— t We insert Eq(11) into Eq. (1) and separate the zeroth-order and
\l TN yaiN 2 first-order governing thermal equations. We next proceed to ex-
N N pand each of the temperature fielf{x,y,t), T4(x,y,t) in a Tay-
€€oC0S (MX) lor series abouy=s=sy(t) +s,(t)cos(ny, y=y,;=1€,; cosny),
— a2 —  lower and y=y,=—(hy+le, cosfmy), respectively, toO(e). This
mold surface ng gives
C
Fig. 1 Pure metal shell solidifying on a deformable mold with TO(X,8,1) =T§(Sp(1),t) +5,(1) wcos{mx)
nominal thickness  h, and sinusoidal surface topographies with " 0 ' ay
wavelength N c
+Ti(se(t),t)cogmx) (15)
aTg(0}t)
Tc(x,yl,t):Tg(O,t)HelT cogmx) +T{(0t)cogmx)
C —
TS(x,8,1)=T; 2 (16)
T’ Js aTH(0)
K¢ 7y (X,S,I)ZLCPCE(XI) 3) Td(x,yl,t)zTS(O,t)Helg—ycos{mx)JrT‘l’(O,t)cos(mx)
a7
s(x,0)=Ile; cogmx) (4)
y aTY(—ho.t)
aTe aTd TU%,Y2,H)=Tg(—ho,t) —l e;——————cogmx)
KCW(nylyt): KdTy(X,yl.t) 7 Yi=legcogmx) (5) %
+TY(—hy,t)cogmx). (18)

TUX,y2,)=0 ; Y2=—(ho+le; cogmx)) (6) Equation(8) gives

{Qo(t) + Q1(t)cogmx) H{Ro+ Ry (P(x,t))cogmx)}

aTg(0t)
— C
= [ To(Ot)+1 El—&y

gTd
Kda—y(x,yz,t)=Q(x,t) ; Yo=—(hotle;cogmx)) (7)

cogmx) +T5(0t)cog mx)]

where
RQ(X,1)=TC(x,y;,1) — TUX,y;,1) ; =|e; coymx aTd(0¢t
QOZTOYLD=T 005 yamlecos )(8) {Tg(o,t)JrIel—g(y )coqu)ﬂ‘;(o,t)cos(mx)]
andQ(x,t) is an unknown heat flux that is to be determined from (19)

the analysis. Equatiof8) defines the energy balance between heat

conducted away from the moving interface into the shell and tﬁf@etLe we havet_neglz_ectte(;ihterys h(ijgher tmig.z.' After substki)tut-
latent heat released during solidification. Note thats the latent Ing these equations Into the boundary conditions given above, we
heat of fusion of the material, and separate expressions corresponding to the zeroth-order and the

first-_order thermal problems: These are listed in the following
R(x,t)=R(P(x,t)) (9) sections.

is the pressure-dependent thermal contact resistance, wher%‘z The Zeroth-Order Problem.
P(x,t) is the contact pressure along the mold-shell interface. The 9°T¢C 9Td

reader is referred to Yigit26] for additional background on Egs. —zo(y,t):o ; —f(y,t)zo (20)
(2)—(9). We define y ay
C —
a=ayll i e=ayll (10) To(so.)=T 1)
C
as the upper and the lower mold surface aspect ratios, respec- chcM:Kca_To(solt) (22)
tively, wherel =\/27w=1/m anda,,a, are, respectively, the am- dt ady
plitudes of the upper and lower sinusoidal mold surfaces. Finally, c d
to simplify the analysis, we assume that the Stefan number for the Kcﬂ_TO t)= Kdﬂ_TO(O t) (23)
casting material is small, and the heat diffusivity of the mold is ay ' d '
infinitely large, i.e., the heat capacity of the mold is zero, in which d
case Eqs(1) become steady-state heat conduction equations. It is To(—ho,t)=0 (24)
also assumed that there is no transversal heat transfer in the so- sTd
lidified shell and in the mold. Kda—yo(*ho,tFQo(t) (25)
2.1 Perturbation of the Thermal Problem. Due to the
modest spatial variation of the upper mold surface, we may ewhere
press the temperature field¥(x,y,t), shell thicknesss(x,t), TS04) —T(01)
thermal contact resistancB(P(x,t)), and mold-shell interfacial Q)= % (26)
heat flux,Q(x,t), as follows: Ro
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2.3 The First-Order Problem.

B Qt) Qi) .
ﬁZTC (QZTT a2(t)_ - mKCCOSHm%) |:Q0(t) COSKth)Slnf“(mSo(t))
7 (y,.)-m*Ti(y,0=0 ; Sy7 (V0 —meTH(y, =0
27) +ms;(t)+ e, sinr(mho)sinftmsa(t))} (42)
aT§
si(t) ==~ (so )+ T1(So,1)=0 (28) ag(t)= QL(HQN) coshimhy) + e, sink(mho)} (43)
mK® [ Qo(t)
dsy(t) dT{(sg,1) PTH(so,1) Q () [Qa(t)
p° dlt =K° 1(9y0 Sy ;yzo (29) au(t)= 0 [Q(l)(t) sinhkmhg) + €5 cosk(mho)}. (44)
[ (92-|—c TS aZTg aTcli Substituting Eqs(34) and (39) into (29) we obtain
K le—— (01) + — (Ot)} K¢ Iel—z(O,t)+—(0,t)} d
ay Ay ay ay _ o ¢ dsi(t)
g ITo . _
Tl(_hOvt)_|62W(_hO‘t): (31) X[ms;(t)sinh(msy(t)) — €, sinh(mhy) | (45)
aTd 2d where we have used Eqggll) and (42) for a,(t) anday(t), re-
Kd —1(—h0,t)—|62—20(—ho,t)}—Ql(t) (32) spectively. Finally, substituting Eq$34), (35), (36), (39), (40),
ady Iy (45) into Eq.(33), and rearranging terms, we obtain
where . 1 . )
1 aTC lgTd [K R0+So(t)+gho] Wmho)(mK RO+§SInI'(th))
A= g77g {Iel <0t)—W<0t)} SLE dsy(t)
Xcoshmso(t))+smk(ms)(t)) KT, a9t
+TH00) - THO) ~ QO(t)Rl} : (33) c
+ ¢ tanhimhy) [sinhimsy(t))
Notice that the zeroth-order boundary conditions are identical to [ cosl{mho) "o N

that for the unperturbed problem, whereas those for the first-order
problem include terms from the zeroth-order solution. This per-

mits the two problems to be solved sequentially.

2.4 The Zeroth-Order Solution. The procedure for solving
the zeroth-order problem may be found in Yi§®6]. We there-
fore summarize the solution without proof.

Qo(t)

To(y,.0=Ti+ = e [y=so(1)] (34)
(t)
Ty.0= 22 [y+ho] (35)
where
B TKeKH
Qolt) = R KT+ Ksy(t) + Koy (36)

So(t) = —(Zho+ RoK®)

2 c c 2 2T K
+ \/ (¢ho)“+2RoK Cho+ (RoK®)“+ chc —=<t (37)
and

KC
(= Kd (38)
2.5 The First-Order Solution. The solution to the first-
order thermal problem may be written as

TS(y,t)=ay(t)sinh(my) + a,(t)costimy) (39)
Td(y,t)=as(t)sinh(my) +a,(t)coshimy) (40)
where
t
ay(t) = ?,f,ic) 8 osimhy) + e, sinh(mhy) | (41)

Journal of Applied Mechanics

+cosk(mso(t))] ms,(t) +[mMK°Ry sinh(mhy) + £]

xmﬂl@flwmwwm(t):o (46)

where we have used the following equation Ry
Ri(P(x,1))=R"Py(t) (47)

which comes from the Taylor series expansion

R(P(x,t)) =R(Pq(t) +Py(t)cogmx))
=R(Pg)+R’'(Pg)P4(t)cogmx) (48)
and

R’:dIZ(EO). (49)

Notice that the differential equation fax(t) is a function of the
first-order contact pressur®,(t). In other words, the first-order
thermal problems are coupled with their mechanical counterparts.
In the next section, we will develop the stress field within the
casting and the mold in order to determiRe(t).

3 The Thermal Stress Problem

Since the spatial variation of the upper mold surface leads to
corresponding perturbations in the thermal fields and interface
heat flux, we assume the thermal stress distributions in the mold
and shell, and the contact pressure, adopt the following forms:

ai(X,Y, 1) = ooV, 1) + o (XY, 1) = ajko(Y, ) + oja (XY, 1)
(50)
P(x,t)=Py(t) + P(t)cogmx) (51)

Po(t)=— P, (t)cogmx)=—

Uyyl(xiyllt) ;
(52)

O'yyO(ylyt) ;

y;=le; cogmx).
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As discussed by Li and Barbgt0], the total stress distribution in where the rate-dependent form of E§9) has been useths pre-
the solid shell and in the mold can be expressed as a linear corisusly discussedand the subscript “1” denotes a first-order
bination of a particular solutionsf, , that corresponds to the ther-component. Particular integrals of E§O) are

mal field, an isothermal solutiom;", , which is allowed to vary in c.c c c

time so as to satisfy time-varyirllkg terms in the boundary condi- (pC:M 4 (1+CV ) [MYTe[y+3(K ISOJrghO)}

tions, and a residual stress,, , which is the stress that remains in m(1=v%) 3 [So(t) +K Ro+Lho

the solid shell after it is cooled to a uniform temperature and

relieved of all boundary tractions. In generaf;, may be sub- +y[a2(t)sinr(my)+al(t)coshmy)]cos(mx)} (62)
sumed underrjhk. Once the stress field is determined, thyft)

is obtained from the second of Eq&2). A condition that may g laf(1+09)

mYZTff[ y+3hg
3

lead to unstable growth of the shell once micro-air gaps nucleate ¢ = 1= ,9)

. {(ho+KIRg) +so(1)
along the mold surface results whéh(t) increases at a mold

surface crest while simultaneously decreasing in a trough. The )
present theory assumes that the shell retains contact with the mold +y[as(t)sin(my) +a5(t)costimy) Jeogmx) (. (63)
surface and hence goes only so far as to moritg(t) up to air o o
gap nucleation. We can simplify the problem somewhat by adjusting E@R)

The mechanical boundary conditions for frictionless contact and(63) so that the components of E(4) corresponding to the
the upper surface of the mold are particular solution, |(|°),‘2l and (Ud)ﬁl, are automatically satisfied.

c —g - 9 —0 - y—y — We first express the displacement normal to the mold surface in
Ity 0 Tty 0 5 y=yi=lecosmx)  (53) the planar reference via the following transformation equations:
U, =00, 5 y=y1=leicogmx) (54) (U =()), cos py)—(U)E sin(gy) ; (i=c,d) (64)

Whereaﬁl[1 'Uglll are the shear stresses in thmg (t;) coordinate \here

system that rides along the upper surface of the ntsde Fig. 1,

and Uﬁl ,Uﬁl are the normal velocities of the shell and the mold, d,lz_y = —€; sin(mXx). (65)

d
respectively. Note that Eq54) can only be stated in terms of a dx
time derivative since there is no reference state for displacemeince ¢, <1, Egs.(64) can be written as
of the solid. Solidification at the freezing front is assumed to occur

in a state of hydrostatic stress (UHR, =(UHY + ey (W) sinmx) ; (i=c,d). (66)
ow=—Po ; a§=—Py ; o3,=0 ; y=s(xt) Since the zeroth-order solution requires tha‘t)Klz(ui)gl, it
(55) is true that (Ji)f(’l is at least 0fO(€) and hence the second term in
wherePy is the molten metal pressure. Eq. (66) is at least ofO(€%). We may therefore write

Also, frictionless contact is assumed on the lower surface of the ) )
mold, and the normal stresses between the solidified shell and the (U')ﬁﬁ(U')?l i y=yi=le;cogmyx) ; (i=c,d) (67)
mold are continuous. So
p since we are only interested in terms@ge). The expression for
on,=0 1 y=Yo=—(hotle; cogmx)) (56) (U'), in Egs.(61), along with Eqs(52), (63), and(64) give
op=0h ;i y=Y1=le;cogmy) (57) aS(1+1°) d

(UC))E |Is cogmx)— 571 ¢ At
Whereo-ﬂ2t2 is the shear stress in theJ,t,) coordinate system v 2m(1-»") dt

that rides along the lower surface of the mold. To preserve the 26, T{(K°Ry+ ¢hg)
equilibrium of the mold as a whole, we must have so(D) + KRy T Zhg +a,(t) fcogmx)
a0y (X,y1,0) = a0y (X,y2,0). (58) (68)
3.1 The Particular Solution. The stress field corresponding § a%(1+ 0% d
to the particular solution can be constructed from the thermoelas{U )51||e1 cosmY = 1 — 9 dt
tic displacement potentialy', through([27])
o . . 2{e Tihg
2u'u'=Ve¢' , (i=c,d 59
| “ ¢ ( ) (59) X[g(h0+KdR0)+so(t) +a(t) | cogmx)
where ¢' (x,y,_t) | satisfies | (69)
o 2uta (140 : E' ) . . . .
V2pi= | b ui= ~— , (i=c,d) which result after we expand the hyperbolic functions in a Taylor
1-v 2(1+vY) series abouy=y;=1¢; cosmy) and retain terms t@(e). We

(60) can eliminate this unwanted velocity by superposing a suitable
andT' is given by the sum of Eq€34), (39) and (35), (40). The harmonic function onta' in Egs.(62) and(63). Let

superscript refers to either the shell or mold materials. The stress i, =D.(t)si P 7
and displacement fields corresponding to the particular solution (¢=Di(Vsinmy)cosm) , (i=c,d) (70)
are then derived frond 27]) whereD;(t) are unknown functions of time. The expression for
_ P _ P _ 2ol (u')y, in Egs.(61) gives
i \pP— _ . i \P— _ . i \p—
(0% e (ayy) 2 (0% axay ) d [mDi(1) o
(61) (U )yk—& Z—Iuicosr(my)cos{mx) , (i=c,d). (71)
(uhP = — i ‘9_"0| (i=c,d) In order to eliminate the term on the right-hand sides of E6R).
i 2u' ot| gy | ’ and(69), we write
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uCa®(1+1°) (21, Ti(K R+ Zhg)  ay(t) wdad(1+ 9 2T¢L(y+hg)

S d \h_ _
D= " @=0 | S0+ KRy 2y~ m O™ (700 =% | Zhot KRy +5o(0)) T a¥)
(72) (80)
DD wdad(1+ vY) 212, Thg a3(t)] G From Egs.(55), we have ¢<,,)"(so,t)=—P,. Hence,
== cogmx
d m(1—v9 | 2(hg+KIRy) +5o(t) = m 2uCaT (1+ 1)
(73) Fe(y)=—Pot ————— (81)
(1-79
and hence
and the zeroth-order lateral stress in the shell corresponding to the
()2 a®(1+v% d homogeneous solution is
u . =
ykile; cogmx) Zm(l—yc) dt ¢ e py Z/LCC!CTf(1+VC) So(t)_y
2e,TH(K°Ry+Zhg) ot (0300)"=~Po (1-2% So(t) + KeRy+ Zhg)
S0+ KR ghg + (1 €05M )
(74) Also
o ad(1+ %) d (05y0)"=0 5 (0yy0)"=—Py. (83)
(UDPiey cosmn =~ 2m(1—»9) dt In similar manner,
2§Eleh0 Fd(y): 7P0 (84)
3 +az(t) cogmx) . ]
{(hg+K%Rg) +sq(t) and the zeroth-order lateral stress in the mold corresponding to the

(75) homogeneous solution is

since coshé; cosmx)~1. When Eq(70) is superposed onto Egs. (o9 Y= —p, wlad(1+ %) 2T{(y+hg)
(62) and (63), we obtain XX0 0 (1-2% [ {(ho+KIRy)+so(t) |’

_ wfa®(1+ ) [ my?T¢ [y+3(K Ry+ ¢ho) (89)
T Tm(— 3 |So()+KRy+ g Also
d \hog - (g9 yho _
2] éle(KCR0+ gho) ) (nyo) =0 ; (UyyO) - I:)0- (86)
T Tso(D) TK°Ry+ Zh sinh(my)cosmx) The first-order stress field corresponding to the homogeneous so-
0 0 0 . . .
lution is derived from([28])
+| a,(t)y sinh(my)+a,(t)| y cosimy) o PP e I
(O-Xx) _&_yz ’ (Uyy) _W ’
1 .
— —sinh(my) cos{mx)] (76) A PP
m iy T i=
(o%y) axay (i=c,d) (87)

q wdad(1+vY)

whered' is the Airy stress function which satisfies the following

mszfg{ y+3h,

T ma— 3 [4(ho+KRo)+so(1) compatibility relation:
zlgfleho ) J .
~ U(hot KoRg) T 5(1) SMMy)cosm>) Viel=0 . (i=cd). (88)

In view of Egs.(88), the time derivative ofb' must be bihar-

| aa()y sinhimy) +a(1)| y cosmy) monic. It can be verified by substitution that the appropriate forms
are
1
- Esmh(my)) cos{mX)} (77) OC={[h(t)y+h,(t)]cosimy)
which provide the velocity fieldécorresponding to the particular +[bs(t)y +bs(t)]sinmy) +g(y)}cogmx)  (89)
solution that automatically satisfy Eq$54). The stress field cor- d_
responding to the particular solution can now be derived via Egs. PE={[B1(V)y +Bo(t) JcosHmy)
(62), (76), and(77). +[B3(t)y+By,(t)]sinh(my)}cog mx). (90)
3.2 The Homogeneous Solution. We pose the following Note thatb,(t) —b,(t), andB;(t) —B,(t) are unknown functions
form of the zeroth-order homogeneous solution of time andg(y) is a time-independent function that represents
i \h_ . - ) residual stresgor the stress in the shell when it is cooled to a
(0yy0)"==Po 5 (0%0)"=Fi(y) ; yniform temperature and relieved of all boundary tra_ctjoms-
(Uixyo)hzo - (i=c,d) (78) ing Egs.(87), (89), and (90), the homogeneous solution of the

first-order problem becomes

where Fi(y) are unknown functions of position. The lateral . ., _ 2
stresse_s,ct;xo)h, are constructed by adding the zeroth-order tern(fTXXl) ={[2mbs(t) +m(by(1)y +b,(t)) JcosHmy) + [2mby(t)

from (o},)P (determined from Eq¥61), (76), and(77)) to F;(y) +m?(bs(t)y+b,(t))]sinhmy)+g”(y)}cogmx) (91)
as follows:
(05y)"=m{[b;(t) +m(bz(t)y+by(t))Jcoshmy) +[b(t)
c h__Z,ucach(l-i- 1Y) [ y+KC°Ry+ ¢hg LF _ ) _
(UXXO) - (l—VC) So(t)+KCRO+ §ho C(y) +m(b1(t)Y+bz(t))]smr(my)"‘g (y)}SIn(mx)

(79) (92)
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(05y0)"=—m?{[by(t)y+b,(t)]costmy)

+[ba(t)y+by(t)]sinhimy) —g(y)}cogmx) (93)

(090)"={[2mBy(t) + m?(By(t)y+ B,(t))Jcostimy)

+[2mB; (1) + m?(B5(t)y+ B,(t))]sinhimy)}cog mx)

(94)

(o) =m{[ By (t) + m(B3(t)y +B,(t))coskimy)

+[Ba(t)+m(Bs(t)y+By(1))]sinh(my)}sin(mx)
(95)
(05,0)"=—m*[B,(t)y+B,(t)]cosimy)

+[Bs(t)y+By(t)]sinmy)}cogmx)  (96)

where the prime denotes differentiation with respectytdrhe
components of the total stress field are obtained through Superpo-

sition of the particular and homogeneous stress fields vid3®.

3.3 Determination of theb; and B;.

system may be written in terms of the planar reference via
Uﬁltl(xvyl = oﬁy(cosz( B1) —Sin(é1))
+(0-§y7 Uix)sm( ¢1)coq ¢1)

~ 05y (05— oh) € simx). 97)
Similarly,
1, (6Y1,0) = 05 (COS( 1) — SiMP( 1))
+(0fy— ag)sin(¢1)cod ¢y)
~og—(og,—ofersinmy.  (98)

The total shear stress at the bottom surface of the mold may

written in terms of the planar reference via
1, (%.Y2,1) = 05 (COS (o) = SINP(h5))
+(ayy— 0300 SIN( ) COS b)

~of,+ (0y,— %) €2 SIN(MX) (99)

where we have used

dy .
¢2:& =€, sin(mx). (100)

The total normal stresses relative to the planar reference of the

upper surface of the mold become
o5, (XY1,0) = 05, S (1) + oy, cOS( 1)
— 2075, Sin(¢1)cog ¢1)
%O'S,y-i- 2610'5), sin(mx) (101)
75 (X,Y1,0) = 05, SIP( 1) + oy, COS(by)
203, Sin( 1) oS 1)
~ 09+ 26,05, Si(MX)
5 (X,Y2,1) = 04 SIMP( o) + 0y, COS(¢h)
— 203, Sin( ;) COg )
~ Ugy_ 2620'gy sin(mx).
Equations(53), (61), (76), (92), and(97) give

(102)

(103)
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Theb; andB; in Egs.
(89) and(96) are determined by requiring the total stress field to
satisfy Egs(53) and(55)—(58), and the homogeneous stress fiquN
to satisfy Eq.(54). The total shear stress in the mold surface

2ufaCe Ti(1+1°)
m(1—v°)
where we have retained terms @(e). The elastic constitutive

law for plane strain(where the associated rigid-body displace-
ments have been negleciad

by (t) +mby(t)+9'(0)= (104)

. . 1+ , .
(uhp, = (WHy = —E,i[(l— V')f (&y)"dy

— j (irixxl)hdy)

Application of Eq.(54), using Eqs(91), (92), and(94), (96) gives

(i=c,d). (105)

(1+v%)EH Cbyv)] 5.0
@ ohee| PO~ A2 = }BA(t)_(l—Zvd)—m ,
(106)

pplication of the expression fm‘ﬁ111 in Egs.(53), using Eq.(98)
gives
By(t)=— (107)

e expand each of Eq¢55) in a Taylor series about the mean
position of the freezing fronts,y, beginning witha§, . Hence

mB,(t)

anX(X,So,t)

oS, (X,5,t) = 0%,(X,Sp,t) + (5= Sp) — " ...=—P,.
(108)
We have
905 X,Sg,t) 2uaCTe(1+ 1)
= c c +0(e)
aay (1=v%)[so(t) +K°Rg+ {hg]
(109)

where ¢S, = (0°)2,+ (c%)" is derived from Eqs(61), (76), and

(91). Equation(108 may therefore be written as

be ¢ _ ZMCacsl(t)Tf(1+ VC)
UXX(X!S!t)_UXX(XvSO vt) (17 VC)[So(t)+KCR0+ Zho] COS(mX)
=—P,. (110)
Substitution of the sum of¢f®)?, and Eq.(91) into Eq.(110) gives
2b,(t) .
[T +b3(1)So(t) +by(t) |sinh(msy(t))
a5+ () + 22 costimey(t) + L
m m
_ pfat(1+09 S1(t) — €2(K Ry + {ho)sini(msy(t))
T om(1-19) f so(t) + KRy + Zhy

+(2 costimsy(t)) + ms sinh(msy(t)))a(t)

+(sinkmgy(t))+ms, cosr(mso(t)))al(t)]. (111)

Following the same procedure faﬁy ando§y gives, respectively,

[m costimsy(t)) +m?sy(t)sinmsy(t)) by (1)

+m? sinh(msy(t))b,(t)
+[msinmsy(t)) +mPsy(t)cosimsy(t)) Ibs(t)
+m? cosiimsy(1))b,(t)+mg' (o)
B uCat(1+v°)
(1—v9
+msp(t)siniimsy(t))ay(t)

(sinhmsy(t)) + msp(t)coshimsy(t)))an(t)
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26, T{(K°Ro+ {ho)cosiimsy(t)) 110 where
So(0 + KRo 2N (2 S0 /
ba(t)= HGT + 0751(1) + 059(Sp) + 099" (So) + O10-
[b1(t)so(t) +b,(t) Jcoshimsy(t)) (119)
*+[ba(t)So(t) +by(t) ISinNM (1)) + 9(So) Note that the coefficient; (i=1, . ..,10) ardunctions ofsy(t)
_ pfa(1+v°) [[2€,T(K°Ry+ o) Dt ?nd thef rt?]aterial afr;q.catsting [)Irotc%ss [t)ﬁrazwetersd.Dimensionless
T M=) So(D+ K°Ro+ Iy ms(t)ay(t) orms of these coefficients are listed in the Appendix.
X sinh(msy(t)) —[msy(t)cosimsy(t)) 4 Dimensionless Formulation for Perturbation Quan-
tities
—Sinf(mso(t))]al(t)]- (113)  To facilitate the numerical calculations associated with the re-
sults presented in the companion paper, we found it convenient to
Application of Eq.(57), using Egs(101), (102 gives rewrite Eqs.(46) and(117) in terms of the following dimension-
less quantities:
Ba(t)=b,(t) +9(0). (114) 2er
Application of Eq.(56), using Eqs(99) gives - %t . p=ms()=my ;
[m coslimhy) + m?h, sinf(mhg) 1B (t) — m? sinh(mhg) B,(t) (toy)
. _ ms;(to(y
—[m?hg coshimhg) +m sinh(mhy)1B5(t) Ho=mhy ; S1(Bo(7)= E—:
+ m2 Cosr(mho) B4(t) m2(1_ VC) .
dad(1+ ¢ 9(7)=—=—<—=9Y) ; Ry=mKRy ;
- % (sinh(mhp) + mhy costimhp))ay(t) ErateT
(1=v9) = ESa°T(R' T O T,(0})
—mhy sinh(mhg)as(t) T (1-19R, 10m)= €Ty
2{e1T¢hg } _ m2(1-1°) _ (1—1°)
+ cosim 115 = 7 . - 7
L(hg+ KdRo)+So(t) Hmhy) ( ) ba(7) ECaCe, T by(t) 5 P(»n) ECaCe, T Py(t)
Finally, application of boundary condition E(58) gives o Qy(t)
~By(1) +[By(t)~ By(D)h]costimhy) Q)= ke,
~[Ba(t)— By(t)hg]sinh(mhy) SR e Ead(1-1°)
(7)= : - o=
_ u%¥(14 0% [ 2€,Tihg sinimhy) €Ty €1 Eca®(1-v9)
m3(1—v9) £(hg+ KIRg) +s0(t) Ed(1+1°)
—mhy sinh(mhg)a,(t) v

Note that we defing8y(#7) as the dimensionless time when the
—[sinhmhy) —mh, cosiimhy)Jag(t)|  (116) Mean melt line reaches the positi¥r=my. The ratio of the am-
plitudes of the mold surfaces is denoted Ay

where we expanded Eg&6) and(58) in a Taylor series about the . .
mean thickness of the mold; hy, and have retained terms to® Numerical Solution Procedure for the Contact Pres-

O(e). sure Perturbation

Equations(104), (106), (107, (111)~(116 determine the un-  pe gimensionless forms of Eqe6) and(117) are as follows:
known residual stress functiog(s,) and eight unknown time-
dependent coefficients. These nine equations can be reduced to a  w1S;(7) + ,S1(7) + w39( ) + w49 () + ws=0 (121)
single differential equation through elimination of the unknown

functionsby (t) —by(t), B1(t) —By,(t). As a result of this proce- 9" (n)+ weQ' (1) + 079( 1) = wgS{(7) + WeS1(7) + w1g
dure, we obtain a second-order ordinary differential equation for (122)
the unknown residual stress functia(sy), as follows: The dimensionless contact pressure is

dsi(® P1(7)=by(7) (123)

9"(So) + 619" (So) + 029(Sp) = 9sT + 048,(1) + 0.
117 where

Note that we have imposed the arbitrary conditiog60) bo(7)=7181(7) + 7281(n) + 759(7) + 749" (1) + 75.

=g’'(0)=0 since the arbitrary constants implied by the general (124)
solution of Eq.(117) simply determine the partition of an arbi-The coefficientso; (i=1, ..., 10) andr; (j=1,..., 5) ardisted
trary, time-independent biharmonic function between the tw@ the Appendix. Note that in Eqg121), (122), and (124 (')

functions®, and®, and have no effect on the physical quantitiegienotes differentiation with respect i and we have used
predicted by the solution. Onag(s,) is known, we can recover

b,(t) and the remaining;(t) andB;(t) through back substitution. ds, = — ds;
Finally, we determine Ithe contallct pressure perturbation at the dy =[7+Ro+{Hol dp (125)

crests of the upper surface of the mdldgsing the expression for . . . .
P,(t) in Egs.(52) via in order to write the equations as a function=bnly.

The second-order differential equations with variable coeffi-
P,(t)=m?by(t) (118) cients, Eqs(121) and (122, which must be solved prior to deter-
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mining P,( %), can be reduced to a single higher-order differentidlgid, perfectly conducting foundatiowith a sinusoidal surface.
equation and solved by numerical methods described in Li ahal addition, we wish to examine the relative importance of the
Barber[10]. An alternative approach is to first write these equasoupling process at short times after the start of solidification. For
tions in the state-space form, and then solve them simultaneoulis purpose, we evaluate Eq$21) and(122) using the following

([28]). Defining the state variables as

X1=S1 5 X=0(n) ; X3=g' (7). (126)
We can then write Eqg121) and (122 in the following form
X1=€1X1+ X+ e3X3+ ey (127)
X5=Xz (128)
X3=€5X1 + egXo+ e7X3+ € (129)
where the coefficients; (i=1, .. .,8) arefunctions of and the

material and casting process parameters. Note that in(Eg8—
(129, (") denotes differentiation with respect ip

The governing first-order differential equations are linear a
have three initial conditions. In order to be able to compare t

predictions of this work to the limiting case of a rigid mdisee

[22]) we adopt the same initial conditions used by these authors.

In the present formulation, this requiregs=1, x,=0, and Xz
=0 wheny is very small but finite.
The solution is obtained by integrating Eq$27)—(129 with

series solutions:

N

5i( 77)=1+Zl A7y (130)
N
§<n>=zléi+m”l (131)

where 7<<1. Note that the time-independent term in Ef30)
accounts for the fact that the thin shell is compliant to the mold
surface at initial time. Solutions for the unknown constant coeffi-
cients,A; andB;, are obtained by first inserting Eq&.30) and

31 into Egs.(121) and(122), then replacing each transcenden-
&l function with its series form, and finally by writing

1 1 2
SN PR BN
7tRy Ry Ry R§

(132)

the given initial conditions. A variable step, variable ordegquation(123) is then evaluated using the series expressions for
predictor-corrector algorithm suitable for stiff problems is useg, (, andg; (7). Although the resulting expression By ( ) for

for this purposed[29]).
6 Solution for », Hy<€1 and the Rigid Mold Limit

arbitrarily largeH, is too lengthy to report here, we consider the
limiting case ofHy<1, for which we retain terms to orde
after replacing hyperbolic functions of argumedt with their

It is important to check that Eq.123) reduces to the result Taylor series expansions. Fbr=4, the contact pressure pertur-

previously obtained by{22]) for solidification on a rigid moldor

2

10R{6(1— 1) L%+ y(1—1°)(3+ {+ k{)}

bation at the highest point of a crest is

3

Pum = [ s soR - 10a- 0 | | ——
(Ro+£Ho) °| +5y1- L (R- 82 k—20(3+40)]) | RT3 7RG
_ B o .
! : Ho[y(l :)[3(8+3g+ds,<g) 4R0]}—6(1—vd)§§R0
48(1—1v°) | —3&L(7T—r)(1—2Y) yHRS
. [ | €12aRo+ 617+ 20~ Ri(2-R - 814)] )
- ° —2y(1= V) [2RE(1+ {+ k)= 3(5+ L+ k()] 7T (133)
60(1—1°) ° YHoR;
L —128(R,

The first (Quadrati¢ term in Eq. (133 does not change in the (123. Series expressions similar to H4.34) can be derived for
course of imposing the limit of very smal,. Note that the Q,(7) andT,(0,7) following the procedure outlined above. Note
denominator in this term consists of the sum of the mean resifat Eqs.(133) and(134) were derived with a symbolic processor.
tance of the mold-shell interfac®,, and the thermal resistance We observe that the contact resistance sensitifty, first ap-

of the mold, viz.,{H,.

pears in the coefficient of,® of Eq. (133 for the deformable

In the limit H,—0, or, equivalentlyy—0, Eq.(133) reduces to mold. In the case of Eq134) (i.e., for the rigid mold, R’ first

the rigid mold result previously determined by Hector e ap].

appears in the coefficient af°. Hence, for sufficiently short times

For N=5, P;(#) at the highest point of a crest in a rigid moldafter the start of solidification, the evolution of the contact pres-

surface is
- 7 7 (6-Ry)n* (15-2R)7°
Pl(ﬂ):—_—;'f‘ — —,
2R, 2R 1R} 30R3

s (720-5(4+9R")R3+32R3) 7° .

... (139)
1443

The limiting form ofs;( ) was also obtained from Eq&l22) and
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sure perturbation for both the rigid mold and the deformable mold
is essentially controlled through uncoupled physics since the sen-
sitivity is more of a longer time effect. We shall address this issue
more extensively in the companion paper.

7 Gap Nucleation Criterion

Determination of the conditions for gap nucleation can be
achieved through examination &, which is the ratio of the
total contact pressure at the lowest points of the troughtg the
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mean pressuré?,. Since we shall be interested in specific moldEqg. (129), and for directing the authors’ attention to several errors
shell material combinations in Part Il, we consider the dimerin an earlier version of the manuscript which have subsequently
sional forms of these quantities. Hence been corrected. In addition, Professor Howarth patiently answered
p P, the authors’ queries about the series solution methodology. The

pr=—=1——, authors wish to express their gratitude to Dr. Owen Richmond of

Po Po Alcoa Technical Center for suggesting this problem and to Prof. J.

Note that forP;/Po—1, the following condition, which is de- R. Barber of the University of Michigan for his continuous guid-
rived in Hector et al[22], must be met; ance and support during all phases of the work. Faruk Yigit is

(135)

R'P pleased to acknowledge support from the King Saud University,
0

<1. (136)

College of Engineering Research Center under project number

Ro 13/419.

This limits the proposed gap nucleation analysis to either weakly
coupled systems, or the extreme case of a fully uncoupled system.

All other perturbation quantities are required to be much less thﬂbpendix

one.
Gap nucleation occurs when

PU=0. (137)

Gap nucleation at the troughs will indicate the possibility of ir-
regular growth of the shell since contact will simultaneously in-

=1,.

Coefficients of Egs. (121)—(124). The coefficientsw; (i
.. 10) andr; (j=1,...,5) inEgs.(121)—(124) are

7= —({Ho+Ro)+ \ (PHZ+ 2RolHo+ RE+ 28

crease at the crestthe sign in front ofP, will positive, rather _0:_; (A1)
than negative, due to the cao®{ term in Eq.(51)). Beyond gap Ro+ 7+ {Hy
nucleation time, the present model is no longer valid since it can- _ . . . _ .
not account for continued growth of the gaps and the shell. Zy=cosftn) ; Zp=sinh(z) ; Zz=cosfiHo) ;
Z,=sinh(Ho) (A2)

8 Conclusions Ze=0Z,42Z, ; Z¢=2Zy+nZ, ; Zi=nZytZy

A theo_rgtlcal methodology has been developed for the purpose Ze=Zo+ 12, (A3)
of examining the effect of mold surface wavelength and mold-
shell material properties on gap nucleation in pure metal solidifi-Zo=—1 ; Zyo=—(Zs+HeZs)  Zy=—(1-2v% ;
cation processes. A metal shell is assumed to solidify on a thin 1
mold having sinusoidal surfaces of equivalent wavelengths. The Zi=— (A4)
thermal and mechanical fields in the shell are coupled through a Y
pressure-dependent thermal contact resistance. This leads to a pair Z3Z4+Ho
of coupled differential equations for the shell thickness perturba- Zi3=—(1-209Zy, ; Zy=1- Zo HoZs ;

tion and a function that represents residual stress. The contact
pressure along the mold-shell interface is determined both through
numerical solution of these equations and through appropriate se-
ries solutions. For the numerical solution, there is no restriction on
time, whereas the series solution is limited to small times after the
start of solidification. The series solution was used to demonstrate
that the contact pressure for the deformable mold problem reduces
to that for a rigid, perfectly conducting foundation in the limit of
zero mold thickness. It was also found through examination of
each of the series terms that the coupling effect is more appropri-
ate at longer solidification times for both the rigid foundation and
deformable mold problems: If gap nucleation occurs during this
time frame, it is primarily controlled through uncoupled physics.

In the companion papéPart Il), we shall use the results of the
theoretical methodology developed herein to examine the evolu-
tion of the contact pressure in systems where the mold-shell ma-
terials are combinations of pure aluminum, copper, iron, or lead.
Based upon experimental evidence that periodic mold topogra-
phies can have a positive influence on the growth of the shell, we
shall examine the gap nucleation process as a function of mold
surface wavelength. We shall specifically focus on the effect that
the wavelength has on the time and location of gap nucleation as
controlled through variation of the contact pressure at the mold-
shell interface. Additional material parameters such as the distor-
tivity shall also be examined. The overall motivation for this work
is to provide not only theoretical evidence for a wavelength effect
on shell growthwithin the restrictions placed upon the theoretical
mode), but also to stimulate effort into the development of quan-
titative design criteria for casting mold surfaces through further
theoretical and experimental work.
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Zy( HS— 2421)
lis=————— A5
(21~ 219 Z10 (%)

1
, Z1725 (n—2:Z5) ;

_ z;
Zyg= Qo( 1-7f+ >

. Zig=—Qo(Ro+{Ho)  (AB)

1__
v L= EQO(leZ+ 7
Z5Qo
2
1 7
v Zos=— 5 é'/fQoZzZ—3

1
Z22:§ (n—=21Zy) , Zpg=-—
1 z2
Zu="73 55212—3

(A7)

(A8)
k{E— —

Zye=— 27, Qo(Z4+HoZs) —{EHZ3Qo

1 HoZaZs
Zy=~ ngzl( .

+Z,—H ozs) (A9)

1 _ [HoZ3
Zzsz_igfzon Z_+Z4_H023 ;
3

Zog=— CEHQZ4~ 55 o2, (A10)

HoZsZ2s
Zyo '

HoZ4Z24

Z3g=Zyrt —Z Zy=Zygt
10

HoZ4Z56

=Zot
Z3p=Zp9 Z1o

(A11)
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o Z3g - Zy ] _ 23~ 219
¥ Zis—Zis T T ZisZis T T® ZisZss
(A12)
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(A13)
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(A14)
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Zsg
RoR'Zg RoR’ RoR’ Zs
= 8 - C = ,
¥ ZymZ, Zsg > Zss >
Zss Zslyg  Zg
we=— =2 wm—2f_ S A23
" Zse " nZseZs mZ, (A23)
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Critical Wavelengths for Gap
Nucleation in Solidification—
Part II: Results for Selected
Mold-Shell Material

ryigit | Combinations

Department of Mechanical Engineering,

King Saud University, ) . .
P.0. Box 800, In this second part, we examine the contact pressure ratfo, @ the lowest points of the

Riyadh 11421, Saudi Arabia upper mold surface troughs in a directional solidification process using the theoretical
methodology developed in Part |. Since there is ample experimental evidence that the
L. G. Hector, Jr. mold surface topography affects gap nucleation at the mold-shell interface and the uni-
Surface Science Division, formity of the shell, we explore how the wavelength of the upper mold surface impacts the
Alcoa Technical Center, evolution of P" for specific material combinations and process parameters. For this
Alcoa Center, PA 15069 purpose, the mold-shell materials are assumed to be combinations of four pure materials,
viz., aluminum, copper, iron and lead: these materials offer a wide range of thermal and
mechanical properties. Critical wavelengths, for which Bnd its time derivative simul-
taneously equal zero, are predicted for all mold-shell material combinations. The theo-
retical model also predicts the existence of wavelength bands which are delimited by
upper and lower critical wavelengths. All wavelengths that lie within the bands lead to
gap nucleation, whereas all wavelengths that lie outside of the bands do not. The effects
of distortivity ratio, which is a measure of the extent to which the mold-shell interface
deforms under a given thermal loading, and selected process parameters (such as the
mean mold thickness, contact resistance, and pressure) on bandwidth size, are considered
in detail. Extensions of the present work to more sophisticated models that might lead to
rudimentary mold topography design criteria are considef{&0021-89360)03301-§

1 Introduction (and hence does not play a prominent role in the process during

In the companion paper, a theoretical methodology was dev&h-e earliest stages of solidificatiprA criterion for gap nucleation
the lowest points of the troughs in the mold surface was pre-

oped for an idealized solidification process in which a quiesce X S R
bath of a pure molten metal solidifies on a deformable mold &enteq in antlt.:lpa.tlon 9f our examination of selected mold-shell
finite thickness. The mold was assumed to be fabricated from aterial combinations in this second part.

pure metal. In order to examine a possible wavelength effect gn otivation for the theoretical methodology presented in Part |,

: : d the associated predictions we shall examine in the present
the gap nucleation process at the mold-shell interface, the mog ; . : s
. . aper, was largely provided by the experimental literature cited in
surfaces were assumed to follow a sinusoidal lay of the sa

. e i ; . rt 1. With respect to the present paper, the most important work
Waveler_wgth,_but with differing g_mplltudes. This assgmptlon, a5n the mold topography wavelength effect in solidification is that
though idealized, follows the spirit of ground surface finishes us (flMurakami et al[1], and their results deserve further commen-
in practice and unidirectional groove topographies tested in t%gry Following Silngﬁ and Blazel2], who noticed uneven shell
experimental literature. Two coupled differential equations We?%rrﬁation during continuous castir;g of iron-carbon alloys, Mu-
derived for the thickness perturbation in the shell and a functicggkami et al[1] conducted a series of immersicor dip) tests’in
that represents residual stress. A numerical solution procedwﬁich water.-cooled copper plates, with(aresumably smooth

was developed from which the time variation of the contact pre%rface finish, were immersed in a bath of molten steel with a
S

f;:]zge:%sz; fg: ;glevifgit]z SI)Ltj?)lee(;ngilf?e?grzft?z;eegﬁg\:?o:svo ecified carbon concentration over a controlled time periqd. They

a seriés solution was also developed, and a solution for short ti ur_ld_ that a 0.10-0.18wt percent C alloy,_ or hypoperitectic steel,

and very thin molds was derived. It \'Nas shown that this solutirgen ibited prominent thickness nonur_nformmes on the mo!ten steel

reduced to the rigid mold solution: This provided the confidencSIOIe of the.mgOtS: The authors coined the term tortoise shell

needed to proceed with the numer}cal solution of the considera@aﬁems"t since they resembled.the shell .Of a tortoise. These pat-

more complicated deformable mold problem. The series soluti ns, which are the “humps” _dl_s_cussed In Part I_o_f_the_ present
’ Qﬁ)rk ([3]), formed during the initial stages of solidification. Ir-

ﬁ:f;f'glgl'gggg?};g%‘;‘%ﬂ?crﬁggﬂ ;?;;?2?%?&'023 é?i;}g:ﬂé;?l 8gular distortion of the shell occurred during &y transforma-
g g B6n that is characteristic of hypoperitectic steels. The distortion
Comibuted by the Aoplied Mechanics Division OfE AMERICAN SOCIETY O occurred at regular intervals due to the hydrostatic pressure of the
ontributed by the Applied Mechanics Division o MERICAN IETY OF . - . o
MECHANICAL ENGINEERSfor publication in the QURNAL OF APPLIED MECHAN- residual molten steel. Gap nUdeat'c_)n resulted leading to Con_tlr_]
Ics. Manuscript received by the ASME Applied Mechanics Division, Mar. 9, 1999t€d growth of the tortoise shells during the early stages of solidi-
final revision, Sept. 30, 1999. Associate Technical Editor: J. R. Barber. Discussification. It was found that the wavelength of the tortoise shells
on the paper should be addressed to the Technical Editor, Professor LeWiSe-;(hibited a linear deviation from the gap Wavelength at the mold-
Wheeler, Department of Mechanical Engineering, University of Houston, Houstonh i £ b . h . hells i di
TX 77204-4792, and will be accepted until four months after final publication of th§. € ”'Pter ac.dgl Ou.t 10 .mn)]smce the tortoise shells increased in
paper itself in the SURNAL OF APPLIED MECHANICS. size with solidification time.
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Murakami et al[1] proposed that periodic grooves in the moldyrowth, since heat extraction is diminished at the thinnest sections
surface, which led to gaps of a controlled size along the moldf the shell(i.e., directly above the lowest points of the troughs
shell interface due to imperfect wetting of the molten metal, ravhile heat extraction beneath the thickest sections of the shell
sulted in a number of important improvements. Perhaps the mdis¢., directly above the highest points of the crestsimproved
significant improvements were more uniform contact along thdue to improved contact. RichmondO] further proposed that
mold-shell interface, and a reduction in crack nucleation in thguantitative criteria are needed for the selection of wavelengths
ingot due to slower, but more uniform heat extraction. To test thikat minimize irregular shell growth by avoiding those wave-
hypothesis, the immersion tests were repeated for hypopertidéngths deemed critical, according to his definition. Such criteria
steels using casting molds with machined grooves. A key paramil allow casting process engineers to design mold surfaces in
eter that was investigated was the groove pitch or wavelength.rfruch the same way that optical engineers design antireflection
all tests, the depth or amplitude of the topographies was held fixedatings(for examplg. At the present time, no criteria of this type
at 0.5 mm. Both longitudinal and lattice-type grooves were fourare available for even the most rudimentary casting process.
to reduce the size of the tortoise shell patterns, with the latticelt is the purpose of the present paper to examine the mold-shell
pattern generating a more uniform shell thickness than the longbntact pressur@s predicted by the theoretical framework in Part
tudinal pattern. By conducting a series of experiments wherein theand what it infers about gap nucleation along the mold-shell
mold wavelength was varied up to 30 n{fmolding all other pro- interface. We shall avoid the complicated phenomena associated
cess parameters constant for each experimémarakami et al. with mold movement relative to the mold metal, imperfect wetting
found that a 5 mm wavelength led to the most uniform growth aff the molten metal, and shell deformation due to metallurgical
the shell, with a near order-of-magnitude improvement in the shédansformation(all of which were part of the Murakami et dlL]
thickness uniformity compared with corresponding results usirexperiments These and related phenomena will ultimately have
wavelengths of 0.1 mm and 30 mm. The authors observed thatbe incorporated into future models in order to obtain a better
this corresponded to one-half the wavelength of the tortoise sheiissp on the reality of those solidification systems where they are
associated with the most extreme case of irregular shell growthportant. We wish to specifically focus on the mold-shell mate-
over the same time interval. This behavior suggested the possibiél combination influence on the gap nucleation process at the
ity of a wavelength selection process wherein the system “pickethold-shell interface. For this purpose, the mold and shell materi-
off” a mold surface wavelength or band of wavelengths such thats are assumed to be one of four pure metals. We calculate the
the shell grew with greater uniformity. Experiments similar t@ontact pressure rati®"", at the lowest points of the troughs in
those of Murakami et al., which revealed analogous behavior ftite mold surface and examine the impact of the mold conductivity
aluminum alloys, were reported by Weirauch and Giféh and upper mold surface wavelength Bl for an aluminum shell

Wavelength selection processes are often associated with ingfgtidifying on a mold consisting of one of the remaining three
bilities commonly observed in fluids and solids: A disturbance imaterials. We also examine the role that distortivity plays in the
the boundary conditions leads to a specific size or extent ofgap nucleation process since this parameter is responsible for
feature that is characteristic of the affected system. For exampiguch of the rich behavior of thermoelastic contact mechanics
the familiar Benard convection cells that result from buoyancy{[11]). Critical wavelengths are sought following the definition
driven instabilities exhibit a periodicity due to a selection proceggoposed by Richmond10]. Conditions for the existence of
([5)). Displaced ridge waviness during single asperity plowing @favelength bands that are bounded by two critical wavelengths
metal alloys([6]), chatter in mechanical contacts’]), bubble (one being larger than the othare identified for a given mold-
nucleation in gummed wine labe(8]), and buckling of structural shell material combination. The bands are shown to consist of a
members, such as plates and shgBd), all involve a wavelength continuous spectrum of wavelengths that promote gap nucleation.
selection process. Based upon the existence of wavelength se{g@welengths that lie outside of the bands do not lead to gap
tion processes in these and other physical systems, Richft®hd nycleation.
proposed the existence of critical mold topography wavelengthsThe impact of selected process parameters on the width of the
for gap nucleation in solidification processes. According to Riclyands is explored through variation of the mean pressure of the
mond's definition, the wavelength of a heat extraction profile igolten metal, the mean mold thickness, the mean contact resis-
“critical” if it leads to zero values of the mold-shell contact prestance, the amplitude of the upper surface of the nmisiccontact
sure and its time derivative at those regions of the mold-shelith the shell, and the ratio of the amplitudes of the mold sur-
interface where heat extraction is least. For a smooth mold surfggges for a fixed wavelength. Finally, extensions to the present
(or at least one with no prominent periodigitghe perturbations theoretical model that will be necessary in the course of develop-
in heat extraction result from stochastic variations in the molgng quantitative design criteria for casting mold surface topogra-
shell interface heat flux due to a variety of process-related conghies are discussed.
tions and material properties/metallurgical transformations. An
equally random arrangement of thickness irregularities in the shgll
results during the early stages of solidification. As the shell thick-
ens, however, the boundary conditions at the mold-shell interfaceWe wish to examine the evolution &" (defined by Eq(135
have a diminishing impact on the growth of irregularities at thef Part ) for systems where the mold and shell materials are
freezing front. In the idealized case of a mold surface with @ombinations pure aluminum, iron, copper, and lead. The materi-
purely sinusoidal topographyor examplg, the controlling factor als properties used in the calculations are listed in Table 1 along
is the topography geometry, since this creates a spatial perturpgth pertinent references to those properties. Note that the prop-
tion in the heat extraction profile. A critical wavelength leads terties for pure aluminum are taken from Richmond ef#2]. The
the simultaneous occurrence of zero values of the mold-shell c@ymbolsT;, K, p, L, E, by @, andv denote the fusion temperature,
tact pressure and its time derivative at the lowest points of tileermal conductivity, density, latent heat, Young's modulus, ther-

Material Properties and Process Parameters

mold surface troughs. Hence, a wavelength is critical if mal expansion coefficient, and Poisson’s ratio, respectively. Al-
though it is assumed that each property is a temperature-

tr_dF’” _ independent constant, most of the reported values were measured
P _W_O (1) close to the melting temperature of each material. For more infor-

mation on the temperature-dependence of these materials, the
where P' is the contact pressure at the lowest points of theader is referred to Heinlein et &L3].
troughs. At the same time, the contact pressure increases at th€he quantities represented in each of the following figures were
highest points of the surface crests. The mismatch in contact prebtained through conversion to dimensional forms via the dimen-
sure can establish the right conditions for the onset of irregulsionless quantities defined in Ed.20) of Part I. As discussed in
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Table 1 Material properties for pure aluminum, iron, copper, and lead at the fusion temperature
Material
Al Fe Cu Pb
Property Value Value Fe Reference Value Cu Reference Value Pb Reference
T: (°C) 660 1536 [14] 1084 Same as Fe 327.5 Same as Fe
w 229.4 36.2 [15] 345.4 Same as Fe 32.7 Same as Fe
« (m-"C)
kg 2650 7265 [16] 7938 [17] 10665 [18]
o[
J 3.9 2.7 [19] 2.0 Same as Fe 0.23 Same as Fe
L (10‘3—
kg
E (101°Pa) 6.0 14.4 [20] 6.4 [21] 0.852 [22]
(107 °C™Y 37.8 23.4 [23] 26 Same as Fe 37.1 Same as Fe
v 0.33 0.33 [20] 0.37 [24] 0.35 Assumed
Part I, the coupling effect is likely to play a more prominent role 1.0 (e ] 1
at longer times in solidification processes wherein gap nucleation NN
occurs at much longer timeglue, for example, to high values of Y \ ----- rigid mold |
the mean contact pressure from the molten metéénce, in all 0.8 ‘\ \\ __________ ﬁggpnﬁgl’g“ .
cases, we chosR’'=—10"*?m?sec°C/IPa. Although this im- ) N\ - lead mold
plies that the thermal and mechanical problems are very weakly \ N\
: i - 06r | g 1
coupled along the mold-shell interface, it allowed us to satisfy the i "\
restriction imposed on the contact pressure via(Eg6) of Part | ptr | "\
provided that we limited the sizes Bf, andR,. Unless otherwise 04k \ W\ |
specifieda;=1.0um, k=0.1, andRy=10"° m? sec°C/J. Justifi- : i N\
cation behind fixing the amplitude while varying the wavelength '|‘ W\
is discussed in Hector et 4R5]. All wavelength selections satis- o2k \ S\ i
fied the small aspect ratio restriction from the perturbation analy- | \
sis, i.e.,e<1. ] Y\
Each of the following figures was generated through numerical 0.0 11 L LU
solution of the coupled differential equatioriEgs. (121 and 0.0 1.0 2.0 3.0 4.0
(122) in Part I. The results from these calculations were used to

generateP'" for a variety of process conditions and mold-shell

t (x 103 sec)
material combinations.

Fig. 1 The mold conductivity effect as shown through P ver-

sus t (X107 2 sec) for an aluminum shell solidifying on a mold

3 The Mold Material Conductivity Effect with hy=0.5mm and A=2.0 mm

Figure 1 examines the evolution Bf" during solidification of a
pure aluminum shell. The four curves correspond to the case of a

rigid mold, a copper mold, an iron mold, and a lead mold. Note The ordering of the four curves in Fig. 1 is dictated by the mold
that the thickness of each deformable mold Wgs 0.5 mm. The thermal conductivity. Gap nucleation is fastest for the rigid mold
normal pressureP,, was held at 10,000 Pa, the wavelength ofince it is perfectly conducting.e., has an infinite thermal con-
each mold surface was=2.0 mm and the ratio of mold surfaceductivity). Of the three pure mold materials considered in Fig. 1,
amplitudes wasc=0.1.

gap nucleation is fastest for the copper mold since it has the high-
The contact pressure ratio drops to zero at the fastest rate ést thermal conductivityi.e., it is nearest to a thermomechanically
the rigid mold case, with gap nucleation occurring at 0.73igid” material ). Gaps take a longer time to nucleate on the iron
%X 10 3sec. Note that this curve is exactly that predicted by thand lead molds. Note that gap nucleation times are closer for these
rigid mold theory of Hector et alf25]. Gap nucleation on the latter two mold materials since their conductivities are very simi-
copper mold occurs at 0.9010 2 sec; gap nucleation on the ironlar (see Table )L Hence, the higher the mold thermal conductiv-

mold occurs at about 2.7410 % sec; gap nucleation on the leadity, the higher the heat extraction, and the quicker gaps will nucle-

mold occurs at about 3.6010 3 sec. The contact pressure pertur@te along the mold-shell interfacdor a given set of process
bation,P;, at the highest points of the crests increases where h®afameters

extraction is the greatest. An increasePipat the crests implies a
corresponding decrease " at the lowest points of the troughs

(due to a change in sign associated vRthcos(mx) in Eq. (51) of 4 The Mold Suriace Wavelength Effect

Part ). The behavior predicted by these curves is consistent with Solidification process conditions are not always conducive to
that first observed by Richmond et 4lL2] who used a beam gap nucleation. For example, Fig. 2 shows the evolutioR'bfor
theory model to calculate the contact pressure evolution of a pwelidification of a pure aluminum shell with the same process/
metal shell solidifying on a planar, rigid mold surface with anold materials considered in Fig. 1, except that the wavelength of
spatially periodic cooling profile. The contact pressure derived poth mold surfaces has been increased +040.0 mm. Consider
this earlier work was limited to a two term series expansion, ariiist the P'" versust curves corresponding to the iron and lead
hence did not capture all of the physics incorporated in the presemblds. These achieve minimum values of 0.9 and 0.85, respec-
model.

tively (i.e., without falling to zerp and then turn around and in-
Journal of Applied Mechanics
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1.0

T being thermomechanically rigid and an increase in the mold sur-
face wavelength merely serves to delay, rather than prevent gap
nucleation.

Note that the ordering of the curves in Fig. 2 follows that in
Fig. 1: This is dictated primarily by the mold conductivity effect.

0.8 B
ptr 5 The Distortivity Effect
A more physically meaningful way to understand the shapes of
0.4 copper mold i the threeP'" curves in Fig. 2 is with the distortivityg ([26]). This
:;‘;’LT&'& is defined as
a(l+v)

=— ®

0.0 '

The distortivity of a boundary through which heat flows is a mea-
00 002 004 006 008 0.10 sure of the extent to which that boundary deforms when a heat
t(sec) flux g, pass through it. When heat flows through the interface
between two different materials, then the ratio of the distortivities
of the two materials is important for determining the extent to
which the two materials comprising the interface deform relative
to one another under the imposed thermal load. For the aluminum-
lead and aluminum-iron shell-mold combination#/ 5°=6.989
and 3.923, respectively, and these mold materials tend to be more

corppliant to the evolving distortion of the aluminum shell. The

ggﬁzfﬁaﬂggge‘Bgeagsngoangér:‘;ﬁliﬁzf%?gi&\?ﬁ“;gﬂhgﬁ%ﬁ dency toward gap nucleation is thus dramatically reduced at
- Bey ’ 9 uch earlier stages in solidification. In the case of the aluminum-

. " :
the shell acts to incread®” at the lowest points of the troughs,cOpper systems?/ 5°=0.471. Hence, the copper mold tends to be

thereby improving heat extraction in those regions. On the oth@r%s compliant to the evolving distortion in the aluminum shell.

hand, the contact pressure ratio at the highest points of the cre@ . r : . R
tends to decrease to zero resulting in gap nucleation. The s it evolut[on ofP™ for .th.'s case reflects behavior that is similar
0 that exhibited by a rigid mold.

freezing front is more likely to grow with a planar, rather thaﬁ
undulatory geometry. The obvious catalyst for this behavior is the
change in wavelength from=2.0 mm toA=40.0 mm between 6 Critical Wavelengths for Gap Nucleation
Figs. 1 and 2Zsince we have fixed all other process paramgters . .
The reason why the contact pressure at the troughs turns arounfiigures 3—5 show the evolution &' for an aluminum shell
for these mold materials is that the larger wavelength causes 1884difying on an iron mold for selected process parameters. In
heat to flow through interface. We see an indication of this effeffd- 3. the mean thickness of the moldhg=0.5mm and the
in the leading order term in the series expression for the heat fillean pressure i®,=10,000 Pa. Six curves, corresponding to

perturbationQ, , at the mold-shell interfacavhich is valid only ~Wwavelengths of 10.0 mm, 15.0 mm, 16.6 mm, 17.0 mm, 20.0 mm,

Fig. 2 The mold conductivity effect as shown through P ver-
sus t (sec) for an aluminum shell solidifying on a mold with
hy=0.5mm and A=40.0mm

of hy): in Fig. 3, P'" due to the 30.0 mm wavelength exhibits the smallest
deviation fromP'"=1. As the wavelengths are decreaset,de-
4722, KTy [ Tyt )2 creases more rapidly at the earlier stages of solidification. This is
1:—h04(ﬁ (2)  evident from a comparison of the curves corresponding\ to
N Rot+ Kd =20.0 mm and\ =30.0 mm(for example. Some insight into the

wavelength effect at these very short times can be obtained

Equation(2) reveals that a larger wavelength acts to diminish the
heat flux right from the start of solidification. The size of this
effect is also controlled by the sum of the mean mold-shell inter-
face resistanceR,, and the resistance due to the mold itself,
ho/KY. However, it is not until later in the process that this effect
predominates to the point where the relaxation of the contact sur-
face(due to diminished coolingunder the influence of the contact
pressure acts to counter the trend that is promoted by the rigid
mold effect, which is always toward gap nucleation.

The P curves corresponding to the iron and lead molds in Fig.
2 therefore depict two competing effects for different mold mate-
rials, those being the conductivity effect and the wavelength ef-
fect. When the conductivities of the shell and mold materials are
substantially different, an increase incauses a more rapid turn-
around inPY. On the other hand, the behavior of a system in
which the conductivities of the shell and the mold materials are
similar in magnitude is quite different. In these situations, the
conductivity effect predominates to longer solidification times, be-
yond which the trend toward gap nucleation can be arrested with
a longer wavelength through a reduction in heat extraction.

Unlike that for the iron or lead molds, a gap nucleates at 2@g. 3 P! versus t (sec) variation for an aluminum shell solidi-
%102 sec for the aluminum-copper combinatisolid curve in fying on an iron mold showing a critical wavelength at A%
Fig. 2. As previously discussed, the copper mold is nearest £#16.6 mm. h,=0.5mm, P,=10,000 Pa.
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Fig. 4 P' versus t (X107 %sec) variation for an aluminum
shell solidifying on an iron mold showing a critical wavelength
at A1R=0.046 mm. hy=0.5mm, P,=10,000 Pa.

critical wavelength criteria in Eq(l). Gap nucleation occurs at
t2=3.80x 10" 2 sec. Wavelengths less thagj lead to gap nucle-
ation. For the 10.0 mm and 15.0 mm wavelengths, gap nucleation
occurs at 1.58 102 sec and 2.78 102 sec, respectively. How-
ever, wavelengths that are larger thfﬁmever lead to gap nucle-
ation over the time range in Fig. 3, sin€&" never touches the
time axis. For these larger wavelengtR¥, increases at the lowest
points of the upper mold surface troughs, while simultaneously
decreasing at the highest points of the upper surface crests.
Figure 4 examines the evolution &f" for the system consid-
ered in Fig. 3 due to wavelengths that are two to three orders-of-
magnitude less than those in Fig. 3. Note that the time scale in
Fig. 4 has been decreased by three orders-of-magnitude. The trend
established over the short times and described byBghanges
such that the curves corresponding to the shortest three wave-
lengths(i.e., 0.02 mm, 0.03 mm, and 0.04 mrmachieve a mini-
mum value (without reaching zermoat which point they turn
around toward increasing values®f. The curves corresponding
to the longer wavelengths, i.e., 0.05 mm, 0.10 mm, however, fall
to zero att=0.95x 10 * sec and =1.50x 10" * sec, respectively,
and hence gaps nucleate at the lowest points of the troughs. More
importantly, there is at least one more wavelengthaddition to
the 16.6 mm wavelength in Fig),3vhich meets the critical wave-

through examination oP!" described with only the first term in length criteria in Eq(1). This wavelength is\.z=0.046 mm, and
the series solution, E¢133), of Part 1(since this is not restricted the corresponding gap nucleation time Ij%: 1.1X 10 *sec.
by the size otg). In dimensional form, this is

Wavelengths in excess m‘; (at least up to 0.10 mjread to gap

. ECaK°T,ma, Tt )2 nucleation: However, wavelengths that are less xHatever lead
P'=1- h3 | Soc (4) to gap nucleation.
A2Py(1— )| Ry+ _2{ P Figure 5 combines thB" curves separately considered in Figs.
K 3 and 4. In order to show all curves in one plot, the time axis has

Equation(4) is only valid fort<1. Since\ appears in the denomi-

been converted to a logarithmic scale. Two critical wavelengths

nator, a larger value of leads to a smaller value of the contac@Ppear over the time range of interest, and we refer to thesg as
pressure perturbatior?; (which is the second term in E@4)),
over the earliest solidification times, and this causes the apparingth. The three wavelengths that lie betwekh=0.046 mm
ordering of theP' curves shown in Fig. 3assuming all other and )\gz 16.6 mm, i.e.A=0.1mm, 1.0 mm, and 5.0 mm, each
parameters are held constaniote that this trend is enhanced|ead to gap nucleation since they satisfy E2). Gap nucleation
through an increase ihy /K9, which represents the mean resisfor the 1.0 mm and 5.0 mm wavelengtfvshich have been added
tance of the mold, and/d®,, which is the mean resistance of thein Fig. 5 for the sake of illustrationoccurs at 1.4 1072 sec and
mold-shell interface. The time-varying term is proportional to thg ox 10-3 sec, respectively. Hence, the two critical wavelengths

resistance of the growing shell. For fixadR,, andhg, the total

(the smaller critical wavelengtland )\ZR (the larger critical wave-

delimit a band or continuous spectrum of wavelengths that lead to

contact pressure decreases, siRgencreases, as the shell thick-ga5 nucleation. We define the bandwidity g, thus
ens. Figure 3 shows that there is at least one wavelength, tﬁis

being at 16.6 mm, and which we denote s that meets the
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For the situation considered in Fig. B3Ag=16.55mm. Gap
nucleation does not occur at the lowest points of the upper mold
surface troughs for all wavelengths that lie outside of this band.
For these situations, shell growth is likely to be planar, rather than
undulatory. The bands are indicative of the interacting distortions
of the mold and shell materials along the mold-shell interface:
This interaction is mitigated by the mold surface wavelength.
Note that process conditions and mold-shell material combina-
tions should be chosen so as to minimize or even elimifatg.

The behavior ofP'" depicted fornk<A<\Z and\>\32 has
been discussed relative to Figs. 3 and 5, respectively. At this
point, some additional comments for situations whare\%
(considered, for example, in Fig) dre warranted. For these short-
est wavelengths, the stabilizing effect of mold-shell interface re-
laxation overcomes the destabilizing effect of a rapid cooling rate
after an initial period of time. The shell quickly deforms to con-
form to the mold. Therefore?'" decreases quickly, due to higher
cooling, only to achieve a minimum value at the point where the
effect of interface relaxation starts to be pronounced. These ef-

Fig.5 P" versus t (sec) variation for an aluminum shell solidi- bl : a@
fying on an iron mold showing critical wavelengths at AL fects become less balanced\as: \g, since shell distortion is not
=0.046 mm and A%=16.6 mm with gap nucleation times of % as quick due to lower heat extraction.

=1.1X10"%sec and t%=38.5X10"%sec, respectively. h, Figure 6 considers the evolution &' due to a copper shell

=0.5mm, P,=10,000 Pa. solidifying on an aluminum mold under the same process condi-
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1.0

T With respect to Figs. 5 and 6, it is worth noting that the smaller
, critical wavelength approaches zero and the larger critical wave-
08 L i length approaches infinity asKlf, x andh, simultaneously go to
’ i \ Y l zero. This observation enables us to conclude that the critical
\ '\ | \ l wavelengths corresponding to the limiting case of a rigid mold are
pir 06 [ Voo Vool T Ai=0 and \3==. Hence, gap nucleationlways occurs on a
\\ i 1 \ ’ rigid mold: This was one of the major conclusions in the work of
0.4 R~ AeOdmm i | ‘\j - Hector et al[25] for solidification on a rigid, perfectly conducting
——emip-or7enm | (I mold.
e S | | Figure 7 summarizes the critical wavelength concept introduced
0.2 [F=—--—4=10mm i H i 1 . . . h h |d h ” .
________ s-ssormm § | in Flgs._3—6. Figure (&) s ows the mold-shell system prior to gap
—_—edomm ‘\ 1 nucleation after the formation of a thin metal shell but prior to gap
0.0 bt Ao b nucleation. Figures (B) and 7c) show the two locations where
10% 10° 10* 10° 102 10 :
gap nucleation can occur along the upper mold surface at later
t(sec) times in the process. Note that we represent each gap with a slight
Fig. 6 P" versus t (sec) variation for a copper shell solidifying _Srehpa.ra?ontlﬂl])etween the fs'tlwle”tantq the I‘T0|d.ln eetlﬁh of thestet?]gures.
on an aluminum mold showing critical wavelengths at AE IS IS Tor the purpose ot iflustration only, since the present theory

=0.176 mm and A%=33.27 mm with gap nucleation times of % is_ valid only to the point where the contact pressure falls to zero.
=0.165X103sec and (t3=31.50X10"3sec, respectively. hg Figure 1b) shows the case where gaps nucleate at the highest
=0.5mm, P,=10,000 Pa. points of the upper mold surface crests. The wavelengths that lead
to this situation are restricted to<\& and A>\3. The antici-
pated growth of the shell freezing frofiiarring competing mate-

. . - -, rial and process-related factoiis Fig. 7(c) is planar. This is the
tlonsl considered in Flgzs. 3-5.Two C”.tlcal Wavelength§ are Shov}’rtl]ore desirable situation from a metallurgical standpoint. Figure
at )\R=O.1§54mm and)\sts.s mm, sz'th gaps nucleating ak 7(c) shows the case where gaps nucleate at the lowest points of
—1.65¢10 "sec and tz=3.15<10 “sec, respectively. The yhe troughs in the upper mold surface. The wavelengths that lead
bandwidth for the copper-aluminum systemAs z=233.12 mm S . 1 2 -

which is twice as large as the 16.55 mm bandwidth predicted ffg this situation are resricted ng)‘,s)\R’ ar!d hence lie in a

an aluminum shell solidifying on an iron mold in Fig. 5. HencePand denoted b . The shell freezing front is likely to exhibit
this system is more restrictive as to which wavelengths can B8 undulatory morphology which is greatly in excess of the den-
chosen to avoid gap nucleation. However, the initial gap nuclétitic morphology(again, barring competing material and process-
ation time(i.e., tL) for the copper-aluminum and aluminum-ironrelated factors This situation should be avoided by careful choice
systems is essentially the same. The two wavelengths within of the process parameters and mold-shell material combinations.
g)\S)\zR’ viz., 1.0 mm and 10.0 mm lead to gap nucleation fsafinal ob_servatlon about_Flg. 7, we note that the present t_heory
5.0x10 “sec and 5.52 10 3sec, respectively. For the Caseglways predlcts that gaps will ngcleatg at points corresponding to
where heat extraction is either very rapid or very slow, the evol@Xtrema in the curvature of a sinusoidal mold surface: We have
ing distortion of the mold-shell interface prevents gap nucleatioR€en referring to these points as the highest and lowest points of
For intermediate heat extraction levels, gaps nucleate since the crests and troughs, respectively. While this may be true for a

distortion of the interface cannot keep pace with the deformatignirely sinusoidal surface, it may not apply to nonperiodic sur-
of the shell.

faces.
freezing __ _Planargrowth
front
morphology / -
¥ with —\_7 \_,/\\ 7 S increasing
molten 1 increasing N time
metal 1 time
) T [
freezing 1 .
[ soliditied gaps form at crests
| metal shell /\/\/\/C\\
4
= =/ I\ < x fa—A—s I::&m
-f a, 1 2
B et mold (B)A<ApOF A>A R surface
0
8, ; o A
\ I} A MRV \
ARRRRARNARARY! ey Yy
freezing ' \ Increasing
front \_,l - \°": -~ N7 o~ \._/ time
Q (xyt) morphology I, \ I’ v
with A Y W W
~ ~ - -
a, a, increasing \
< <<1 o <<1 time
J 1
() Initial Configuration gaps form at troughs - bottom
mold
surface

fe—r—+

(© Ah<A<)a

Fig. 7 Critical wavelength effect on position of gap nucleation along the mold-
shell interface
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7 Distortivity Ratio Effect on Bandwidth bandwidth,A\g, associated gap nucleation times corresponding

Zhang and Barbgi27] showed that quantitatively distinct kinds!© the critical wavelengthsz?, and the time range of the band
of thermoelastic behavior are obtained for the contact of two haff€limited by the smaller and larger critical wavelengths, defined
planes, depending on the relative values of the distortivity ratiodS At The following process parameters were used for each
The finite thickness of the mold and moving solid/liquid interfac€ase: ho=0.5mm, a;=1.0um, x=0.1, Ry=10"°m?sec°C/J,
of the solidification problem can be expected to modify this br’=—10 **m?sec°C/JPa, P,=10,000Pa. Results for each
havior, but the results they found enable us to characterize tb@se are tabulated in Tables 2-5 that follow. The corresponding
behavior of this more complex system on the basis of distortivigistortivity ratio is listed for each material combination.
ratios. Whens%/ 5°<1 (note thaté? is the mold distortivity, and ~ Table 2 shows results for pure lead solidifying on copper, alu-
&% is the shell distortivity, the mold material has a smaller dis-Minum, and iron molds. Lead is the most distortive of the four
tortivity than the shell material: heat flow is directed into the les®aterials, and hence for each material combination in Table 2,
distortive material due to cooling of the lower surface of the mold”/ 8°<1. When solidifying on copper and aluminum molds, a
Alternatively, whens?/ 5°>1, then the mold material distortivity lead shell immediately nucleates gafise., according to the
is larger than that of the shell material: Heat flow is directed interesent theory This implies that at the earliest stages of lead
the more distortive material. A comparison of the distortivitie§olidification, these mold materials may be considered to be ther-
predicted with the material properties listed in Table 1 shows th&omechanically rigid. When solidifying on an iron mold, which
copper is the least distortive material, and lead is the most distét-2 more distortive material than either of the aluminum or copper
tive material, sinceSq, < Sa< Sre< Spp- molds(but which is closer to lead in its thermomechanical behav-

Figures 5 and 6 examined the case where heat flows from 1é88, gap nucleation occurs at 1.840  sec. Note, however, that
distortive shell materialgi.e., aluminum and coppetinto more A\g decreases in going from the copper to the aluminum to the
distortive mold materialgi.e., iron and aluminum The question iron molds. Hence, the range of wavelengths that lead to gap
remains, therefore, as to what impact the distortivity effect wilucleation is decreased when a mold-shell combination is chosen
have in situations where a more distortive shell material solidifiesich thats%/ 5° approaches or exceeds unity. A similar comment
on a less distortive mold. To address this question, we considemgaplies toAtg.
each of the four materials as shell materials solidifying on molds Table 3 shows theoretical predictions for pure iron solidifying
consisting of the remaining three materials. We first searched fan copper, aluminum, and lead molds. An iron shell is slightly
critical wavelengths, and then if any were found, calculated thess distortive than a lead shell. It is therefore not surprising to

Table 2 Distortivity ratio effect on critical wavelengths and gap nucleation times for a pure lead shell

Shell Materiak=Lead

Mold Y A2 ANg th t2 Atg

Material 89 8° (mm) (mm) (mm) (seq (seq (seq
Copper 0.067 0.000000 32.45 32.45000 0.000000 0.7000 0.700000
Aluminum 0.143 0.000000 22.92 22.92000 0.000000 0.2200 0.220000
Iron 0.561 0.049319 9.71 9.660681 0.000104 0.0372 0.037096

Table 3 Distortivity ratio effect on critical wavelengths and gap nucleation times for a pure iron shell

Shell Materiak=Iron

Mold AR A2 ANg th t2 Atg
Material 898° (mm) (mm) (mm) (seq (seq (seq
Copper 0.120 0.0458495 194.3500 194.3041505 7.10x10° 6 0.600 0.5999929

Aluminum 0.255 0.0344424 132.3000 132.2655576 5.50< 10 © 0.170 0.1699945

Lead 1.782 0.0083640 47.2841 47.2841000 3.66x10° ¢ 0.033 0.0329963

Table 4 Distortivity ratio effect on critical wavelengths and gap nucleation times for a pure aluminum shell

Shell Material= Aluminum

Mold Ak A3 ANg th t3 Aty
Material 598° (mm) (mm) (mm) (seq (seq (seq
Copper 0.471 0.221305 60.0000 59.778695 0.002200 0.1000 0.09978
Iron 3.923 0.045550 16.5994 16.553850 0.000110 0.0385 0.03839
Lead 6.989 0.040800 14.0360 13.995200 0.000105 0.0330 0.03289

Table 5 Distortivity ratio effect on critical wavelengths and gap nucleation times for a pure copper shell

Shell Materia=Copper

Mold AR A2 ANg th t2 Atg

Material 898° (mm) (mm) (mm) (seq (seq (seq
Aluminum 2.125 0.176205 33.270 33.093795 0.000165 0.0315 0.031335
Iron 8.337 0.047060 14.970 14.922940 0.000110 0.0300 0.029890
Lead 14.852 0.040255 12.964 12.923745 0.000100 0.0258 0.025700
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find that an iron shell very quickly nucleates gape., of the 2.0 T T ; T
order of a 10° seq following the formation of a thin shell. The .
iron-copper system has a very wide range of wavelengiisx( 16 — gggptflr(rj\old
=194.30 mm) that lead to the situation shown in Fi¢c)7Each )

A\g in Table 2 greatly exceeds its counterpart in Table 2. This

means that an increase in the mold surface wavelength has much 12
less of an influence on gap nucleation during iron solidification  Aig (m)
than a corresponding increase for a lead solidification. The iron-

aluminum combination is certainly not much better wih\ 0.8
=132.26 mm. Again, the bandwidth decreases with increasing
89 6°, which implies that a more distortive mold material is more
desirable than a less distortive mold material from the standpoint
of limiting the number of wavelengths that promote gap nucle-

0.4

ation at the lowest points of the troughs. 0.0 £ ; L L '
Table 4 shows results for pure aluminum solidifying on copper, 0.00 001 002 003 004 005
iron and lead molds. The bandwidths associated with copper, iron h, (M)

and lead molds are considerably smaller than those associated
with the iron shell of Table 3. The times to initial gap nucleation  Fig. 9 A\g variation with  h, for an aluminum shell
are three to four orders-of-magnitude longer than those for the

iron shell.

Table 5 shows results for pure copper solidifying on aluminum, 0.3 — T T T T
iron and lead molds. Copper is the most thermomechanically rigid
of the four materials, and hence for each material combination in /—
Table 5, 6%6°>1. Initial gap nucleation for each of the three . d
mold materials occurs two orders-of-magnitude later than that cor- 02 i ‘C'S;,‘p”;?mo.d -
responding to the iron shell of Table 3. The smallest bandwidth
occurs for the copper-lead combination for whiéf/ 5°>1 is AAR (M)
greatest sinca3 decreases at a faster rate thgnwith increasing
896°. A comparison of Tables 4 and 5 shows that the copper and 0.1
aluminum shells exhibit similar thermomechanical behavior for
each of the three mold materials considered in those tables.

8 Process Parameter Effect on Bandwidth 0.0 L L e
1.0 2.0 3.0 4.0 5.0

The data presented in Tables 2—5 was generated for a single set Ry (x10-5m2sec °CAJ)

of process parameters and hence it is not possible to infer how the
bandwidth will change as the individual process parameters vary Fig. 10 A\ variation with R,
for a given mold-shell material combination. It would be desir-

able, however, to select combinations based upon a given set of

for an aluminum shell

process parameters, such that the bandwidth is minimal, or even 0.8 77
nonexistent. Figures 8—12 explore the process parameter effect on

the bandwidthAN k. Each figure considers a pure aluminum shell M e iron mold

solidifying on the mold materials designated in that figure. Note 0.6 copper mold

that lead was not considered as a mold material since iron and
copper adequately represent, respectively, the cases in which a -
less distortive material solidifies on a more distortive mold and a AR (M)
more distortive shell material solidifies on a less distortive mold. 0.4
In all casesR’=—10"*m?sec°C/JPa.

021 7 e g
1.6 T T T T —— 1
...... iron mold 0.0 | | 1 | I | { | 1
—— copper mold 0.0 2.0 4.0 6.0 8.0 10.0
12r as (pm)
AAR (M) 08 I Fig. 11 A\ variation with a, for an aluminum shell
0.4 b Figure 8 shows the variation &\ g with mean pressure?.
The remaining process parameters were fixedyat0.5 mm, a;
=1.0um, k=0.1, andRy=10 ® m?sec°C/J. The smallest mean
0.0 . , , . pressure evaluated in Fig. 8 By=1.0 Pa. TheA\y values for

both mold materials are greatest at the smallest pressures. Also
100 200 300 400 500 . . !
0 the difference between these values is the least at the smallest
pressures. A® is increasedA\ decreases nonlinearly in both
cases. Both systems give nearly constant valuesagf as further

Fig. 8 AN\ variation with P, for an aluminum shell ) . o=
increase inP, has a diminishing effect. For all values Bf con-
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0.25 distortive mold material is more sensitive to changescirit is
interesting to note that for both material combinatiahi; tends
to decrease agis increased. This implies that the tendency to gap
0.20 nucleation can be diminished by roughening the lower mold sur-
face relative to the upper mold surface.
0.15 - copper mold - 9 Conclusions
Ahg (M) L e iron mold . The evolution of the contact pressure at the lowest points of the
upper mold surface troughs for the idealized solidification system
0.10 - N modeled in Part | has been examined for different mold-shell ma-
- - terial combinations. Gap nucleation along the mold-shell interface
005 L T N was assumed to occur when the contact pressure fell to zero
B T within a certain time after the start of solidification. This implied
= . the possibility of nonuniform or undulatory growth of the shell at
0.00 T T T later stages of the process since the contact pressure simulta-

0.0 0.4 0.8 12 16 20 neously increases at the highest points of the upper mold surface
crests. The shell thickness above these points increases, whereas
the shell thickness above the lowest points of the troughs dimin-
Fig. 12 A\g variation with « for an aluminum shell ishes. Since the theoretical model was only valid up to gap nucle-
ation time, continued growth of the gaps and the shell could not
be monitored. Gap nucleation is quickest in those situations where

the distortivity of the shell material greatly exceeds that of the

sidered in Fig. 8A\R for the aluminum-iron system is less thanyg|q materiai(e.g., lead solidifying on a copper moldrhe criti-

that for the aluminum-copper system. Hence, the range of waygy wavelength concept was introduced and critical wavelengths

lengths that lead to gap nucleation can be decreased by solidify{§gre predicted for all mold-shell material combinations. Those
a less distortive casting material on a more distortive mold matgz\elengths which led to gap nucleation were found to fall within
rial at increased mean pressures. ) _aregion delimited by smaller and larger critical wavelengths: The
Figure 9 shows the bandwidth variation with mean mold thickyitference between the critical wavelengths was defined as the
ness,ng, for 0.5 mmsh,=<50.0mm. The remaining process payayelength bandwidth for gap nucleation. The bandwidth was
rameterszwere fixed @t =1.0um, Po=500Pa,x=0.1, andRy  |5rgest for the iron-copper shell-mold combination. Much greater
=10 °m?sec°C/J. Since the corresponding mold materials havgre would therefore have to be exercised in the selection of a
finite thermal conductivitiegand smallAAg values, the rigid mold wavelength for this combination. On the other hand, the
mold limit is not included in Fig. 9. Note that both curves implypandwidths were smallest in those cases where a less distortive
thatA\R varies as/f,. Over the range dfi; values considered in shell material(such as coppersolidified on a more distortive
the figure,A\g is always larger for the aluminum-copper shellmo|d material(such as lead or if the distortivity ratio of the two
mold system than for the aluminum-iron shell-mold systemyaterials is near unity.
Hence variation ofhy has a much greater effect ai\z in @ Effects of important casting processes parameters, such as
system where a more distortive shell material solidifies on a legfean mold thickness, contact resistance, and pressure, on the size
distortive mold material(e.g., the aluminum-copper system of the wavelength bands were also examined. A general conclu-
When a less distortive shell material solidifies on a more molgon from these results is that the bandwidths predicted for solidi-
distortive materiale.g., the aluminum-iron combinatiprincreas- fication of a more distortive shell on a less distortive mold gener-
ing hy has a relatively small effect ofihg. , ally exceed those for a less distortive shell solidifying on a more
Figure 10 shows the bandwidth variation with mean contagfstortive mold irrespective of the size of a selected process
resistanceR,. The remaining process parameters were fixed Bhrameter.
hp=0.5mm,a;=1.0um, «=0.1, andP,=500 Pa. For both ma- * The spirit behind the present work has three important compo-
terial combinations, variation of the mean resistance over the hénts:(a) to theoretically demonstrat@vithin the constraints of
X 107° m?sec°C/& Ry<5.0x 10" ° m? sec°C/J range gives little the theoretical assumptionthat mold surface topography may
variation inA\g since both curves are nearly horizontal. play a significant role in casting processés;to provide a limit-
Figure 11 shows the bandwidth variation with the amplitudgng solution against which more sophisticated models that require
a;, of the upper surface of the molde., in contact with the 3 full numerical implementatiote.g., the finite element methpd
aluminum she)l over the 1.Qum<a;<10.0um range. The re- of the governing equations can be checkérl;to suggest new
maining process parameters were fixechgt=0.5mm, k=0.1, solidification experiments that are directed toward development of
Py=500Pa, andR,=10"°>m?sec°C/J. Variation ofa; in the mold surface topography design criteria.
aluminum-copper shell-mold system leads to a rapid increase inClearly, the present methodology lacks many of the compli-
the bandwidth, whereas a similar variation in the aluminum-irogated phenomena considered in the work of Murakami gtlal.
shell-mold system leads to much smaller bandwidths. Helkg, and others. Future models will have to take the present method-
for a system in which a more distortive shell material solidifies oplogy beyond the point of gap nucleation and into the time range
a less distortive mold material is more sensitive to changes in tidiere the shell thickness becomes substantially unduldi@ry
mold surface amplitude than a corresponding system in whichaen the tortoise shells first appear at the freezing frdoe to
less distortive shell material solidifies on a more distortive moleteral growth of the gaps. Future models will also have to account
material. for mold movement due to the increasing importance of continu-
Figure 12 shows the bandwidth variation with the mold surfaagus casting processes. Surface wetting of the molten metal, which
amplitude ratiox, over the 0.00& «<2.0 range. The remaining is certainly imperfect for the majority of mold topographies con-
process parameters were fixedhgt=0.5mm, P,=500 Pa, and sidered in the experimental literature, must be adequately simu-
Ro=10 °m?sec°C/J. Note that increasingmplies an increased lated. Nonsinusoidal topographiésuch as trapezoidal gaps and
roughness of the lower mold surface. rectified cosine waveshould also be modeled. These may lead to
For the range ok values considered in Fig. 1A\ for the new conclusions about the relationship between the local curva-
aluminum-copper shell-mold system is always greater than thate of the topography and the location of gap nucleation. The
for the aluminum-iron shell-mold system. Hende\y for a sys- shell constitutive model should be extended to include strain rate
tem in which a more distortive shell material solidifies on leseelaxation due to viscous creep. It is likely that this will alter the
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extent of the bandwidths for most, if not all material and procesélo] Richmond_, 0., 1987, perspnal communication with L. G. Hector, Jr., Alcoa
parameter combinations considered in the present work. FinaIIYil] '\-{ab"?m“ez' g'cga Ticg”'cfé;‘e’]fg' .FA'EI  Analvsis of Thermoelasti
the evolution of cast shell microstructure during solidification"~ Y& '-» anc sarer, J. k., 1994, Finite Element Analysis of Thermoelastic

. . . Contact Stability,” ASME J. Appl. Mech.61, pp. 919-922.
should also be interwoven with the present thermomechanlcﬁz] Richmond, O., Hector, Jr., L. G., and Fridy, J. M., 1990, “Growth Instability

model. During Nonuniform Directional Solidification of Pure Metals,” ASME J.
Appl. Mech.,57, pp. 529-536.
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Thermoelastic Fracture
Mechanics for Nonhomogeneous
Material Subjected to Unsteady

B. L. Wang'
e-mail: wangbl@public.hr.hl.cn Thermal Load
J. C. Han
Professor This article provides a comprehensive treatment of cracks in nonhomogeneous structural
materials such as functionally graded materials. It is assumed that the material properties
S.Y.Du depend only on the coordinate perpendicular to the crack surfaces and vary continuously
Professor along the crack faces. By using a laminated composite plate model to simulate the mate-
rial nonhomogeneity, we present an algorithm for solving the system based on the
Center for Composite Materials, Laplace transform and Fourier transform techniques. Unlike earlier studies that consid-
Harbin Institute of Technology, ered certain assumed property distributions and a single crack problem, the current
Harbin 150001, P. R. China investigation studies multiple crack problems in the functionally graded materials with
arbitrarily varying material properties. The algorithm can be applied to steady state or
transient thermoelastic fracture problem with the inertial terms taken into account. As a
numerical illustration, transient thermal stress intensity factors for a metal-ceramic joint
specimen with a functionally graded interlayer subjected to sudden heating on its bound-
ary are presented. The results obtained demonstrate that the present model is an efficient
tool in the fracture analysis of nonhomogeneous material with properties varying in the
thickness direction.S0021-8936)0)01601-9
1 Introduction material properties. All of these authors conclude that the appro-

In recent years, the structures subjected to severe thermal loBgiate selection of the nonhomogeneous parameters of the material
n reduces the thermal stress intensity factors.

ing that gives rise to intense thermal stresses in componerﬁ )

These components and systems are subjected to ultra-high t%r.n\{Vhen functionally graded materials are subjected to an ultra-

perature, ultra-high gradient temperature, and cyclical changes (')qh temperature on the boundary _surface,_ the crack may occur on
ultra-high temperature. At such operating temperatures the n boundary surface of the material _that IS exposed to the ultra-
materials design can be accomplished by suitably varying comppdh temperature. Erdogan and VI8 investigated steady-state

sition and/or microstructure of the medium. The greater part of thaermal stress intensity factors in a functionally gradient layer
work in the field has been on the introduction of functionallyVith @ vertical crack normal to the boundary surface. Jin and Noda
graded materials. Functionally graded materials usually consistlgf investigated steady-state thermal stress intensity factors in a
two distinct material phases, such as ceramic and metal allfijpctionally gradient semi-infinite space with an edge crack sub-
phases, and the composition would vary continuously. The devi§icted to thermal load. Nemat-Alla and NodeD] considered the
opment of functionally graded materials has demonstrated tf@Cck problem in semi-infinite functionally graded materials under
they have the potential to reduce the magnitude of residual afitgrmal load. Jin and Batid 1] studied transient thermal stress
thermal stresses, reduce the stress concentration near the endd™dfgsity factors in a functionally gradient plate with an edge
increase the fracture toughness, and provide the composite f@ck subjected to a sudden cooling at the cracked surfaces. The
dium with a naturalR-curve behavior(see Saito and Takahashishear modulus and the thermal COﬂdUCthlty of the material are
[1]). selected to vary hyperbolically and exponentially, respectively.
An important aspect that needs to be addressed in various éransient thermal stress intensity factors in a functionally graded
gineering applications of functionally graded materials is thelate with an edge crack at the ceramic boundary subjected to a
question of reliability and durability, in general, and fracture rethermal load, such as a cycle of heating and cooling, were con-
lated failure, in particular. Jin and Nod@,3] and Noda and Jin sidered by Nod412].
[4,5] investigated the steady thermal stress intensity factors of theThe crack problems are very often not amenable to comprehen-
functionally gradient semi-infinite space with an internal crackive analytical treatments, apart from a few idealized cases,
parallel to the boundary surface. Noda and [Bh and Jin and mainly due to the complexities and difficulties involved. This is
Noda[7] studied the transient thermal stress intensity factors ofespecially true if the interest is focused on examining the transient
functionally gradient finite space with an internal crack parallel teesponse of a cracked media with arbitrarily varying material
the boundary surface. They assumed an exponential variationpobperties. Most of the previous studies appear to have apparently
been limited to such configurations as having an infinite extent,
Ipresent address: Department of Mechanical Engineering, Shizuoka Universyngle crack problem, and certain assumed property distributions.
Hamamatsu ~ 432-8561, Japan. e-mail: tbwong@ipc.shizuoka.ac.jp  But certain assumed property distributions presented in the litera-

Wag?)t:ggtizgcg;r.tr:.ecgpplied Mechanics Division oHE AMERICAN SOCIETY OF ture must be used with care, as they are not physically realizable
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED for certain ma_te”al Comblnatlor($13_]). . .
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr.  When functionally graded materials are subjected to ultra-high
21, 1999; final revision, Sept. 8, 1999. Associate Technical Editor: W. J. Drugafemperature the materials properties are dependent upon the tem-

Discussion on the paper should be addressed to the Technical Editor, Profe! e
Lewis T. Wheeler, Department of Mechanical Engineering, University of Housto rature, however, this is beyond the scope of the present study.

Houston, TX 77204-4792, and will be accepted until four months after final puin-he .purpose of this paper is to investigate the time b‘ehaVi‘_)r of a
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. multiple crack problems for nonhomogeneous materials with ar-
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bitrarily varying material properties. By utilizing laminated com- 2 applied normal stresses and shear stress are, respedciiygly,

posite plate model to simulate material honhomogeneity, we andry, for the lower surface, andyy and oy for the upper

present an algorithm for solving the system based on Laplace surface of the plate.

transform and Fourier transform techniques. Singular integral3 crack faces remain completely insulated, icg= 0.

equations are derived and solved to investigate the multiple crackd the applied thermal flux on the lower surface and the upper

problems in the functionally graded materials with arbitrarily  surface of the medium argy, and qon, respectively. The

varying material properties. Numerical examples are provided for applied temperature on the lower surface and the upper sur-

a metal-ceramic joint specimen with a functionally graded inter- face of the medium ar&y, and Ty, respectively.

layer under non-uniform heating condition. Transient and steady- . . .

state thermal stress intensity factors are calculated, and the varid-Of @n orthotropic material, the thermal flux for each layer is

tion in the thgrma] stress intensity factors dug to the change in (O)y=— (K0T 1ax  (Gy)y=—(k,)s3T,/dy. (1)

material gradient is studied. The results obtained show that the

present model is an efficient tool in the fracture analysis of com- Assume that the temperature is independent of deformations.

posite material with properties varying in the thickness directioizombining the balance of energy with the Fourier’s law, the heat
equation can be written for each layer as follows:

2 Formulation of the Problem (k) 392 T310x2+ (K,) 30°T 319y5= ps(C,) 9T 1 t. )

Consider a cracked nonhomogeneous material plate of thick-
nessh with properties that vary as a function of coordingtd-ig.
1), in which C,,,, denote the stiffness coefficients of the mediu

Under plane stress and small deformation conditions, the dis-
rr|%)Iacements and stresses are

(m n=1,2,6), ay, and a, are the linear thermal expansion coef- (Upi=uy(x,y5,t)  (Uy)y=v,(X,y5,t) 3)
ficients, k stands for the thermal conductivitg, represents spe-

cific heat, andp is mass density. The medium is infinite in the 0x3= (C11)39U3 19X+ (C19) 390 313y 3= (By) 3Ty
x-direction. (x, y) is the global coordinate system. In order to 0y3=(C12) 30Uy X+ (Cyp)30v43/3y3—(By) 3T, 4)
simulate the material nonhomogeneity in tpelirection, divide Tuya= (Cee)s(IUy 13y 3+ Ivy19X)

the elastic plate into many layers of infinite lenggayN layers. . _
Assume that cracks are normal to the thickness of the plate, andil# equations of motion are

crack lies on the interface between two layers. The material prop- 24, 2 2o\
erties are taken to be constants for each layer. The analytical (¢, ) —3+(Cs)y — Iy +(Cypt Cog)y —— i)
model is shown in Fig. 2. The principal axes of elasticity are ax* ay3 IXdY
parallel to thex-axis and they-axis. For thelth layer, the thick- 52Uy JT;
ness ish;, throughout the paper the subscriptands for thelth =ps 7 t(Ba 5
layer, counting from the lower surface, whereas the subsgript 2 2 e . (B
denotes the interface number between Jtie layer and the (Ceo) UJ+(C ) +(C +Cege) U
+1)th layer. The local coordinatg, is measured from the bottom 8500 %2 2203 "gy2 T R12T 60 Gy ay
of the Jth layer. v,

Denote the interlaminar stressry); as oj(x,t), (7y); as =p, atz (,By)J
7(X,t) and interlaminar thermal fluxq(); asg;(x,t). The adja- J

cent two layers are perfectly bonded or have a crack. The crack .

length is 2, , and the crack center is locatedat=c; . The initial a§ The Temperature Field

dlsplacement velocity, and temperature are zero. The stress, dlSRefemng to nondimensional variables=x/h, y;=y;/h, hJ
placement, thermal flux, and temperature vanish at infinity. Theh;/h, a] aj/h, ¢j=c;/h, kj=2/(1N(kK,) 5+ 11(KeKy) 37 1)
boundary conditions are andtg;=h? pJ(cU)J/(ky)J Applylng Laplace transform over the
time variablet and Fourier transform over the space variakle
Eq. (2) may be solved to give the temperature in each layer of the

1 applied normal stress and shear stress on crack facesare
and7g; , respectively.

plate
1 (* — - =
T v T3 (XY3,p)= Ef [Agse™ Ishoia+ By elhovaleXds
(6)
Cm,,, ,a,.k,pc, = where the superscrigt denotes the Laplace transformg;(s,p)
—c O (), (D) (), () e, (¥) andBg;(s,p) are unknowns to be determined, and
(m.n=12.6) — Nos= V(K /(Ky) 3+ ptoy /5. @)

. . . . * —_— __
Fig. 1 Geometry and coordinates of a nonhomogeneous ma- *SUbSt_ltuung Ea(®) Int.o @ glyes thermal f!U)qJ' aty,=h, and
terial plate a1 aty;=0. By applying the inverse Fourier transform one gets

Ag; andBg; in terms oqu* and qj*_l. The temperature in each
layer can thus be determined in termsggf andq;"_; by substi-
tuting Ag; andBy; back into(6),

+y
o h [+ __Rysp) , [*~ =~
* V. D)= — — —isx > ~Isihoays
TJ (vaer) 2 Jlme s dSJ',x [(e
24 —
- . +e|S|A0JVJ)qJ?‘(r_’p)7(e*\SD\OJ(hJ*VJ)
AN

+ eISIAm(FrVJ))q*_ 1(T,p)]ei37dﬁ (8)
Fig. 2 Analytical model of the nonhomogeneous material !
plate where
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sgn(s)
(ky)J)\OJ(e|S|)‘OJhJ— e~ Ishoshy) '

Ry(s,p)= 9)

If the temperature on the lower surface of the medium is pre-
scribed, the temperature field for the first layer can also be ex-

pressed in terms OF§y(x,p) andq; (X,p) as

Ri(s,p)

+o

h

TIGYup)==5—| e ¥ —_——ds
+ o0 _ —
% f (e\s\)\myl_e*lslkoﬂl)q’l‘(r_,p)
_ M(eﬂsp\oﬂafﬁ)
h
T e‘S‘A01&17V1>)T30m p) els'dr (10)
where
sgr(s)
Ry(s,p)= D

(ky) 1N oaf glshoihs 4 g=Isihoshy)

If the temperature on the upper surface of the medium is pre-

scribed, the temperature for tidth layer may be expressed in
terms ofqy_,(X,p) and T§y(X,p) as

. — h [t . —Ru(sp)
TN P == 5 | e ds
+ oo
XJ - sgr(s)(lgy)Nson(e,‘s\AONyN

+ e‘s‘)‘ONYN)TSN(r_'p) +(e” IsI\on(hn—Yn)

79\5\?\0N(;N*7N))q*’\r‘71 eisTdr—

(r.p) (12)

where

sgr(s)
(ky)NAON(e|S|A°NhN+e’lsm’“‘h“) .

Ry(s,p)= (13)

Define now the following auxiliary function:

boj(X,p) = dT%, 1(X;Y3:1=0,p)/dx— IT% (X,y3=hy,p)/ x.
(14)
Substituting(8) into (14) we find

+oo

I - o
¢oj-(r_,p)=—ﬁj e"s'dsf [Ligf-1(X,p)+ Mg (X,p)

+N;aF, (X p)Je’¥dx (15)
where
Lj(s,p)=—2Ry(s,p) (16)
Nj(s,p)=—2Ry,1(s,p) 17
M;(5,p) = (ehaos 4 e oo s )Ry (5, p)
+(elshoah 4 g Ishosh)Ry s, p). (18)

If T3 (X,Yn,P) is expressed by Eq10), ¢qq(r,p) will be given
by

Journal of Applied Mechanics

R
P —ISr
boir,p)=— 5~ Jiwe ds

X fj: 1sgr(5)(:y)15)\01-r30(71p)
+M.q¥ (X, p)+N1q5 (X, p) | €S*dX (19)
where
Li(s,p)=—2Ry(s,p) (20)
Ni(s,p)=—2Ry(s,p) (21)
Ma(s,p)=(&Shodia g~ Ishoshe) Ry s, p)
+(elsho— g~ lshahi)R (s, p). 22)

If TX(X,yn.p) is expressed by Eq12), ¢on-—1)(r,p) will be
given by

i (e
¢°(N71)(r_'p):_ﬁf,we *'ds

©

<[

Ln-108-2(%P) + My_ 108 - 1(X,P)

%

+ NN—1—sgr(S)(EY)NS)\ON Ton(X,p) e'Xdx
(23)
where
Ln-1(8,p)=—2Ryn-1(s,p) (24)
Nn-1(S,p)=2Ry(s,p) (25)

My-1(s,p)= (elshhonn— e—\s\AONWN)RN(s,p) +(e/Shhom-v-1
+e*‘s‘)‘O(N—l)HNfl)RNil(S,p). (26)

By defining the following two vectors ofN—1) rows, each

{Q*(X.p)}={ar (X.,p), . .. AN_1(X.p)}T (27
{Do(s,p)}
Citay . Cn-1tan-1 T
:{ J— B b €57dT, .. ., o ¢0(N1)elsrdﬂ

(28)
and using inverse Fourier transform (), (19), and(23) gives

[-D] J e g e (9)
where[D(s,p)] has the form
M N;
Lo Mz N
[D(s,p)]= ' (30)
LN*Z MN*Z NN*Z
I-Nfl MNfl

and{®,(s,p)} is a vector of N—1) rows, with the first and the
last elements the only nonzero elements, these elements are re-
lated to the boundary conditions by

Doa1(s,p)=L4(s,p) f ) Ugo(T,p)esrdr (31)
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+oo ., 1 _ sin(n cos x;)
®%m4ﬂ&m:Nmﬂ&mJ don(T,p)esdr (32) f mﬁam+qpﬂ———;——Ldﬁ=0 (39)
o 1
if surface heat flows are prescribed; and by Thus the integral Eq35) is reduced to a finite algebraic system to

evaluate the unknow@;,,. Once the coefficienC;, is obtained,
e, ST the numerical solution of the integral E(B5) can be calculated
Too(r,p)esdr from (37). The temperature in the Laplace transform domain can
- (33) be obtained from(35) and (8).
As crack-tip thermal flow has standard square-root singular, it
can be seen fron35) and (37) that the thermal flow intensity
Doan-1)(S,P)=Ny_1(S,p) w factor can be calculated as

(Kg)j:(\/2[(Cj_aj)_x])XH(cJ—aj)*q]'*(zp)

sgrn(s)(ky)1Sh
q)Oal(S,p):Ll(s,p)%Mf

+oo

X f TSN(r_vp)eisrdr_ (34) K’\/; M

=== 2 (~1)"Cjn(P) (40)

if surface temperatures are prescribed. m=1
Referring to the variablek ,,, which denotes thenth row and  for left-hand side crack tip and

the nth column element in matrikD(s,p)] %, one can see from

the expressiongD(s,p)] that|s|—, the only nonzero elements (K&)i=(N2[x=(¢j+a)) Dy (g +a) 0 (X,P)
in [K(s,p)] are Kjj(s— ==,p)=sgn§)«;/2. Defining Kj,(s,p) M
=Kk(s,p) —Kjk(,p). Applying inverse Fourier transform to _ K \/a—i 2 Cin(p) (41)
(29) yields 2 &, —imlP
1Nt e for right-hand side crack tip.
—qf (X,p) —q;;(X,;p) = — 2 do(T,p)dr After the solutions in the Laplace transform plane are obtained,
k=1 Jo -3 inverse Laplace transform can be performed numerically using the
B method given by Miller and Gu14]. This method has also been
Xf Kj’k sins(F—x)ds used by Jin and Nodg/] in thermoelastic fracture dynamics.
0

ki [C%3 ¢oi(T,p)
+ L —L=dr (35 -
o L_aj —x 3% 4 Thermal Stress Field

Solving the governing Eq5) by means of the Laplace trans-

where form technique, the displacements in each layer are given by
* o 1 (™ Ta—isx, Ay
Qaj(xxp)zﬂf_w(Kjl Kin-1){Poa1 Poan-1)) € '°*ds Ut XY, p)i b Byl
=— [e;] e 'S*ds
(36) 3 (X.Y3,P) 2w J:w I Az
Equation(35) is the relationship between interfacial heat flows B2
and interfacial auxiliary functions, and there &fe-1 equations h (+=1 Aoyl
in (35). For those interfaces with no cracks, the auxiliary function + 2—f —[eOJ][ B e '¥*ds (42)
is zero, so the number of equations needed to be solved is the TJ-S 0J

same as the crack number. . _ The first and the second term on the right-hand side of(%).
Equation(35) provides the expression faf (X,p) outside as represent the homogeneous solution and the particular solution of

well as inside the crack. In the case of inside the crack it is @y, (5), respectivelyAn,(s,p) andB, (s,p) are unknowns to be

ordinary singular integral equation having a simple Cauchy-typgstermined (h=1,2).[e;] is a 2x 4 matrix ofy;, while [ey;] is

kernel as the dominant singular part. The crack-tip behavior camx 2 matrix ofyj.

be characterized by a standard square-root singular. The integral

equation can be solved numerically by noting that its fundament£s(Ys.P.S)]

function corresponds to the weight function of the Chebyshev

= IsIxgay; [sIh1ay; = IsInaay; [sIhay;
polynomial of the first kindT ,(r;). _ e L e B e Jﬁ emne B
. glje_|3|)\13h — {ue\s\)\u)’J é’zje—|3|)\2JYJ — §2Je|5|}\2JYJ
_ (43)
$oi(&T;+C,p)= 2, Cin(P)T([NI-T;  (37) _ _
m=1 e~ IsIoays £ gel5hoavs
[e (_ S)]_ ng xJ
wherer,=(r—<c;)/a; ,C;, are the unknowns to be evaluated. Af- ¥a.P: —sgn(s){y,e” s sgr(s)¢, el

ter substituting37), truncated with the firdMl terms into(14), the (44)
temperature difference between the upper surface and the IO\gﬁB)\

surface of thejth crack can be evaluated as iy (I=1,2) are the roots of the following characteristic equa-

tion:
M 2 2 2
o ) _ _ C11C2—2C1,Ce—C1, ph ph
L =—a; >, C 0/ <1 4_ 2
1+106p) ajngl in(p)sin(n arccos)/n  [xj| A ( Color lse, + sC., A
(38)

) o _ Cu ph |2 ph |2 _
in which X;=(x—<;)/a; . The crack face thermal flux boundary e tlse + sC, =0 (45)
condition requiresy;" (x,p) =0, this can be satisfied by using the 2 a) J
following weighted residuals method: while ¢;;=sgn€) 7, (i=1,2), and
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7(Cll)J/(CSG)J+(ph/scb.])z_)\ﬁ] (¢xj(r_vp)/i]_ 1 fﬂo it
MO €yl G O Ly [T ) () IV TNIpe s

In (44), and are the solutions of the following equations: . . .
(44), & &3 ged Xf {IO']*_l Tj*_l IO'J* 7'}" Ia'}:_l TJ-*+1}T

C ph\? C B
[(C_ll) —A\gst (SCb) Ixat [(C_lz +1 )\OJIyJ:ﬁ by o
66/ 3 66/ 3 66/J Xelsxd— J { X] e is'ds (54)
¢Ty i
C121Ceg T P o0 ph ‘ _NosBys _
T Cp , 036xJ 0lcy, ; \8Cy Y (Chy where[L(s,p)];, [M(s,p)];, [N(s,p)]; are 2x2 matrices
(47) .
- . - _ [L1j=[es(hy,p)I[D,(s,p)], (55)
Substitution of EQ.(42) into constitutive Eqs(4) gives the
stress 67 7) at (o =hy) and (- 7j-0) at (5=0), [NJj=~[es1(0p)]ID3.1(s,p)] (56)
o (X,p) Y a b
T*(Yp)/l 1 + o AO o [M]j:[ej(hJvp)][DJ(Sup)]_[eJJrl(Ovp)][DJJrl(S‘p)]v
JAm - —isx 57
Ur—l(xvp) 27Tf [ OJ][ } ds (
7 (X p)/i and
1 [+ 213 ¢Tx(5.p)] ~[e (0s, p)]{ Ao+ 1)(S, p)] [e (F s.0)]
+—j S[K;] WA e-isxgg dr1y(S,P) 10+ Boa+1)(S:P) DA
27 | _, Az
B2, [AOJ(s!p))
X . 58
(48) Bos(s.p) (58)
where [Kq;(s,p)] is a 4x2 matrix and[K,(s,p)] is a 4x4 Defining the following three vectors of R(-1) rows,
matrix.
Defining matriceg D3(s,p)| andLDS’(s,p)J of four rows and Cta ¢x1
two columns each, {®(s,p)}= _ Isrd_
ci—ap
Di(s,p),D5(s,p)1=[K,(s,p)] ~. 49 RN ON-1F N1 Ny
[D3(s,p),Dj(s,p)]=[Ky(s,p)] (49) f_ qﬁyle'srd_ ) ¢x(iN SRS
Applying the Fourier transform t¢48) yieldsA,;, By, Ay, and QA Cn-17aN-1
By in terms ofo} , 7, o}, and7f_;. By substitutingA,;, EN_1tAN-1 T
By, A,;, andB,; back into(42), the displacements in each layer fi B ¢y<N1)e'srd?} , (59)
can be determined in terms of , 7", o7_;, and7}_,, namely, ON-17AN-1
Gy ho [l - (SEpy={iot wiofoy o) (60)
* =5 [eu]) ds
vi(r,y;,p) 2w .
{®(s,p)}={(P1)1 (dry) 1 (brIn-1 (DryIN-1} >
h (1 b 61)
+ZJ <Le([D3] [D5D)
- and utilizing Fourier transform t(b4) yields
+o 7
[ f Fedx f edxX [D] f (T} ax={ @} +{Dr} —{P,}, (62)
+oo * T
% J’ ot 1e'sx(rf alsx, e 5’ds where matri{ D(s,p) | has the same form 480), and{d ,(s,p)}
- is a vector of 2N—1) rows, with the first two elements and the
50 last two elements the only nonzero elements. These elements are
(50) related to the boundary conditions by
where 5.0) . )
a1(S,p [og(NP) | e
— =L4(s, 'Stdr 63
lex(¥s.5.p))=[eas] ~[€,]([D3] [DSD[Ks].  (51) {cbaz(s,p)] 1(SP) f { 2dTp) ]e r©

Introducing the following dislocation density functions, .
Daon-3)(S,p)| = lioon(mp)| o
_ N = ® ) =Ny-1(s,p) * e"*'dr.
byj(X,p)=0u3, 1(X,Y3+1=0,p)/ 9x— du3 (X,y3=hy,p)/ox a(2n-2)(S,P o | Ton(TP)
(52) (64)

by (X, p)= V3, 1(X Y31 1=0,p) ox— v} (X,¥5=hy,p)lox. Defining the inverse of matrikD(s,p) ] by [K(s,p)], referring
(53) to KD (s,p), which denotes thenth row and thenth column ele-

ment in matrix[ K(s,p)], and applying the inverse Fourier trans-
Substituting(50) into the above equations gives form to (62) yields
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(2k—1) K(Zk)

by(A)F;+C; ,p>=mE:l Cl(PTu(MNI-TZ  (71)

1 Ccta [+ Kig_q) @1 | s whereCj, and C, are the unknowns to be evaluated. The dis-
- ﬂk:l —— Kk g2k e ds placement difference between the upper surface and the lower
K™% 20 @0 surface of thejth crack can be evaluated as
. . N-1 (2k—1) (2k)
i +oo| K350 K5 M . .
><|¢Xk/l)dr_+—z (3«11) (212k1> . - B 2 x ~y  SIN(M arcosx;)
B e T I P (W52 (0935200) = ~a; 2, (ClCl) —————.
j) (2)) m=1 m
% b1x e il (X,p) - (72)
b1y ke s 7 (X.p) (65) Weighted residuals methods can be used to eval@ig,Ci,
a from the singular integral Eq69). The mode | and mode Il stress
where intensity factors can be calculated as
. — 1 2
o (X,p) 1 [+ |Kg-1 Kg-g {<I> 1] \E M
)27 = a _ Y7 _ y X
( 7 (X,p) 2 27 . K%j ng D, (KT K= 2 mz:l (—D™(Gy)iCm, (GiCin) (73)
2N-3 2N-2 _ ; o
. Koo Ky i [(Da(ZN—S)}T o i for a left-hand side crack-tip and
K%}\'_3 K%;\'_z Daon-2)

(66)

\/; M
(KI K== 2 (G)iCly. (Gl (74)

Equation (65) is the relationship between interfacial stressegyr a right-hand side crack-tip.

and dislocation density functions, and there ar&l2(l) equa-
tions in it. For those interfaces with no crack, the dislocatio
density function is zero, s(®5) is independent of the layers num-

8 Numerical Example
For the purpose of numerical illustration, a metal/ceramic joint

berN. The number of singular integral equationg6%) needed to

be solved is twice the crack number.

We now analyze the asymptotic behavior of matkixs,p).

specimen with a functionally graded material interlayer is taken
into account. The geometrical configuration and the coordinate

Since the dislocation density function for the interface with n8ystem are shown in Fig. 3. Assume that cracks are normal to the
crack is zero, only the elements related to the cracked interfadBigkness of the plate, and the two cracks lie on the interfaces. The
need to be analyzed. If material properties are not continuot@nperature in the lower surface of the joint is kept zero and a
along the crack interface, the local stress behavior would be of 8dden uniform temperature changg is applied on the upper
oscillatory nature. This would yield interpenetrating of materigfoundary of the joint. The functionally graded material is made of
points of the crack surfac§15]). Such a condition cannot be Ni and TiC. The material properties, elastic modulij$oisson’s
realized physically. Hence, consider only the special case of cdAtio v, coefficient of thermal expansioa, density p, thermal
tinuously varying material properties along the cracked interfacgonductivity «, and specific heatc, are, respectively,E,

As |s|—, the only nonzero elements fiK(s,p)] are

=200 Gpa, vyy=0.31, ay=18X10"¢/°C, p,,=6825Kg/n?, ki,
=54W/m°C, c,=595J/Kg°C, E,=460Gpa, v.=0.34, a

K3 1(,p)= lim K5 (s,p)=sgr(s)(Gy)j/2  (67) =7.4x10°5°C, p,=4127Kgii, k=27 WImC, ¢,
S =682 J/Kg°C, in which the subscriph and c signify metal and
KE%}fl)(w,p): fim K%)’l)(s,p):sgr(s)(Gx)j/Z (68) ceramic, respectively. The functionally graded material interlayer

S—+ow

is pure metal at the bottom and pure ceramic at the top. At any
positiony in the functionally graded material interlayer, the local

where G,); and (G,); are functions of material elastic constantsyplume fraction of metal is assumed to Wg(y) which obeys a

n

By defining ky(s,p) =k(s,p) —ki(.p). Eq. (65 may now power-law type relationy/h,)?, whereg is known as the gradient

be written as follows:

exponent. To relate local volume fraction to the effect properties
of the functionally graded material, the micromechanical models

L ko A v
['U*i (_x,p)] + ['U*i (_x,p)] must be used. According to the criteria given by ZuikeB] the
77 (X,p) (%P, three-phase model or the so-called generalized self-consistent
CNe1 (2k-1) (2K) model ([16,17)) is better than other mo@els. Bao find waag|
_ 2 = Kigj-1y Kz {¢Tx] —isyg u_sed the thr_ee—phase mod_el to determine appro>_<|mately_ the effec-
27 & ) L KD k20| ey ke tive properties of a functionally grade_d material coating. The
20 20 three-phase model was also used by Jin and Batad to de-
1 N gamf (s Egk:il)) K29 B termine the volume fraction of constituents in the functionally
+— E f f ) @1 isr-04g graded material. Assuming that the functionally graded material is
2mic1 Joem \ J-= [KESY KB | obtained by dispersing ceramic particulates in metal matrix, we

use three-phase models to determine effective shear modulus and

iI(Gy)j (CT3 oy, - ) thermal conductivity. Composite spheres mogéh)) is utilized
; 27 | =T—X to determine effective bulk modulus and coefficient of thermal
x[¢Xk/|]dT+ o (69)
Pyk (Gx)j fEJ’*EJ' Pyj
—_— —=dr
2’77 Eiij r—X

The solution of Eq.(69) can be expressed by the following

formulas:

by (AT +C ,p)= D,
m=1
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] J

C}(m(p)Tm(r_j)/ v 1*[’_1-2

(70)

h
Ni metal

Crack 1

Fig. 3 A metal-ceramic joint with functionally graded inter-
layer
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expansion, while the effective density and the specific heat of ttienally graded material into a large number of layers to simulate
functionally graded material is evaluated by rule-of-mixture.  material gradient and the present model is an efficient tool for the
We treat the graded regions as a series of perfectly bondedcture analysis of composite materials with properties varying in
composite layers(say, N layerg, each layer being assignedthe thickness direction.
slightly different material properties. The related integrals are For a fixed crack length@2=0.5h andg=1, the thermal stress
evaluated by using the Gauss-Chebyshev formulas. The numbeensity factors for different graded layer thicknésgsare drawn
of integral points is selected to be large enough for obtaining tive Fig. 7 and 8. Due to the interaction among different cracks,
solutions to the defined problem with a required degree of acanfluences of graded layer thickness on stress intensity factors are
racy. Assume that the thickness of the ceramic base, metal basgy complicated. It appears that as the thickness of a functionally
functionally graded material interlayer, and half-crack length agraded interlayer decreases, the mode |l stress intensity factors
taken to be equal. For a fixed gradient expongntl, the influ- will decrease. It also seems that there exists an optimized inter-
ences ofN on thermal flux intensity factor and thermal stres$ayer thickness which relates to the minimum mode | stress inten-
intensity factors are depicted in Figs. 4—6, respectively. It is foursity factors. Furthermore, it is found that the influence of inter-
that at any time thermal flux intensity factors and thermal stres$ayer thickness is more significant for peak stress intensity factors
intensity factors tend to converge to steady valuebld®comes than for steady stress intensity factors. In all cases, stress intensity
sufficiently large, this indicates that we can use a laminated coffactors for crack 2 are larger than for crack 1. The results indicate
posite plate model to simulate material nonhomogeneity in tlieat the ceramic side is more likely cracking under thermal load.
thickness direction. The result implies that we can divide the func- In the foregoing analysis, we have treated the functionally
graded interlayer as a number of thin layers. By making use of
this laminate model, almost all the analytical models containing
cracks perpendicular to the thickness direction in which material

K, /(ksTo‘/a_/h) properties varying, can be analyzed theoretically for the case of
0.6 transient state or a steady state, either under mechanical loading or
’ E rack 2, N=10 under thermal loading. The existing analytical models in which
-0.5 §N=20 0 the material properties were specifically selected, such as a non-
0.4 ’ homogeneous half-plar20]) two dissimilar homogeneous half-
0.3 /o 1. N-102030 planes bonded by a thin layer of nonhomogeneous matgzia])

two bonded half-planes with one plane being homogeneous and
0.2 the other nonhomogeneoyf22]) a nonhomogeneous medium
bonded to a rigid subspadf23]), a nonhomogeneous half-plane

-0.1 F under steady thermal loadir{fR]) a strip of a functionally graded
0.0 v ot material under steady thermal loadifigt]), and a semi-infinite
0.0 0.5 Lo L5 plate of a functionally graded material under transient thermal
’ ) loading ([7]) can also be treated by utilizing the present method.
t/(h’pmcm/km) For a comparison, a pure metal medium shown in Fig. 9 was

analyzed. The dimensiaais kept fixed and the normalized ther-
Fig. 4 Influences of divided layers number N on thermal flux mal stress intensity factorK(,K;)=(K,,K,)/(EsasToy/a) are

intensity factors (the subscript m signify metal ) depicted in Fig. 10 for differend values. It should be noted that
K, 1{E0,T,Va) Kk, /(Ea,Ta)
0.015 0.03
0.02 Curves
0.010 1: crack 1, hg/h=0.6
0.005 0.01 2: crack 1, hg/h=0.4
0.00 3: crack 1, hg/h=0.2
0.000 4: crack 2, hg/h=0.6
-0.01 s: crack 2, hg/h=0.4
-0. 005 -0.02 6: crack 2, hg/h=0.2
-0.010 -0.03
t1(p,e, k) 11 (e, ) k)
Fig. 5 Influences of divided layers number N on mode | ther- Fig. 7 Influences of functionally graded material interlayer
mal stress intensity factors thickness on mode | thermal stress intensity factors
Ky (EaTVa) K, /(B0 T,a)
0.06 - 0.08
0.05 E crack 2, N=30 0.07 Curves
-0 0.06 1: crack 1, hg/h=0.6
0.04 0. 05 2: crack 1, hg/h=0.4
0.03 F 0.04 3: crack 1, hg/h=0.2
0.02 0.03 4: crack 2, hg/h=0.6
0.0 crack 1, N=30 0.02 S: crack 2, hg/h=0.4
-01 20 0.01 6: crack 2, hg/h=0.2
0.00 F 10 0.00
0,01 B euau -0.01
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
t1{Wpc, 1 k) t1{Hp,c, ! k,)

Fig. 6 Influences of divided layers number N on mode Il ther- Fig. 8 Influences of functionally graded material interlayer
mal stress intensity factors thickness on mode Il thermal stress intensity factors
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Py The algorithm given above can be applied to steady-state or
v transient mechanical loading with the inertia terms taken into ac-

a § count. Differing from the existing works reported in the literature,
I the present method can be used for arbitrarily varying material

properties through the thickness direction and the number of
cracks can be larger than one.
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An Iterative Method for Solving
A-makeev § Flasticity Problems for Composite
E. A. Armanios Lam"]ates

Professor
School of Aerospace Engineering, An iterative method for approximate analytical solution of elasticity problems in compos-
Georgia Institute of Technology, ite laminates is presented. The stress analysis is performed for laminates in the three-
Atlanta, GA 30332-0150 dimensional strain state independent of the longitudinal direction. Predictions of the
method are compared with results from existing analytical and numerical models. Simple
and accurate approximations for stresses are obtaif€6021-8936)0)02001-§
Introduction diction of the free-edge interlaminar stresses, its mathematical

complexity makes it unsuitable for practical multilayer laminates.

Analysis of practical laminated composite structures often Sther existing analytical approaches are baseddhocassump-

quires three-dimensional elasticity modeling. Since analytical .Sgins regarding the stress or strain fields in addition to the classical

lrﬁgcc)igfinarei‘savzlrlz?ﬁl fotrhfee\cl)vnkljogntt:iig;ly Yﬁlssrﬁéofgir;:’ t?]:n;irslgo o-dimensional formulation of the three-dimensional strain state.
9159 y Y option. ’ An iterative method for one-term approximate solution of par-

large numerical simulations results in a need for developing ap:| differential equations was developed by Make@]. The
proximate analytical elasticity solutions. One example is the dg. y

) . : - . iethod was applied to several boundary value problems and its
sign of laminated composite f'eXbe%mS n _hellcopter rotor Systeictions were in good agreement with exact solutions. The
tems. These symmetric laminates with a thick rectangular cr

. - . ) %Snctions were obtained. A close agreement was established with
such as ply orientation and stacking sequence on failure Unfgt nymerical results of Pipes and Pag#8h Sen and Fisti2],
tension, torsion, and bending loading.

A . . . and the analytical predictions of Wang and CHdi5]. The
The distribution of the interlaminar stresses in flexbeams [Saihod is simple and, therefore, ideally suited for parametric de-

needed for selecting candidate configurations at the preliminalyy, siudies where a large number of candidate configurations
design stage. To this end, a cross-sectional finite element strgesq 1o be evaluated quickly and economically.

analysis was applied by Sen and Figh2] to determine the | this work, the approximate model for the classical elasticity
stresses in glass-epoxy 32-ply flexbeam laminates under torsigmy|ation[8] for laminated composites in the three-dimensional
and combined tension-torsion loads. The largest mesh in the fini{e e of strain dependent on two coordinates is developed. A de-
element analysis consisted of 7144 elements with 21,945 degregfed solution of Poisson’s equation for the case of pure torsion of
of-freedom. The cost associated with such a finite element mogh orthotropic beam with a rectangular cross section is presented
eling makes it highly inefficient for analyzing every candidat@yst in order to illustrate the iterative procedure. This is followed
lay-up at the preliminary design stage. On the other hand, existigg 5 general formulation of the method for composite laminates.

engineering laminated plate or beam theories, which would allg#ngjly, the method is applied to laminates subjected to uniform
for a closed-form solution, are based on assumptions restrictiggension and torsion.

the strain or stress state and, therefore, are not appropriate for a
reliable prediction of all stress components such as the peel stress. .

The need for a simple and accurate analytical modeling of th1alysis
thre_e-dl'mensmnal stress state independent .Of the Iong!tqdlnal OII'Solution of Poisson’s Equation. In this section, details of the
rection is addressed in this work. An approximate elasticity soly:

. A ; . ) ; erative procedure are illustrated for the case of pure torsion of an
tion, which provides rigorous trend information for all stress oM, oropic heam with a rectangular cross section shown in Fig. 1.
ponents in laminated composites, is developed.

The stress function for this problem is governed by Poisson’s

The interlaminar stresses in symmetric laminates with Off'axl?quation
plies were first evaluated by Pipes and Pag@@jdor the case of
uniform axial extension by applying a finite difference technique 1 1
to solve the Navier equations of elasticity for off-axis plies. A G_qu’,xx+ G_ls‘l’,yy: -2 @)

number of finite element models were subsequently developed. o
Brief reviews are provided in Wang and CHdi,5] and Sen and Where Go; and G5 are the shear moduli in they(z) and
Fish [1]. Wang and Cho{4,5] assumed the form of the Stress(x,z)-plan_es, respectively, and the_ paftlal derivatives are denoted
functions in order to analytically solve the compatibility equation8Y subscript commas. The functiolf is zero at the edges
for two adjacent off-axis plies. A singular stress field at the freg =b andy==xh. Construct a weak form of Eq1) as follows:
edge was obtained. While this solution provides a rigorous pre- h b/ 1
[l re
~h -p\ 523

1
W42

SV dx=0. 2
G 2
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paper should be addressed to the Technical Editor, Professor Lewis T. Wheeler, 1 1 1 . ™ X 1
Department of Mechanical Engineering, University of Houston, Houston, TX 77204- v= z fi( )(X)ﬁoi( ‘(y)= E cog [2i —1] 2b ‘P? '(y).
4792, and will be accepted until four months after final publication of the paper itself i=1 i=1
in the JDURNAL OF APPLIED MECHANICS. 3)

96 / Vol. 67, MARCH 2000 Copyright © 2000 by ASME Transactions of the ASME



Y )

Table 1 [2]

Properties of S2 /F584 glass-epoxy material system

2h

2b

»3
<

E33;=44.13 GPa
E1=E,,=12.41 GPa
G13=Gy3=4.46 GPa
G,=4.14 GPa

V31= v3,=0.29
v1,=0.5

Fig. 1 Coordinate system and dimensions

The functionsf(Y(x) satisfy the boundary conditions at= +b.
Substitute Eq(3) into the weak form(2) and integrate with re-

spect tox to obtain the system of ordinary differential equations

for ¢{M(y)
d2 (1)
[a<1>][ ]+[b<l>]{¢§”}——2{cf”} @)
where
1 b 1
(H—_— DD y= " h4s.
ajj G13f7bf, fi~dx Glgbé,]
1 (b d?fP 1( m1)\2?
H—_— (1) = i—11— — .
bIl ngj,bf' 2 dx= 23\[2| 1]2b) ba,,
(5)

4(-1)'t

2i-1) °

b
o= J k=

and §;; is the Kronecker delta. Solve systei) using the free-
edge boundary conditions{?(+h)=0. The result is

G]_3h i a y
COS"( V—GZSB[ZI*l] —2 ﬁ)

Gl3h . T
COS"( VG—ZSB[ZI—].]E)

(6)

—1)i—1
W 32, (D
3 23(2i_1)3

This completes the first approximation which is due to Kantorov-

ich and is referred to as a Combined Method in Timoshd®ko
It is worth noting that the particular choice of functioffé)(x) in
Eq. (3) results in the exact solution of E€l) asN tends to infinity

3b2 232 {[2' 115 X)

71

)300
[Gish Ty
COS}‘( G_%B[ZI_l]EH)
x| 1- @)
Gl3h ’77)
COS”( VG_Z:.;B[ZI_:L]E

The second and higher approximations of the stress fundtion
have the same form as the first approximat{@8hwith the same
number of terms\ in the series. The second approximatii®
uses the functiong{?(y) obtained from the first iteration

N

vA=3 120" (y). (®)
=

Substitute Eq(8) into Eg. (2) and integrate with respect ¥to

obtaln the following system of ordinary differential equations for

P00:

d?f(?
[a<2>][ ]+[b<2>]{f}”}— —2{c”} ©

where

Journal of Applied Mechanics

a§2>:ifh oMo Vdy
Gz ) !
1 (h, d%fY
b<2>—613f (B dyz dy (10)

h
P
-h

Solve system (9) with the free-edge boundary conditions
f(3(+b)=0 to complete the second approximation. The iteration
process can be continued till a desired level of convergence is
met.

Consider through-the-thickness distribution of the transverse
shear stress at the edge b for a beam, 40 mm wide and 10 mm
thick, made of S2/F584 unidirectional glass-epoxy material sys-
tem with properties provided in Table 1. The transverse shear
stresso,, normalized by the cross section wid2b and the twist
rate 6 is defined as follows:

1
2bs 2b

One-term approximationN=1) is compared with the exact
solution in Fig. 2. The expressions for the first, second, and third
iterations are

(1) =1841.18 cof.0785398)
X [1—0.927556 cost0.0785399)]
P(2=1841.180.83373-0.0029737 cog0.31646%) ]
X [1—0.927556 cost0.0785399)]
(3 =1841.180.83373-0.0029737 cog0.31646%)]
X [0.618456- 0.546135 cos0.10182%)]

Oyz

v . (11)

(12)

\
Exact solution,

! 0.5 4
....... 1st iteration
0.4 |
— —_--2ndand 3rd
0.3 J iterations

0.2 ] o

0.1

b : 0 : 2
-1 0.5 0 0.5 1 h
Fig. 2 Shear stress distribution at the free edge x=b for

orthotropic beam torsion. Comparison of one-term approxima-
tion with exact solution.
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0.3 |
-7 Exact solution -~
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1st iteration

014 ____2ndand 3rd 014 ____2ndand 3

iterati iterations .
| I n iterations ' " 2)— [ q \| Z
A 05 0 0.5 1 h 4 0.5 0 05 1}

Fig. 4 Shear stress distribution at the free edge x=b for
orthotropic beam torsion. Comparison of three-term approxi-
mation with exact solution.

Fig. 3 Shear stress distribution at the free edge x=b for
orthotropic beam torsion. Comparison of two-term approxima-
tion with exact solution.

and the exact solution is given by seri@ where 120 terms were where the closed-form solution for the associated functions is

kept. Predictions of the second and third iterations are within odven by

percent difference from each other. f{Y=c0g0.0785398), f3'=c090.23561%),
Comparison for a two-term approximation is presented in Fig.

3. The first, second, and third iterations are expressed by fgl)zcos{o.39269§k)

5 2 {V'=1841.181-0.927556 cosl0.0785398)
TO=3 fP0eNy), =3 f200eM(y), by $ .
_ : =—68.19171—0.562422 cost0.235619)]  (16)

= = (1)
i=1 (13) @y =
2 (1) _ _
vO= S 126l2(y) @5V =14.72941-0.275309 cosl0.392699) |
=1 £ 0.98634

where fi2 b =1 0.77549
f()'=cog0.0785398), f'=cog0.23561%) f$) 10.28838

‘P(ll): 1841.181—0.927556 cost0.078539§) ] —0.0193973 2.33658.0 —0.244610° 16
+| —0.0933343 1.567310° % —6.4534410° 15

oSV =—68.19171—0.562422 cost0.235619)]  (14) . e
—0.0587884 1.46643.0 —6.491510
f(2 0.94439 —0.0108305 5.746540°°
£/ ~]0.484892 7| _0.0340327 2.5352a0°® cosi{0.31415%)
2 ' . oene x { cosh0.94508%)
{ cosk(o.314165()] cosh(1.8998&)
cosh1.0169%) @(12)/1841.18
©1?/1841.18 _ { o.75077T 0?1(—68.1917%
0?1(—68.1917 3.88 ©2114.7294
—-0.678393  5.8324@0°° 0.81399
—3.43504 —6.9996110 3 =7 3.65549
2.61704

cosh{0.613275) —0.741732 1.807310°* —9.0428210°°

An excellent agreement with the exact solution is reached by the ~ +| —3.18749 —0.0303879  1.182560 °
second and third iterations. —1.75802 —0.134276 2.074110°©
The results of three-term approximation are shown in Fig. 4.
The first, second, and third iterations are cost{0.0881224)
x{ cosh0.46414Y)

3 3
q,(l)zz f?l)(x)(pfl)(y), q,<2>:2 f?Z)(X)¢§1)(y), cosh(1.6823%)

=1 =1 (15) Note that the first iteratiofiL5), which is equivalent to keeping the
first three terms in serie), results in a large discrepancy with
the exact solutiori7) while the maximum error for the third itera-
tion is less than three percent.

{ cosh0.0919757))

3
V=2 120 (y)
i=1
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14 Oy ply to ply. Therefore, each ply in the laminate has an independent
, GPa " . . e
260 set of field variables. The boundary conditions, namely, continuity
_?_'9.. of the displacements and the interlaminar stresses, are established
at the ply interfaces.
For an off-axis ply, the general constitutive relationships, de-
fined in Lekhnitski[8], are simplified to
1
0= — (€7, 1307 — ap30YY — arg50™?) (20)
33
€xx B11 Bz Bis XX a3 .
....... . €y(=| Bz Baz Bos|y o'+ az a—zz
approximation Vxz o** ass 33
. 2-term A 1815 ﬁ25 ﬁ55 (2 l)
1 0.1 ] approximation \ { yyZ] _ ,844 ﬁ46 [o_yz]
/ . 0 ; 2 Yxy) [ Bas Besl o)
- 0.5 0 0.5 h . . . L e
The stress functions identically satisfying the equilibrium equa-
Fig. 5 Comparison of second iterations for one and two-term tions are defined as follows:
approximations with exact solution for orthotropic beam tor-

| XX_ yY— Xy— _
sion o=F,y 0=F o Foxy

(22)
o= oVi=—V .
. . . Substitute Eqs(22) and (21) into the compatibility Eqs(19) to

The following three observations can be made. First, one-tef~in as(22) @D P y Eas(19)
approximation predicts the correct trend information. Second,
two-term approximation is accurate and therefore higher orderg,,F ..+ (2B12+ Beo) F xxyyt B11F yyyyT (BasT Bad) ¥ xxy
approximations are not necessary. Third, the convergence of the
iteration procedure is fast: Two iterations are sufficient for an +B1s¥ yyy=0 (23)
accurate modeling. N

i ifi i 35
These observations are not specific to the choice of the syst%g;]z5+ BaoF sy BisF yyyt Bad¥ st Bss¥ yy=— 20+ — k5.

of trial functions in Eq.(3). Consider the following first approxi- 33
mation, (24)
N x| 2 The traction-free edge boundary conditions result in the follow-
po=> {1(6) }qoi(l)(y). (17) ing expressions:
=1

=+ = = =
The second iterations for one and two-term approximations are x=*b, F=F,=¥=0 (25)
compared with th_e exact_ sol'utio(ﬂ) jn Fig. 5. Comparison of y==h, F=F,=¥=0. (26)
shear stress predictions in Fig. 5 with the one and two-term ap- ’
proximations in Figs. 2 and 3 shows that the solutions based ®he following quantities are continuous at the ply interfaces due

the trial functions(17) and(3) have similar trend. to the continuity of the interlaminar stresses and the displace-
" . . . ments:
Elasticity Equations for Composite Laminates. The theory
of elasticity of an anisotropic body in the three-dimensional state F, F v,

of strain dependent on two coordinates is well documented in .

Lekhnitski [8]. The governing equations are provided in the a3
following. B1F yyT B1F xxt B1sV y+ a/_33(60+ KX+ Kk2Y),
Consider a laminated beam with a rectangular cross section (27)
shown in Fig. 1. The laminate is undergoing a uniform axial strain ais
€0, a constant twist rate, and constant bending curvatures BuF yyy+ (Bizt Beo)F oyt BisW yyF BagV xxt — K2,
andk,. The engineering strain-displacement relations are written 33
as[8] @
+ + + — (eg+ ki X+ + 0y.
ex=Uyx €y=V, €= egt KX+ Kzy 18) B1sF yyt BasF xxt Bss¥ y 033(60 KX+ koY) + 0y
Yyr= OX+W  y=—0y+W,  y=U +V Approximate Solution. In order to apply the developed itera-

tion procedure to the boundary value problem, the following weak

whereU, V, andW are functions ofx andy. Subscript commas form of Egs.(23) and (24) is constructed

denote partial derivatives.
The following compatibility equations can be obtained from

h, b
Eq5(18) fh dyf b[ﬁZZF,xxxx+(2B12+ ﬁGG)F,xxyy+ BllF,yyyy
Exxyy T Eyyxx™ Vxyxy™= 0 Yxzy ™ Vyzx=— — 26. (19) '

The laminate consists of plies which are represented by strips T (Bast Bag) W oyt Brs¥ yyyl OFdX=0 (28)

made of continuous fibers and a matrix. All fibers in a ply are J‘hz b
dyf

hy -b

aligned parallel to thex,z)-plane at an angle with the longitudi-
nal z-axis. This angle defines the ply orientation and can be dif-
ferent for each ply. An off-axis ply is modeled as a homogeneous

medium with 13 nonzero elastic constants, 9 of which are inde- + Bee¥ + 26— a_35K2
pendent3]. This 13-constant system is generally different from i @33

(ﬁ25+ ﬁ46) F ,xxy+ 1315': ,yyy+ ,844\1’,xx

sTdx=0 (29)
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whereh; and h, denote the lower and upper boundaries of the dfld
associated plyor sublaminate if the adjacent plies are treated as 5, d_y Y,
one group. The form of the approximate solution is y

b 2¢£(1)
J f()d By )w
b dx 2 yi

2¢(1)

. . ° (1)§(1) d fy'
F=2, fa00ti(y), W=2 si(0dyly)  (30) Aul | Bihdx| g

(//(1)
(1),,(1)
[ a5

+ B12

To simplify the calculations, the-dependent functionf,;(x) and
i (x) in Egs.(30) do not change from ply to ply. There are no + B
conceptual difficulties in considering differefit;(x) and ¢,;(x)

for each sublaminate. The functionsyoin Egs.(30) are indepen-
dent for each sublaminate. The following first approximations,
satisfying the free-edge boundary conditid25§), are selected:

b b
i leot iyl | fPdx+ky [ xfPdx|,
a33 —-b -b
2¢(1)
fb f<1)d fxJ dx )
Xi d 2
d2¢(l)
(1 (1) yi
f i ¥ dx)—dy2
l,//(l) b
J,bfx' ek )¢<1>+ o~ 2J7bf§?)dx, (37)
d2fD
X
f vy dx‘ dx

J P (”dx) il (Z—z[eo+K2Y]+0y)

X  cos
F(“—E f(1>f<1)—2 Cosip— oshgg cos hg,b
|

3
f(l) :Bll(f bf(})f(l)d ) dy)‘;'] +(B12t Bee)
(31) -
ot
X dy + By

X
N coshé—

1
(1= (1) <1): _— 1= (1)
v E Yii 2 Jhb 1 coshg; Yyi

where¢; are roots of the following characteristic equation: + Bas
cosé; sinh¢; +sin¢; coshg;=0. (32)

d2fL
The boundary conditions for thedependent functions,; and g, ( J ¢(1)f<l)dx)#+ﬁ25
;i are established in the following.
Equations(26) result in the following conditions at the edges
y=*h

(1)
fyi

+ Bss

dfy;
y=*h, fy= rm —L//y,—O (33)
J' S Pdx+ —Klf xyiPdx,
Sincef,; and ¢,; do not change from ply to ply, the first three -
conditions(27), which express the continuity of the interlaminar
stresses at the ply interfaces, are satisfied by enforcing ihj=1,...N

yi where summation over the repeated infléx assumed.
fyis dy and iy (34) Substitute the first approximatiori31) for the stress functions
into Egs.(28) and(29) to obtain a system of ordinary linear dif-
to be continuous at the ply interfaces. The last three continuifgrential equations with constant coefficients. The closed-form so-
conditions(27) cannot be satisfied due to the presence of indepelotion of such a system is straightforward. Satisfying the boundary
dent functions. Consistent with Eq28) and(29), a weak form of conditions(33) and (37) results in a system of linear algebraic
these conditions needs to be obtained. If the complementary wguations of order six times the number of tefis the approxi-
tual work of surface tractions at the ply interfaces is considereghate solution times the number of sublaminates.
the following expressions are continuous at the ply interfaces:  Since the functionsf,;(x) and #,;(x) in Egs. (30) do not
b b b change from ply to ply, the weak form&8) and (29) are inte-
f Usavdx, f VéaVYdx, f WsaYadx, (35) drated over the total thickness of the cross section for the second
b “b b iteration

in addition to the interlaminar stress continuity. Substitute Eqs. b h
(22) into (35), integrate by parts, and use E¢s9), (21), (22), and X | [BooF st (2812 Beo) F xxyyt B1aF yyyy
(25) to obtain the following continuity conditions: —bJ-h

b +(Bast Bae)V xxyT B1sV yyy]6Fdy=0 (38)
f Ba1F yy T B1F xx+ B1sT y "‘ (50+K1X+K2Y) oF ydx, b .
b f bdXJ' h (:825+:846)F,xxy+:815|:,yyy+B44ql,xx
J' b[ﬁllF,yyy'i'(:812+,866)F,x><y
oW g+ 20— —2 iy | 5W dy=0. (39)
ag33
+ + + . . .
B1sY yyt BagV xx o K2 SFdx, (36) This is equivalent to averaging the weak forif28) and (29)

through the thickness. The functiotig;(x) and i,;(x) have to

b . M
satisfy the free-edge boundary conditions
fiﬁls'z,yy"‘ BosF xxt Bss¥ fy 9 y

dfy;

X=*h, fxi:W

=i =0. (40)
owdx.

+ a_35(50+ K1X+ K2y)+ 0y

@33 The odd iterationsthird, fifth, etc) are carried out in exactly
According to Eqs(30), and continuity condition$34) and (36), the same way as the first iteration, the even iteration procedure is
the following quantities are continuous at the ply interfaces: identical to the second iteration.
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In order to obtain a nonzero even iteration for the special cas
of axial extension or in-plane bending, the following weak forn
of Egs.(23) and (24) is constructed based upon the principle o
complementary virtual work:

b h
[
-b —h

@13
+ 01_33 [€0t Kk1X+ KoY ) 5F,yy+ (,BIZF,xxyy+ B2oF xxxx

( B1F yyT B1F xxt B1sT y

dy=0 (41)

+ BZS\I’,xxy) 6F — (,846\1,,><><+ ,866F,xxy) 5F,y

Stress / Axial strain, Msi

b h
f bdxf J ( B1sF yyt BasF xxt Bss¥ y

0.

d35
+ —[€0+ K1X+ sz] (S‘Ifyy
33

_(:844\P,xx+ IBAGF,xxy)N}dy:O- (42)

51

.. 1st iteration
— — — —2nd iteration

Pipes & Pagano
Wang & Choi

3rd iteration

[ PR P L E
= - T

5~ < f
0.2 0.4 0.6
x/b

Fig. 6 One-term approximation. Comparison of stress predic-

Otherwise, the system of ordinary differential equations derivaidns at +45/—45 ply interface for axial extension of

[+45/

from the weak formg38) and (39) together with the free-edge —45]; laminate.

boundary conditions would result in a trivial solution.
For the special case of uniform axial extension, only half of the

laminate, above the middle surface, is considered due to symniégs. 8 and 9 where a close agreement with the predictions of

try [3]. The boundary conditions at the middle surface are

0 dfyi fb fofod dsfyi
= y —_— L= . . X
y dy wyl B ) xi ' xj dy3

b dzl,// :
+B1s f fxiwxjdx)d—nyO
° (43)
ij=1,...N

where the summation overis implied.

Pipes and Pagan@®] and Wang and Chdi4,5] is shown for all
stresses.

Three-term approximation was also performed. The comparison
for the second iterations of one, two, and three-term approxima-
tions is presented in Figs. 10 and 11. While the discrepancy be-
tween the predictions of three and two-term approximate solutions
is small, the order of the system of linear algebraic equations
resulting from three-term approximation is 36 compared to 24 for
the two-term approximation.

The distribution of the interlaminar shear stress at the free
edge is shown in Fig. 12 where the three iterations for one, two,

and three-term approximations are compared with the results of

Results

Pipes and Pagan®] and Wang and Chd#,5]. While one-term
approximation gives an accurate estimatexat0.8%, two and

Axial Extension. In this section, the approximate analyticatrée-term approximations are accurate at bott0.8% andb.

solution is compared with the numerical results of Pipes and Pa-Tqrsion.

Predictions of the interlaminar shear stresgs at

gano[3] and Wang and Chdi4,5] for stresses in a symmetric, the free edge are compared with the finite element results of Sen

[ +45/-45],, graphite-epoxy laminate under axial extension. The
thickness-to-width ratio is 0.25, and the material properties are
provided in Table 2. The stresses predicted by Pipes and Pagan~
[3] and Wang and Chdi4,5] at the +45/—45 ply interface are
compared with one-term approximation in Figs. 6 and 7. The peel
stressoy,, and the shear stress,, distributions are not recover-
able from the plots of Pipes and PagdB¢ The in-plane normal
stresso,, data are not provided in the work of Wang and Choi
[4,5]. Despite numerical discrepancies, one-term approximationZ
predicts the correct trend for all stress components, except for thes
in-plane normal stress,, .

According to Pipes and Pagar8], the oy,-stress is tensile
(positive), and its maximum magnitude is five times larger than
the maximum tensile peel stress,,, magnitude as evaluated
from the corresponding plot of Wang and CHdi5]. A better
accuracy is achieved by two-term approximation as illustrated in

Stress / Axial strai

Table 2 Properties of graphite-epoxy material system

[3]

E33=20.0 Msi (137.9 GPa)
E;1=E»,=2.1 Msi (14.48 GPa)
G13=G,3=G4,=0.85 Msi (5.86 GPa)
V31= V3= v1,=0.21

Journal of Applied Mechanics
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Fig. 7 One-term approximation. Comparison of stress predic-
tions at +45/—45 ply interface for axial extension of
—45] laminate.
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Fig. 8 Two-term approximation. Comparison of stress predic-

tions at +45/—45 ply interface for axial extension of

[+45/

—45] laminate.
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Fig. 9 Two-term approximation. Comparison of stress predic-

tions at +45/—45 ply interface for axial extension of

[+45/

—45] laminate.

Stress / Axial strain, Msi

Fig. 10 Comparison of stress predictions at
terface for axial extension of
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Fig. 11 Comparison of stress predictions at +45/—45 ply in-

terface for axial extension of [+45/—45]; laminate
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1.6 4 approximation
—___Two-term 2 | ] >*
1.4 4 approximation \ |::I
Three-term 26

approximation
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Fig. 12 Comparison of interlaminar shear stress predictions
at the free edge for axial extension of  [+45/—45], laminate

and Fish[2] for the torsion of a 32-ply{0,,/*+30,]s S2/F584
glass-epoxy flexbeam laminate configuration. The width of the
laminate is 38 mm, the thickness is 7.296 mm, and the material
properties are provided in Table 1. The interlaminar shear stress
was evaluated at a 27-deg twist angle per 114.3 mm length, cor-
responding to the measured failure twist angle for this laminate
[2]. One-term approximation predictions are shown in Fig. 13.
The third iteration predicts the correct trend with a nine percent
discrepancy compared to the finite element result for the maxi-
mum stress value. The predictions of two-term approximation,
appearing in Fig. 14, show a maximum value discrepancy of less
than one percent for the third iteration. One-term approximation
requires solution of 54 linear algebraic equations at the first and
the third iterations. Two-term approximation results in 108 linear
algebraic equations at each odd iteration.

Conclusion

An iterative method for the approximate analytical solution of
elasticity problems for composite laminates is presented. The
stresses in laminates subjected to uniform axial extension and
torsion are evaluated. A good agreement with the numerical
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Fig. 13 One-term approximation. Comparison of interlaminar shear stress pre-
dictions at the free edge x=b for torsion of [0,,/%30,]s laminate.
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Fig. 14 Two-term approximation. Comparison of interlaminar shear stress pre-
dictions at the free edge x=0b for torsion of [0,,/%30,]s laminate.
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1 Introduction duces three material lengths, two scale with rotation gradients of
. . . . deformation, while the other scales with the stretch gradients of
Ductile materials display strong size effects when the chara&-f ion. Beal d Hutchinséad] d ined th
teristic length scale is on the order of microns. For example, | pformation. Begiey and Hute insQ ] etermined three mate-

. : . . : Ple, b lengths by fitting Fleck et al.’§7] microtorsion data, Stolken
micro- and nano-indentation experiments, the measured indenta-

tion hardness of metallic materials increases by a factor of two id Evans|8] microbending data as well as micro-indentation
three as the width of the indenter decrease fromui®to 1 zm ta([1-6]). They found that the material lengths associated with

([1=6]). In torsion of thin copper wires, Fleck et &7] observed the rotation gradients of deformation are approximatejyrd for

. copper and Gum for nickel, while the length associated with the
that the scaled shear strength increases by a factor of three as &Dg?ch gradients of deformation is much smaller, ranging from

wire diameter decreases from 17@n to 12 um, while the in- s

crease of work hardening in tension is negligible. In bending gle\lzif;nn:iogég[g?].used Tavior's model to connect the geometri-
thin nickel beams, Stolken and Eval® found a significant in- Y 9

crease in the plastic work hardening as the beam thickness ally necessary dislocations to strain gradient plasticity. They
creases from 10@m to 12.54m. In an aluminum-silicon matrix téntified the intrinsic material lengthsn strain gradient plastic-
composite reinforced by silicon carbide particles, Lidg] ob- 1 as! =Lgb, whereL s is the average dislocation spacing, dnd
served a substantial strength increase when the particle diam&df'¢ Burgers vector. In terms of the shear mod@uand yield

was reduced from 1G:m to 7.5 um with the particle volume stressoy in uniaxial tension, the intrinsic material lengths is given
fraction fixed at 15 percent. by 3¢?(G/oy)?b, and is indeed on the order of microns, where

The classical plasticity theories cannot predict this size depédf-a constant in Taylor's model, ranging between 0.2 to 0.5 for
dence of material behavior at the micron scale because their c¥Atious materials. Nix and Gao[25] analysis predicts a linear
stitutive models do not possess an internal length scale. In ordef@tion between the square of micro-indentation hardness and the
extend the continuund,-deformation orJ,-flow plasticity theo- Inverse of indent depth. This Im_ear_relatlon_ agrees remarkably
ries to micron scale, strain gradient plasticity theories have be@ll With McElhaney et al.’§6] microindentation hardness data
developed. Aifantig10] and Muhlhaus and Aifanti§11] have for sn_ngle crystal and cold wo'rked_ polycry_stalllne copper, as well
modified the constitutive model of classical plasticity by introduc@S With Ma and Clarke’$4] micro-indentation hardness data for
ing the Laplacian of plastic strain in the flow stress-plastic strafingle crystal silver and Poole et al[§] data for annealed and
relation. Recently, Fleck and Hutchinsfi®,13 and Fleck et al. work-hardened copper polycrystals. _ ,
[7] developed a phenomenological strain gradient plastici Motivated by the remarkable agreement between Nix and Gao’s

theory. Its point of departure is that the plastic work hardening 6% analysis and micro-indentation data, Gao et[@6] and
materials is due to the storage of both statistically stored dislodd4and et al{27] developed a mechanism-based theory of strain
tions (e.g.,[14]) and geometrically necessary dislocations, and tfgFadient plasticityMSG). A multiscale framework is proposed to
latter are related to the gradients of plastic shear in a mate ik the microscale notion of statistically stored and geometrically

([14-16). The theory fits the mathematical framework of higherf€cessary dislocations to the mesoscale notion of plastic strain

order continuum theory of elasticitf17—20), and satisfies the and strain gradient. The microscale at which dislocation interac-

Clausius-Duhem thermodynamic restrictions on the constituti{on iS considered is distinguished from the mesoscale at which
law for second deformation gradierf@1—23). The theory intro- € Plasticity theory is formulated. On the microscale, the Taylor’s
hardening model is adopted as a founding principle to govern

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF dISIOC.aUC.m mteracyons at the microscale. On the meso;cale, the
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLiEp  CONStitutive equations are constructed by averaging microscale
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Julyplasticity laws over a representative cell. An expression for the
9, 1998; final revision, July 23, 1999. Associate Technical Editor: K. T. Rameskffective strain gradient is obtained by considering models of geo-
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ing microscale phenomena, such as micro-indentafiad,28)),
microtorsion([7,27]), and microbending experimen(g3,27,29)
void growth and cavitation instabilit§f 13,27), and fracture near Here, ¢,= J2T3e;;&;; is the effective strain in classical plasticity,
a crack tip([27,30—-37). All these studies are limited to plane-mikn”k, ik Tijk » and i 7y are three invariants of the strain
strain, axisymmetric, or antiplane shear deformation. There is geadient tensor, and;, c,, andc, are three material parameters
study on plane-stress deformation in strain gradient plasticity dgealing with the above three invariants of the strain gradient ten-
to the difficulty that, unlike in plane strain, the governing equasor, Smyshlyaev and Fled88] showed that,, c,, andcs can
tions for plane stress cannot be directly obtained from the threge equivalently written in terms of three lengths I, andl; as
dimensional governing equations in strain gradient plasticity.
Moreover, even the order of the governing equations and in-plane 12 13 2 s 12 2 ) 2, 2,
traction-prescribed boundary conditions turn out to be different ¢;=— 15 §+ §|3, C2=§+ §| , 03=§|1— §|2. ()]
for plane stress and plane strain, which is rather different from
classical plasticity theories. _ Begley and Hutchinsof24] proposed to determine the lengihs

We propose a systematic approach to derive the governing “and |, by fitting experimental data such as microbeffia)

equations and boundary conditions for plane-stress qeformatior}ﬂﬁbrotorsion([7]) and micro-indentation dat41—6]). Based on
strain gradient plasticity. The displacements, strains, stressgg fitting, they suggested that

strain gradients, and higher-order stresses in three-dimensional

strain gradient plasticity are expanded into power series of the | I | 5
thicknessh in the out-of-plane direction. As the thicknelssap- li=—=~2, ly=2, 3= \fl,
proaches zero, the governing equations and boundary conditions 16 8 2 24
for plane-stress deformation are obtained. A summary of Fle%1
and Hutchinson’$13] three-dimensional strain gradient plasticity
is given in Section 2, while the plane-stress strain gradient pl
ticity is derived in Section 3. For readers who would like to by-
pass the details of derivations, the kinematic relations, constitutiveC = —0.0010%>~ —0.00262. c,=0.1712. c.=-—0.162
law, equilibrium equation, and boundary conditions for plane- ~* ' ' oz Eet ' '(9)
stress strain gradient plasticity are summarized in Section 4.

2
E=\/%“‘Clﬂiikﬂjjk+Cz7lijk7/ijk+037lijk7lkji- (6)

®

erel is considered as an intrinsic material length, and is ap-
roximately 4um for copper and gum for nickel. The choice in
g. (8) give parameters;, c,, andc; as

Gao et al.[26] and Huang et al[27] on the other hand, deter-
2 The Fleck-Hutchinson Phenomenological Strain mined the parameters;, ¢,, andcz from the relation between
Gradient Plasticity Theory the effective strain gradient and the density of geometrically nec-
essary dislocations. Based on three dislocation models for pure

The Fleck-Hutchinsori13] phenomenological strain gradientpenging, pure torsion, and void growth, they established three
plasticity theory has accounted for the effects from both rOtat'%rametersl, c,, andc; as

gradients and stretch gradients of deformation. It is summarized'in
this section for deformation theory. For simplicity, the elastic de- 12
formation is neglected such that the material is incompressible. In c1=0, c,=—, ¢C3=0, (20)
the following, all Roman subscriptg.g.,i, j, k) range from 1 to 3,
while Greek letterge.g.,«, B, y) are 1 or 2.

The strains;; and strain gradients;;,c are related to displace-
mentsu; by

or equivalently,

1 (12)
eij =5 (UijTuj), 1)
where the intrinsic material lengtthas been identified from Tay-
ijk = Uk,ij - (2) lor's model to be on the order of the square of dislocation spacing
over Burgers vectorl.é/b, by Nix and Gao[25]. In terms of

Incompressibility of the deformation field requires macroscopic quantities, the material lendyis given by

=0, 7=0. 3 5
The work conjugates of strains and strain gradients(symmet- |:3a2(ﬂ> b, (12)
ric) stressesr; (= o) and(symmetri¢ higher-order stresses; 20

(=), respectively. The constitutive law of the deformation
theory of strain gradient plasticity can be written in terms of th
strain energy densit\V as

here i is the shear modulus,, is the yield stress in uniaxial
ension b is the Burgers vector, andis an empirical parameter in
Taylor’'s model, ranging from 0.2 and 0.5 for various materials.

, OW , AW For typical ductile materials, the material lendftis indeed on the
T~ e Tijk:Wl (4)  order of microns, consistent with Fleck and Hutchinsga3] and
4 1k Begley and Hutchinson’24] estimates.
where o; = oy — 1/30;; are deviatoric stresses, anf}, = 7 Based on Taylor's model, Gao et §26] and Huang et al.27]

— VA(7ipp i+ Tippdik) are deviatoric higher-order stresses. Fleckroposed a mechanism-based strain gradiéi$G) plasticity

and Hutchinsor{p13] assumed that the strain energy dendy theory. It differs from Fleck and Hutchinson[43] phenomeno-

depends only on second-order invariants of strains and strain gi@gical strain gradient plasticity not only in the coefficiemts,

dients for an incompressible solid, aldtakes the same form asc,, andc; as in Eq.(10), but also in the constitutive relations

in uniaxial tension (4)—(6). However, in the present study, we will derive the gov-

£\ (n+ 1 erning equations and boundary conditions for plane-stress defor-

3 0o (_) (5) mation only in Fleck-Hutchinson’s phenomenological strain gra-

Eq ' dient plasticity([13]). Equations4)—(6) give the constitutive law

wheren is the plastic work hardening exponei, is the tensile as
yield stressE, is the yield strain €3, y/Young’s modulug andE 2%, ( E )1/n1
Sij y

n

W=nrT

is a combined measure of effective strain and effective strain gra-

" 13
dient and is given by = 13)

Eo
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C3 F3=N,NgTp3, (25)

20 E 1nh-1
f ( ) C17ppkdij T Comijc + 2(77kji+77kij)

| By

wheref, satisfiesn f,=0. The out-of-plane traction boundary
conditions can be obtained by replacing the unit normah Eqgs.

1 C3 1 C3 . .
—zlats DppiOjk— zlet > TppjOik |- (14) (17) and(18) with n=(0,0,1), i.e.,
We emphasize that{; and 7/ in the above expressions are in- =03y~ 2735y 5~ Taay3t Taasy (26)
deed symmetric and deviatoric, i.eajj=oj, oK=0, T ty= H+ 04— 2730~ Thaza 27)

= T]-'ik , and 7, =0.
The equilibrium equations for an incompressible solid in the f,= Té3y. (28)

higher-ord ti th 3
\gher-order continuum theory afgL3) For a plane-strain problem, Eq&0), (22), and (24) rigorously

Tii— Ti’jk’ij +H =0, (15) degenerate to a two-dimensional problem since deviatoric stresses
and deviatoric higher-order stresses in the out-of-plane direction

where (with the subscript Ball vanish after enforcing the plane-strain
1 1 condition u,=u,(x1,X,) anduz=0. The out-of-plane Eq(21)
H= 3 0w 5 Tikki (16) and boundary condition&3), (25), (26), and (28) also become

identically zero, while Eq(27) gives the combined measuireof
is a combined measure of hydrostatic stress and hydrostaiimrostatic stress and hydrostatic higher-order stress. For a plane-
higher-order stress for an incompressible solid. For a threstress problem, however, it is unclear which higher-order stresses
dimensional problem, there are five independent tractioare zero. In fact, as shown later, deviatoric higher-order stresses
prescribed bqundary conditions, including three independepgss and the derivatives 0*&,33 and Téa,g with respect tax; are
stress tractions, and two independent high-order stress tractionsot zero. In the following, a systematic approach is proposed to

f\ on the surface[13]), derive the governing equations and boundary conditions for plane-
. , , , , stress deformation in strain gradient plasticity.
te=Hnit ni( o= 7iji ) + Diningnp g ) — D (M i) The stress and higher-order stress tractions inxthdirection
' must vanish in a plane-stress problem. Therefore, —(28
+(nin;j 7 — NNy Ny 75 ) (Dgng), 17 become P P Bp-(28
Pie= i 7 — NN Np 7 (18) h
where n is the unit normal of the boundary surfade;= (5 03,7 2738y, Ta3y,37F Ta33,= 0 X3= =5, (29)

—n;ny)dldx, is the surface gradient, arig are not independent

becausen,f=0. For the special case where the surface of the , , , h

body has edges, there is a line tractfgnthat must be taken into H+ 033~ 275555~ 73335~ 0, Xs=*3, (30)
account([13]). Suppose the surface has an e@ydormed by the

intersection of two smooth surface segme®{sandS,. The line h

traction p, is T33,=0, X3= 5 (31)

ﬁk:E (nik; Ti'jk—kkninjn Ti,jp)v (19) whereh is the thickness in the out-of-plane direction.

where the summation is over both surfé&geandS, at edgeC, n
is the unit normal of each segment of surface, anid the unit 3 pjane_Siress Deformation in Strain Gradient Plas-
tangent along the edge defined with each segment to thekleft,. .
=cXn. (As pointed out by Huand27], Eqg. (19) corrects the ticity
misprint in Fleck and Hutchinson’gL3] expression for the line  In plane-stress deformation, the thicknésis the out-of-plane
traction p,.) There can also be five independent displacemerdirection (x3) is much smaller than the characteristic wave length
prescribed boundary conditions. Since the displacemeit-x;—X, plane. In order to capture the variation of displacements
prescribed boundary conditions in a two-dimensional problem caiong thexs-direction, a rescaled coordinatds introduced:
be obtained straightforwardly from the three-dimensional rela-
tions, the present study focuses on traction-prescribed boundary o= X3 (32)
conditions. h'

For a two-dimensional problem in the,(,x,) plane, the equi-

. : g : The derivative with respect to the out-of-plane direction can be
librium Eq. (15) can be categorized to the in-plane equations written asd/ dxz=1/h(d/ds). The two lateral surfaces correspond

0';7'“+ o-é%sf T;ﬁ%aﬁ* 27'506%0[3* Té3yv33+ H,=0, (20) tos== 1/2.
For plane-stress deformation, the displacemsrin the out-of-
plane direction is linearly proportional to;. Therefore, the in-

Trgat Oh3a™ Thpsap™ 2Taasas— ThazastHa=0.  (21) E:ai?ei%?ih?glfnogsgznse displacement can be expanded in a power

The in-plane traction boundary conditions can be obtained by re-

and out-of-plane equations

placing the unit normah, in Egs.(17) and(18) with n,, i.e., Ua(X1,X2,X3) = U (X1, X5,8) +2ulZ (Xg,Xz,5) + O(h%),
N (33)
t,=Hn +n,(0,,— .z, +D,(NNgNs7,55) —Ds(N,7,p,)
T o e , ! ? , M Uz(X1 X2, X3) = U5 (x1,X5,5) +h2uf (X1, X;,5) + O(h®),
+(NaNpTapy = MyNGNENsTLes) (DN = 2N, 734,53, (22) (34)

where the superscript denotes the ordehaf the power series,

ta=N (0 a7 45 2) FN NN 57" s a— D g(N 7" 1a) _ _ \
8 TetTad Tap3pt alp0apss W el aps and the in-plane displacemeny, and out-of-plane displacement

FNaNpTeps(D Ny = 2N, T 335, (23) u3 have even and odd powers lof respectively, consistent with
R . , those in classical elasticit{f39]).
Py =NaNgTapy, = NYNGNEN5Tops (24) From the strain-displacement relatiéh), strains are given by
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0) 0)
L[ oug 2 EO02_ 2 (0,00, (0,00 o (7O 4 OO 4 (0
Eap=> + +0(h?), (35) = 3 (apap™ €aatpp) t C1Maayt 733) (Mppyt+ 733))
2\ xg X,
0 0 0 0 0 0 0 0
ud o - +Co 7y Myt 753y M3y + 270 Mpp) F Cal 7y M
£33~ + ' 0 (0 0 (0
Is = 27053 Ty Typ)- (47

It is once again emphasized that, as shown latd®), can be
related to the leading terms of in-plane strain gradieqﬁj;’g7 from

. . fini h ol hick the plane-stress condition. TherefoE? is independent of (or
Since strains must be finite as the out-of-plane thickifes®- ) “simjlarly, the deviatoric higher-order stresses are obtained

L a® hiou®  ouy
= —_— +_
#3700 s 2\ a5 | ax,

+0(h3). (37)

proaches 0 in a plane-stress problem, B7) requires from the constitutive Eq(14) as
au510> r _ _1(0) 2
e =0 or u?=uP(xy,x,). (38) TaBy™ Tapy T O(h%)
%
. . . . _ - 0 0 0
This means the leading terms of the in-plane displacemeifits —EIH(E(O))”n Yeu(n'y+ 159,) duptCon',
0

are independent o§ (or x3). The incompressibility statement

€401 €33=0 and Eqs(35) and(36) require C3 1 C3
+ 5 (et e = 7| 1t 5| (753t 7530 9,
g ou® o aul®
=— or uy’=-g . (39)
Js X, s X, 1 C3
= 7\ Cut 5 | (753t 7535) 8y |+ O(R2), (48)

The strains in Eq9(35)—(37) can then be written as

1/ou®@  gu© Thaa= Tase + O(h?)
eap=olptO(M))= 5| =+ —E-|+0(h?), (35)
B @ 0 E=(0)\1n-1 (0) (0) (0)
© =§ﬁ(E ) [C1756a+ (C1FC2) 733, C3Mups
Ju
() __ "B 2 ,
e33= €53 +O(h?) i, +0(h?), (36) +o(h?), (49)
£q,3=0(h). (37)  Thas=Tags +O(h?)
Here the zeroth-order terms in straing) and sy are indepen- 30 o cs| o 1 3 ©
dent of the out-of-plane coordinaggor x3). Using Eqs(38) and *E/ﬁ(E ) —|Cot 2 | Mass™ 4 Ci— 503 1330
(39), the strain gradients can be found from strain gradient- 0
displacement relatiof2) as 1 Cs
= 7| et o | mspa| +O(h?), (50)
520 4 2 «
=79, +0(h?) = —X—+0(h?), 40
Napy™ Napy ( ) ﬂxaaxﬁ ( ) ( ) T(;BS:hT;((Bl%:O(h), Téaﬁ:hTéEXlﬂ):O(h),
u L=y =0(h 1
Rai= 7O =———L—yo(h?),  (a1) e N7a5 ~ O, D
IXo0Xp 1{0) 1(0) _r(0)
It can be shown that the zeroth-order terméﬁ V033 Tagys
o , , 789, and7.{) are independent af (or x3), while the first-order
733 M330+ O(N%) = — 7= +0(h%), 42)  termso P, 73, 7Y, and 74y are linearly proportional te
(or x3).
=0(h), =0(h), =0(h). 43 We analyze the equilibrium equations and traction-prescribed
Nap3 N30 77333

) ] ) . boundary conditions in the following. We start with the out-of-
It should be pointed out that the leading term of strain gradiepfane direction. The leading terms of the out-of-plane equilibrium
733, IN EQ. (42) comes from the second-order displacemét.  Eq. (21) now become
As will be shown later, this term can be determined by the leading

. . . (1

term of in-plane strain gradientg!,}, from the plane-stress con- La | o oo 97 o) _

i ; ; ; ) ool 0337~ 27033, — tHT =0, (52)
dition. Therefore, all leading terms of strain gradlenﬁgjﬁy, h ds ds

(0) (0) i
733, @nd 77,33 are independent of (or xs). where the combined measurkof hydrostatic stress and hydro-

The constitutive Eq(13) gives the deviatoric stresses as static higher-order stress has been expanded as

H=H@+0(h?. (53)

23
olg=0lg +O(h)= 3 S (EO) M 1e3+ O(h?),  (44)
0 The leading terms of out-of-plane boundary conditigr-0 in

f 2 X B Eg. (30) give
04y= 03+ 0(h?)=— = =z ()™ 1e0+0(h?), "
0 T 1
(45) oy —2719 — %m@:o, at s==3. (54)
Ls=ho5'=0(h 46

Tas =Nz =O(N), (46) Comparison of Eqs(52) and(54) givesH(® in the entire field as

where E© is the leading term in the combined meas@&eof R
effective strain and effective strain gradient in E§), and is H(°)=f<r§§0)+27’(°) 4 2fsss (55)

given by asda g

108 / Vol. 67, MARCH 2000 Transactions of the ASME



which is also independent &f(or x3). The leading terms of the while H(® in Eqg. (63) can be evaluated from Eg55) as (see
other out-of-plane boundary conditions=0 in Eqg.(29) andf, Appendix for details
=0 in Eq.(31) give

2 C1 GCs
/ (0= 5/(0)_o_1(0) _ (0yin-1| [ Z1_ Z3) (0
I73s) 1 HY=0p5"~270pp.a~ gz (E™) €pp.aa
_ 1(0) _ _ L E 2 4
e =0, 733,=0, at s= iz. (56) , 0
. . . 1
It should be pointed out that, once the leading terms vanish, rela- + (E+Cz+ ch) 775%;,&}. (65)
tions among some second-order terms become important. For ex-
ample, the second-order termstgf=0 in Eq. (29) give The in-plane higher-order stress-traction boundary condi@ah
' (2) gives
1) (1) TI88Y (1) _ ——
03, — 2755, 4 s +7353,=0, at s==* 5 (57) P = nanBT;(/;);_ nynanﬁnﬂfy(;?,)s- (66)
where 74$2) is the second-order term ofy,,, i.e., 755, =74  The other two traction boundary conditions in E¢&3) and(25),
+hzrg§2)+0(h“). however, are on the order @(h) and therefore do not provide

We now analyze the in-plane equilibrium equations and bounagntrivi_al boundary conditions for the Iee_lding terms in deforma-
ary conditions. The leading terms of the in-plane equilibrium EqE0n- It is observed that Eqg63) and (66) give only three bound-

(20) become ary conditions. This is quite puzzling because the governing Eq.
(62) require four independent boundary conditions, as discussed

1?7 before. This “missing” boundary condition represents a unique

ThE T (58) feature of plane-stress deformation in strain gradient plasticity

since it does not occur in plane strain nor in three-dimensional
In conjunction with Eq.(56), the above equation gives that thedeformation. In fact, this “missing” boundary condition comes

leading terms ofrgsy are identically zero, i.e., from the line traction in Eq(19). At the intersection of lateral
surface xz=h/2(s=1/2) (unit normal n=(0,0,1)) and the in-
TY=0. (59) plane boundary with unit normai=(n, ,n,0), the line tractions

. ) . . ) ©) - Py are given by
This, together with the constitutive relatidd9), gives 733, in

terms of the in-plane strain gradiert&’). , i.e., p,=0(h), (67)

) _ P3=—2N,Tope NN, Topy - (68)

0
7332~ (

(cs3 770(5)5_ C1 77(5(25)0,) . (60)

+ . . L . .
C1m e The in-plane line traction$, do not contribute to the leading

Once the leading terms in in-plane equilibrium ERQO) vanish, terms in in-plane deformation because Egj7) vanish ash ap-
the next order terms become important and give the governipgoaches zero. The leading terms of E8), however, do not

equation for plane-stress deformation as automatically vanish. Therefore, the requirementpgt=0 for
e plane-stress deformation gives the “missing” fourth boundary
J T iti
0 0 0 1 1 33y | condition as
N e

(61) 20,7+ nangn, 7.9 =0. (69)
Since the zeroth-order terms are independeng, affe can inte- This completes our systematic approach to derive the governing
grate the above equation frog= — 1/2 tos = 1/2 (over the thick- equations and boundary conditions for plane-stress deformation in
nes$ to give the governing equations only in terms of the in-planstrain gradient plasticity.
deviatoric stress and deviatoric higher-order stresses,

ol =T\ et (ops =279 ) =0, (62)

ay,a

where Eqs(55) and(57) have been used. Equati¢dR) gives two Summary ) . .

fourth-order differential equations for the two in-plane displace- e have adopted a systematic approach to derive the governing
ments,u(® andul?) . Therefore, four independent boundary conSduations and boundary conditions for plane-stress deformation in
ditions should be prescribed on any boundaries witkjr-x, strain g_radlent pl_astlcny. It has been shovv_n_ that three-d_lm_ensmnal
plane. governing equations and boundary conditions are satisfied up to

- ; . . the order ofO(1), i.e., terms neglected are on the ordeiGgfh)
The in-plane stress-traction boundary conditigd) becomes or higher, which vanish as the thickneksin the out-of-plane

T =HON +n (' O— 2O YD (n.n.nar Q) direction approaches zero. The governing equations and traction-
7 v N0y~ Tapy,p) +Dy(NaNgNsTap0) prescribed boundary conditions are summarized in the following,
=D (N7l ) + (N N7 =N N, Nn,s7LeH (D Ny) and the superscript 0 for the leading terms are omitted.
(97’é511y>
2N (63) Kinematic Relations.
where, as shown in the Appendix, the last term on the right-hand e =E(u tug.) (70)
side can be written in terms of in-plane strains and strain gradients apTp At T EBaly
as
Napy=Uyap - (71)
95y _ Zo EOyh-1c @ B0 _ 0 e
9 @ﬁ( ) C27733y.0+ 5 (M350, ™ € p.ay) Constitutive Law.
1 Cs o © ) 2 EO E 1h-1
t2 ( Cit > (733881 € p,55) Oary | (64) Tap=3 E, \Eq Eaps (72)
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-1
, _20 E Cq
Taﬁy_E_O E_o m (C2ms6y 1 C3My55) Oupt CaNupy
C3 2citcg
+ ?( Nygat Nyap) ~ m(czﬂasa"‘ C37ass) Opy

2ci+cC3
) (C27m5531 CamMpss) Oay (73)

B 8(ci+cy

where Eq.(60) has been used to eliminatgs,, and the com-

where the combined measukeof effective strain and effective
strain gradient in Eq(74) is simplified to

2
2_%
E 3

(Saﬂsaﬂ—‘reaasﬁﬁ)—"_CZ( naﬁ'ynaﬂ'}/—"_znyaanyﬂﬂ)'

(74)
The boundary conditiori76) also becomes simpler because the
last termA,,, vanishes; similarly, the last term in E79) van-
ishes such that the combined measure of hydrostatic stress and
hydrostatic higher-order stress takes a simple form

bined measur€& of effective strain and effective strain gradient is

given by

(CZ naay+ C3 nyaa)

E2=z(e pEapT € eﬂﬂ)-&—Lz
S (c1t+cy)

X(C2mppy T Canypp) + Co| MapyNapyt 2Myaaypp

1

+ ——(C —C Cc —C
(C1+C2)2( 1Naay 37]}/51/&)( 17788y 37]}/[3[3)

Ci+Co—2C3

C]_+C2 nyaanyﬁﬁ

+ C3( naﬁynyﬁa+

2cq

Cci+Cy (74)

ﬂyaanﬁﬂy) .

Equilibrium Equations.
Uzyy,a_T(,lﬁy,aﬁ+(U,BB_ZT;BB,a),yzo' (75)

Traction-Prescribed Boundary Conditions.

t,=Hn,+n,(0,,— s,z +D,(NeNgNsT,e5) —Dp(N, 7l p,)

+(NaNgTpy—NyNNEN 5T 55) (DN —2N,A,, (76)
Py =NalpTapy ~NyNaNgNsTags 77
0=2n,7T,p5+NaNgN,T,p, (78)

whereH is the combined measure of hydrostatic stress and hydro- s

static higher-order stress and is given by

’ ’ 20 E lln_l(3c3_201)((:2+03)
H=0pp= 270350~ £ | E0 €pB,aa s
" Eg\Eg 4(ci+cy) :
(79)
and the tensoA,,, in Eq. (76) is given by
3o B\ eg(categ—cy) C1C;p
@y EO EO 2(01+ CZ) 8/3[3,11)/ Cl+ Cy 77557,a
2(citcy) T T Be by AR
(80)

It is observed that the constitutive [aW3), the expressiofi74) of
combined measurk of effective strain and effective strain gradi-
ent, equilibrium Eq(75), the boundary conditio76) for plane-

(79)

Therefore, strain gradient plasticity based on dislocation models
gives a much simpler form than phenomenological strain gradient
plasticity.

H= 0'/;/3— ZT;ﬁﬁ'a.
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Appendix

Similar to the derivation of Eqg48), (49), and(50), it can be
established from the constitutive Ed.4) that

S Cs3
1 - 1 1 1
They=cm (EO) 1 Cana)‘y-i_ E(’l(y;3+77( )

3ay EO 3ya
€3l 1 ., @
~ 7|t 5 | (Mppat 1533 Sy | (A1)
20 C1 C3 C1 3
r(1) _ (0)y1n—1 _ (1) (1)
i =—1r (E©) == e e A A
333 ﬁ'Eén 2 4TS 2 333

Their derivatives respect tocan be written in terms of displace-
ments as

(1) 2,,(2)

)
(77-3&’)/ EO C3 u
_ (0)y1h—1 ¥ T3 (0 Ly
Eé;n (E ) Co (9';2 + 2 uﬁ,afﬁ'y (9§2
1 C3 2u(2)
0 B.B
+ 7| ct 5 || Ugbsst 2| Par: (A3)
1
758 _ Zo ©n1n-1| _[1_C3| (o)
= Tﬁ(E ) T U,B Baa
ds Ej 2 4 '
)
cy 3\ Pufy
|l et ch)v , (A4)

where incompressibility39) and Ju{¥/as = au(?)/9x; have been
used. The substitution of Eq&5’) and(42) into Eq. (A3) yields
the expression o5/ ds given in Eq.(64). Similarly, the sub-
stitution of Eqs.(35’) and(42) into Eq. (A4) provides the expres-
sion of 97553195, which is further substituted into E¢55) to give

the combined measute(?) of hydrostatic stress and hydrostatic
higher-order stress in E@65).

stress deformation in strain gradient plasticity are much more

complicated than their counterparts in plane-strain conditio
Moreover, the boundary conditidi8) is imposed for plane-stress

deformation only. However, for dislocation-model-based strain

gradient plasticity([26,27]) in which ¢,=c3=0, the governing

equations and boundary conditions take some rather simple forms

that are similar to their counterparts in plane strain. For examp
Eq. (73) becomes
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, 2o

Taﬁy—E—O (73)

1n-1
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> veae | S1iding of a Mass on an Inclined
<= Driven Plane With Randomly

H. Spiess

scse | \IQFYing Goefficient of Friction

Institute fur Mechanik,

Universitat Karlsruhe, Investigated are sliding motions of a rigid body on a harmonically driven inclined plane.
Postfach 6980, Coulomb’s law with a random coefficient of friction is assumed. The mean sliding velocity
76049 Karlsruhe,Germany in a steady state of deterministic motions is taken as a measure to compare deterministic
e-mail: Mechanik@bau-verm.uni-karlsruhe.de with stochastic behavior. Not only do the random parameters influence the deviation in

the results but strongly influence the typical features of the different motions themselves.
[S0021-893600)01701-3

1 Introduction oriented fibers and high resistance in the opposite direction. Sec-
nd, each sliding process alters the friction properties of the inter-

Systematic investigations of dry friction problems have be o :
made available in the last decade. They are focused either tgﬁe' A reversal of direction therefore always meets a new situa-

microscopic approaches concerning correlation processes betwegg . ¢ o o0 po proved by calculating the exceptional case of

two bodies in contact or on macroscopic friction laws. Most fricfhe motion on an ideal horizontal plane€0). Deterministic
tion laws are phenomenological in their character and do not cons P :

. A . . N riction exhibits stationary, periodic oscillations with constant am-
sider micromechanical mechanisms. Comprehensive literature 5 PN ; . ”
be found in the review paper of Ibrahifd]. Mainly Coulomb’s ?ﬁlltude. Stochastic friction, depending on the relative positipn

law or various modified versions are used for calculations. Thegllrso leads to equivalent features of the stationary motion. The

peculiar feature is the assumption of a constant coefficient of fri istribution of the friction coefficient along the sliding path be-
tion along the sliding path. In reality, randomly distributed inter- ) e . . .

face irregularities due to contamination, surface finish, roughne s%géltofrgfcz law of kinetic friction gives the active tangential
and waviness of the contact surface should be taken into accodt.
Experimental data always exhibit a randomly varying friction R,= umgcosa sgnx. (3)
force along the sliding path. As will be shown, the use of a co
stant coefficient of friction does not only involve an uncertai
parameter in the calculation of a distinct motion but it neglects {HEnes.

! ; ; ; ; - .+ During sliding the friction coefficienf.(s) depends on the sur-
:Etge;?g?igrr]l ic,)[fsgl]fe solution with typical characteristics of the s“dface properties along the sliding path. Kilbur®] conducted an

experimental investigation which indicates that friction behaves
like a random process. Its constant component is most significant
2 Mechanical System and nearly identical to the coefficient of friction. This allows the
assumption

omes periodic. This contradicts reality.

E['_he normal compressive forgagcosa remains constant for all

Consider a masm on a rough plane with an angle of inclina-
tion «=0. (See Fig. 1 m(s)=pot+f(s) 4)

The drive of the plane with a constant mean value, superimposed by a random field

y=asinQt (1) f(s). Solutions in the deterministic cadés)=0 have already
been derived by Vielsad]. The choice of the deviatiof(s) is
rather intuitive. It is oriented by Soom and Chig}, who simu-
ted the effective roughness in terms of a wave number spectrum
ut without taking friction into account. In contrast, a constant
waviness of the contact surface will be considered in the follow-
ds=|dx| (2) ing. This implies the existence of a definite material pattern at the
interface. Apparently, sand paper with a definite granulation is the
most simple example. Then, the interface paramgtisrachieved
?/ subdividing the sliding coordinate into constant steps. The
a&udom fieldf (s) reads

is harmonic with support displacement amplitual@nd angular
frequency(). The relative coordinat& gives the position of the
mass which can either slide or have lockups on the plane.
describe the sliding path a length coordinate

is introduced. This separation between the mass trajestand
the relative positiorx is necessary because of the specific featur
of the motion. The mass will slide back and forth. A materi
point on the contact surface can be touched more than one time.
dependency of the friction coefficient on the relative positiaa f(s)=X,, se[nA,(n+1)A], n=0,1,2... (5)
inconsistent because of two reasons. First, a reversal in the direc-
tion of sliding may lead to different friction at the same paint

The simplest intuitive example is a brushed carpet, having low
resistance when moving a mass in direction to the unidirectional

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF m
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov.
6, 1998; final revision, July 9, 1999. Associate Technical Editor: J. T. Jenkins.
Discussion on the paper should be addressed to the Technical Editor, Professor a
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final publi-
cation of the paper itself in the ASMEODIRNAL OF APPLIED MECHANICS. Fig. 1 Rigid mass on an inclined, moving, rough plane
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Fig. 2 Friction coefficient:
ian distribution

(b)
M= Ho

3 Integration of Motion

The motion can consist of a sequence of three possible smooth
partial states, i.e., relative sliding dowg’'¢0), relative sliding
up (¢'<0), and states of stickingé(=0). The partial states are
enumerated bk=0,1,2 ... . Thetype and the duration of the
kth smooth partk=0,1,2 . ..) depend on the excitation param-
etersA andB and are not known a priori. Therefore, in addition to
Eqgs.(9) and(10) further information is needed indicating the end
of a certain statéswitching condition and predicting the type of
the following state(switching decision

3.1 State “Sticking”. Assume r=7,_, to be a known
switching time at which a partial state “sticking” starts. The pre-
vious history of motion at the time,_,— 0 yields the coordinate
(71— 0)=¢&y and the velocity¢’ (7,1 —0)=0. They form the
constant relative displacemeg(tr) = £, and the vanishing relative
velocity ¢'(7)=0 during the existence of this state in a time in-
terval r,_1<7<7,. The unknown switching timer, character-

mean value zero and standard deviatiorThey are generated by . X .
a standard computer program. These assumptions lead to a Gaﬁ&?—the change to the next partial state._The passive contact force
can be calculated from E¢L0) at any timer>r,_,. Sticking

:ﬁLTS?I’Iztgguiﬂogi ; f;k.le friction coefficient along the sliding path al%pfinished as soon as the _ve_llue of _the passive contact fayce
The interface parametekX cannot be correlated with the realreaches the threshold for sliding, which means

geometry of the interface. This is conditioned by Coulomb’s law lpo() = pal

being independent of the shape of the contact area, as well as by P a

the rigid-body model having no distinct geometrical dimensiorthe value of the active friction force, is known from the end of

Therefore A can only be used as a relative measure. The questigie last sliding process ai._; and is kept constant during,_,

(a) versus sliding path, (b) Gauss-

whereX,, are real numbers, normally distributé@aussiajwith

(12)

is, how does the mechanical system behave if the interface paramr< 7, . Equation(12) is called a switching condition. As,(7)

eter A tends to zero without changing the standard deviation
Sliding is determined by the motion equation

m¥+R,=mgsina+maQ?sinQt. (6)
During sticking a passive tangential contact force
R,=mgsina+maN? sinQt (7)

exists. The quantities

=0t
A=tanalpg
B=a0?%(uqg cosa)
pp=Rp/(mgmgcosa)
pa=Ra/(pnomgcosa)
£=Bx/a

5=BA/a

(8)

Cn=Xn/ o

allow a dimensionless representation (8f, (6), and (7) in the
form

pa=(1+cp)sgné’ ,
"=—p,+A+BsinT §'#0 ©)
for sliding, and
pp=A+Bsint ,
" =g ) = (10)

is a known function in time, the switching timg, follows from

the search for the first root of the algebraic expres$id in the
open interval ¢_,,7]. If no root exists, the mechanical system
remains in a state of lockup for all times. Otherwise, sticking is
followed by sliding. Knowing the switching time,, the switch-
ing decision

sgr(é’)=sgnpy(7«—0))

rules the direction of sliding. At the switching timg, the contact
force (11) changes from passive to active continuously, but not
continuously differentiably.

3.2 States “Sliding”. Assume r=r1,_,; to be a known
switching time at which a partial state “sliding” with a known
direction of velocity¢” starts. The previous history yields the gen-
eralized coordinate§(r,_,—0) and¢'(7,_,—0)=0 at the time
7—1— 0. They form the initial conditions

&1 1+0)=&(m-1—0)
&' (n-1+0)=0

(13)

(14)

for the equation of motiort9) with a random numbec, known
from the previous partial state. The sign of the velodityis
known atr,_;+0 from history. Therefore, Eq9) becomes lin-
ear. Taking(14) into account, its explicit solution can be given.
Because of its simplicity it shall be omitted in the following. A
numerical integration is not needed.

The procedure of solving a state “sliding” consists of two
loops. The outer loop concerns the jump of the deviafis) in
Eq. (4). The intervalss on the total sliding path are enumerated by
n=0,1,2... .

for sticking. The random numbey, must be generated after each During sliding the active contact forge, will change its value

sliding stepd. The constant displacemeg§ characterizes a dis- after each length step. Assumer;,_; to be a known switching

tinct state of sticking. During the course of time, the contact fordéme at which the value op, changes from ¥¢,_; to 1+c,.
Thenc, has to be generated as a new random number. The initial

{Pa , &'#0 conditions for the solution of Eq9) in the open interval £, _ 1,

p= . r_

Pp> §'=0

read
is intermittent between active and passive. The separation points
are called switching times. They are the inherent unknowns of the
nonsmooth dynamical problem under consideration.

11

&1 1T0)=§(7,-1—-0),
§'(mh-1+0)=§"(7,-1-0).

(15)
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The value of the active contact forgg=1+c, is limited to a 4.1 Deterministic Dry Friction. Both parameteré&\ and B
time interval r,_ <7<, with unknown upper bound. It is fin- contain implicitly the constant mean valug of the coefficient of

ished when the ratio friction. The absolute value of the active friction force is normal-
£1de(7)| ized to|p,| = 1..Th(.e intensity of the.har.monic drive is captured by
f =n:neN (16) B=0. The inclination of the plane is given #=0. A constella-
o O tion 0O<A=<1 andB=0 corresponds to the trivial lockup of a

mass on an inclined unmoveable plade>1 leads to unidirec-
tional accelerated sliding down. Within the rangeeA<1 and
B> 0 (sufficiently large to exceed the threshold value of Bd))

the mass performs different types of steady-state motions. Their
response period 72 always equals the dimensionless excitation
Period. A constant mean velocity

becomes the natural number As &(7) is known explicitly, the

for calculation of the unknown switching tims, .

The inner loop controls the existence of tkién smooth state,
which actually is assumed to be “sliding” by inspecting all suc
cessive interval$ one by one.

A partial state “sliding” consists of a sequence of solutions of E=lE(r+2m)—E(r)]2m (21)
Eq. (9) with different values ofp, . Altogether sliding exists in a
time ranger,_ ;< 7<7,. The unknown switching time, charac- terize the main property of a distinct respon
terizes the transition to a new state. Sliding in one direction petenze ain property ot a distinct response. .
finished when the velocity’ becomes zero. The search for the " 19U'€ 3 shows phase curves of three steady states during two
first root of the switching condition fesponse per_lo_ds. Figurda3 deplct_s a nor_ma_ll situation with

alternating sliding up and down without sticking. The amount of
&(n)=0 (17) velocity in a state “sliding down” is about three times larger than
for “sliding up.” This leads to a drifté(7+27)—&(7)=6.11
during one response period. The valde=0.99 for the motion
{Btted in Fig. 3b) is near to the critical inclinatiod=1.0. Even
ow excitationB=0.4 is sufficient to induce a steady-state motion
with a considerable drif¢(7+27)—&(7)=2.34. The response
consists of successive states of unidirectional sliding down with
intermediate states of sticking. Their duration of about ten percent
|Pp( 7+ 0)|<|pal (18) of a period is not visible because time is eliminated in the trajec-
. . . S . tory. Figure 3c) depicts the fact of an approximately horizontal
is valid, sticking really exists in the open intervat (. If, On  ,3he withA=0.01. Despite the strong excitati@= 4.0, the drift
the other hand, &(r+2m)— &(7)=0.36 is very small. The response consists of a
, (19) sequence of alternating sliding without sticking. The velocity dis-

lpp(7i+0)[>1p equence hating slic
. . -’ ° . . _.._tribution in both directions is nearly the same.
there exists an immediate reversal of motion to opposite sliding

4.2 Stochastic Dry Friction. In addition to the system pa-

exists for all types. This quantity will be taken for now to char-

in the open interval £,_,, 7 leads to the switching time,. This

is again an algebraic task. If no root exists, the mechanical syst
remains in a unidirectional sliding process for all times. Othe
wise, one has to decide about the new state startimga®. First,
sticking is assumed. The passive contact fqiger,+0) follows
from Eqg. (10). If the switching decision

sgr(¢’)=—sgn¢’(n—0)). (20)  rametersA and B two more parameter$ and o are needed to
At the end of each sliding process, the contact fqrds discon- describe the friction properties of the contact surface. Its interface
tinuous. property is measured by. Three valuess=0.1, §=0.01, andé

The problem of integration is reduced to an algebraic task. This0.001 will be considered in the following. The standard devia-
is the determination of all switching times on the basis of théon o=0.1 of the random numbers in E@) will be the same for
switching conditiong12), (16), and(17), which will be performed all problems. To compare stochastic effects with the correspond-
by numerical means as described by Vielsack and Harféihg ing deterministic result, the probability density functipge) of
The total motion consists of a sequence of different states, whili¢ true relative error
are valid during time intervals of different lengths. The end of a gt g ,
certain state determines the following one. The total solution is e=[&m(AB)~En(AB,8,0))/én(A.B) (22)
pieced together analytically. The process is strongly history def the mean velocity for a given set of parameters is needed. The
pendent. o o procedure is as follows: The deterministic val§fg(A,B) is cal-

Despite the fact that no numerical integration is necessary, glljated once. The stochastic valgg(A,B, 8,0) changes from
calculations are extremely time-consuming. The reasons lie in the
iterative determination of all transition points between successive
length intervalsé to get the sequence=0,1,2 ... and of all
switching times between all intermittent states “sliding” and
“sticking” to get the sequenc&=0,1,2 ... . Moreover, the time
ranger>0 for the calculations must be chosen very large to ob-
tain sufficiently large numbers of samples because the durations
of the sliding periods are random. In reality, to get one probability
distribution, about 15 hours are needed on a Pentium II, 400 MHz
PC.

/7
4 Resullts. | | o/ |A=on
The main interest is focused on the consequences of stochastic 11 B= 4.0
friction on the system’s response. It is obvious that only a limited 0 : ()

number of examples can be considered. Their choice is rather
heuristic. But the aim is to compare a “normal” situation with
two “exceptional” ones. This implies the appropriate choice of
three sets of parametesand B. The question is whether equalrig. 3 Trajectories of steady-state motions: () “normal” situ-
stochastic properties and o have the same influence on the reation, (b) near to critical inclination,  (c) near the horizontal
sponses in all three sets, or not. plane

0.36
4
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Fig. 4 Probability density of the relative error in the mean ve- YN
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period to period. All results for the first 100 response periods ary. 6 Five response periods of a motion near the critical in-
omitted to exclude transient effects. Then every tenth result dination of the plane. Left: trajectories; right: contact forces
stored. This distance of time seems to be enough to obtain ingersus time.

pendent samples. Altogether, 10,000 samples are calculated for all

cases.

Figure 4 shows the reduction of the error arising at theAset Knowing p=p(7) the problem could be rewritten by only one
=0.25,B=3.0 when decreasing the interface parameielt is equationé” = —p(7)+ A+ B sinr. Each integration to gef’ and
considerably small even for the large relative valire0.1. The ¢ is equivalent to a smoothening effect which is well known from
integrals of the probability density functions are equal to unity. experimental investigations. Even a very noisy signal of the ac-

This behavior of a “normal” motion has also been confirmedeleration leads to a smooth signal for the displacement. The
by additional calculations wherk was sufficiently far away from smaller § for a fixed valueo, the better is the approach to the
the exceptional cases=0 andA=1.0. The transition of the sto- deterministic solution, which can be seen from the corresponding
chastic response to the deterministic one for decreaSioan be phase curves. However, this intuitively expected property gives no
explained by considering the course of the contact fotd¢ dur- quantitative information about the influence of the stochastic pa-
ing time (see Fig. % The time interval 100@7<7<1005 27 is rameter on different types of motion.
chosen arbitrarily. Figure 6 shows phase curves and contact forces for the excep-

tional motion near to the critical inclination of the plane. The
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Fig. 5 Five response periods of a “normal” motion with differ- Fig. 7 Five response periods of a motion on an approximately
ent interface parameter. Left: trajectories; right: contact forces horizontal plane. Left: trajectories; right: contact forces versus
versus time time.
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oor] PO when changing the type of motion. Considering a completely dif-
: ferent mechanical situation Adani6] has pointed out a similar
0.1 discrepancy. The coefficient of friction at the interface can also
differ from the apparent coefficient at a large distance due to
interface stick-slip.

All results are based on a constant vadtie 0.1 of the standard
deviation. Dividingo in half and recalculation of all examples
leads to probability densities with less deviation and double maxi-
mum values than those given in Figs. 4 and 8. Apparently the
mechanical problem becomes deterministic when the deviation
tends to zero.

0.99 ple)
0.4
0.1 o

svihN
nwn

s

o

[
o

_§=0.001

5 Conclusions

Considered are sliding motions of a mass on an inclined mov-
ing plane. The influence of both different angles of inclination and
harmonic excitations on the response of the mass are investigated.
The contact force is modeled under the assumption of Coulomb’s
law. In the deterministic case, the friction coefficient remains con-
stant along the whole sliding path. In contrast, a relative interface
parameter and a deviation from the constant friction coefficient is
Fig. 8 Probability density of the relative error in the mean ve- introduced to capture stochastic properties of the contact surface.
locity; (a) motion near to the critical inclination of the plane, (b) In the deterministic case, all responses show a common feature
motion on an approximately horizontal plane in the steady state. This is a constant mean velocity depending on
both the inclination and the excitation. To characterize the influ-
ence of the stochastic parameters, the probability density of the

property of the contact surface is the same as before. Now, evefflative error in the mean velocity is taken as a measure.
n intuitively expected result is valid for all kinds of motions:

small value 5=0.001 affects the result considerably compareﬁlhen decreasing the interface parameter of the contact surface,

with the deterministic one(Note: scales of the trajectories differ I hasti h h ding d .
from Fig. 5) On the other hand, a large valde=0.1 give rise to all stochastic responses approach to the corresponding determin-

siding periods, which can be longer than the exciing periofh "ok S0 R JOREER B IO el o el
Moreover, it can happen at a point of separation from sliding P y )

stcking that the aciive contact frgs becomes so large that theq 2t SEET B T E R I Sectnd B SEC Y BoCo £
switching condition(12) is never reached during sticking. The

system remains in a lockup position for all times. In such a Si,[fr_lctlon coefficient can include an unpredictable error with respect

ation the program is restarted to obtain a sufficient number ?r_eakllty. Th'rs] statemefnt |shconf|rmed bﬁ.K'kL.jCh' ?nbd ?](ﬂéh
samples for the error in the mean velocity. t is known that even for the same combination of both contact

terials, changes only in the dynamic properties of the experi-

The second exceptional case is a motion on an approximatel ntal setup or the driving velocity produce dramatic changes in
horizontal plane. Here Fig. 7 shows a similar situation as beforg. portr g velocity p 9
the observed friction characteristics.

(Note: Scales of the trajectories differ from Fig) he stochastic
results differ considerably from the deterministic one. References

The error distributions for both exceptlonal motions C.O”f'.rm thel[l] lbrahim, R. A., 1994, “Friction-Induced Vibration, Chatter, Squeal, and
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caseA=0.99. Its mean value is unequal to zero. The distinction to  Roughness-Induced Contact Vibrations at Hertzian Contacts During Steady
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tant consequence. The mean Sl'd'ng_ velocity of the mass on th Permanently Disturbed Non-Smooth Motions,” Z. Angew. Math. Med@,,
plane is an easily observable quantity when performing experi- pp. 389-397.
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Bending of Cord Composite

A.J. Paris’ . :
Visiting Assistant Professor, CVI d I Sh I I
i Profesor Inarica elis
G. A. Costello An analytical method for determining the load-deformation behavior of cord composite
Professor Emeritus, cylindrical shells is developed by considering the mechanics of the matrix, the cords, and
Fellow ASME the shell. To illustrate the method, a circular cylindrical shell with a single ply of uni-
formly spaced cords parallel to the shell axis is considered. The differential equations for
Theoretical and Applied Mechanics, the displacements are derived. These equations are solved analytically in closed form for
University of lllinois at Urbana-Champaign, a shell with the cords on the middle surface and subjected to axisymmetric loading. The
Urbana, IL 61801 deformations are strongly dependent upon the properties of the constituents, including

the extension-twist coupling of the cords, and the geometry, boundary conditions, and
loading.[S0021-8936)0)02701-X

Introduction analysis of a cord composite that included the extension-twist
coupling of the cord. It was not until an analysis of the static
er’esponse of cord composite plates was presented in the doctoral
) ) - ) thesis by Kittredgd 6] and in three papers by ShielHittredge

A cord Lcomposite consists of cqrds gmbedded in a matrix. Clﬁﬁd Costelld 7-9] that the mechanics of the cords was included
rent applications of cord composites include pneumatic tires, 4l \he analysis of cord composite plates. Pdfi§] considered
springs, hoses, sleeves, couplings, belts, bladders_, d'ap_hrag&?d-reinforced cylindrical shells.
and various mem_brane structures. The cords have_ hlgh_aX|aI stiffrhe objective is to assess the effects of changes in the geometry
ness an_d hlgh axial streng_th, as well as small bending stiffness apy/or constituents of a cord composite shell on the load-
long fatigue life. The matrix separates and protects the cords, &figformation relations. These relations are developed analytically
a rubber matrix can sustain large strains and resist wear. In aqgl)y considering the mechanics of the matrix, the cords, and the
tion, the matrix provides a web between the cords to carry @hell. The matrix is modeled as linear-elagfit1]). The theory
contain loose material, such as gravel on a conveyer belt, ortffat is used to model the cords was developed by Cog#]land
contain liquids or gases inside such structures as bladders, tam&ludes the extension-twist coupling of the cords. For the shell,
hoses, tires, air springs, and diaphragms. differential equations for the displacements are derived using the

The most common application of a cord composite shell is thgalysis of the bending of circular cylindrical shells by dtje
automobile or truck steel-belted radial tire, where steel cords gre2]. These equations are solved for a shell with axisymmetric
embedded in a rubber matrix. It is the combination of the propeoading and the cords on the middle surface. The response due to
ties of the steel cords and the rubber matrix that allows tire swniformly distributed axisymmetric end loads and uniform inter-
vival after striking rocks and potholes. Engineers in the tire indusal pressure is found for both a semi-infinite cylinder and a finite
try believe that the performance of tires still can be significantlgylinder. Other solutions are given by PafE0]. The resulting
increased through improved structural analysis. One aspect of gdead-deformation relations are strongly dependent upon the prop-
formance of a tire is the load-deformation relations. Currentlgrties of the constituents, including the extension-twist coupling
new designs are evaluated by the long and costly process of buitdthe cords, and the geometry, boundary conditions, and loading
ing a prototype and determining its properties. To expedite tiaé the cord composite shell.
development process, an improved analytical model for the load-
deformation relations is needed. ;

In the literature, attempts have been made to determine t grmulatlon
behavior of cord composites by experimental, finite element, andThe differential equations for the displacements of a cord com-
analytical methods. Reviews of cord composites are given Bgsite cylindrical shell due to the loads are developed by consid-
Walter[1] and Walter and Pat¢R]. While many papers contain aering the _mechanlC.S O.f the matrl)_( mate_rlal, the Cords_, and the
brief discussion of cylindrical shells, toroidal shells, tires, or airshell. A circular cylindrical shell with a single ply of uniformly
shell structure. Typically, the approach to determine the loafonsidered. ) _
deformation relations for cord composites has been similar to thelNeé matrix is assumed to be homogeneous, linear-elastic, and
approach used for conventional composif&@); a cord has been |sotrpp|c. _The _stre_ss-straln r_elatlons and the stra}ln-dlsplacement
modeled by an isotropic-rod approximation, a cord composif@'at'ons in cylindrical coordinates can be found in the book by
lamina by the rule of mixtures, and a cord composite laminate M"’e [11]. . -
classical lamination theory. The extension-twist coupling of the COStello[4] showed that the cord axial force and twisting mo-
cords ([4]) was ignored. More recently, this coupling has beeffient are linearly proportional to the axial strain and twist of the

taken into account. Paris, Lin, and Costdlj presented the first cord, and that the cord bending moment is linearly proportional to
B the curvature of the cord. The theory of Costello most recently has

7o whom all correspondence should be addressed been verified by Jiang, Yao and Waltph3], where a finite ele-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ment model, experimental results, an(.j the theo.ry of Costello ar.e

MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLEp COMpared. The transverse load-carrying capacity of the cords is

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Decheglected. Although the axial response of the cords is different in

23, 1998; final revision, Sept. 10, 1999. Associate Technical Editor: R. C. Bensqansion than in compressidfi4]), these bimodular characteristics
Discussion on the paper should be addressed to the Technical Editor, Profe

: : 0 e e HE neglected.
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstor, . . .
Houston, TX 77204-4792, and will be accepted until four months after final publi- 1h€ shell is modeled following the theory for the bending of
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. circular cylindrical shells by Flgge[12]. It is assumed that lines

An analytical method for determining the load-deformation b
havior of cord composite cylindrical shells is developed.
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straight and normal to the middle surface before deformation ¢
straight and normal to the middle surface after deformation, ai
that the change in the length of any line normal to the middl
surface is negligible. In addition, the shell is assumed to be th
and the strains, displacements, and rotations are assumed tc
small. These assumptions are often referred to as the Kirchhc
Love hypothesis. In the current theory, it is assumed that the coi
are perfectly bonded to the matrix and that the volume fraction
the cords is small.

Equilibrium Equations. Figure 1 shows a cord composite
cylindrical shell with a single ply of uniformly spaced cords with
the cord axes parallel to the axis of the shell. Figure 2 shows
typical element for the shell. The radius of the middle surface
denoted bya, the thickness by, the cylindrical coordinates hy;
¢, andz, the arc length along the-axis bys, and the element
dimensions in the and ¢-directions byAx andaA ¢. The x-axis
is parallel to the longitudinal direction, theaxis is parallel to the
circumferential direction, where th& and ¢-axes lie on the
middle surface, and theaxis is an inward normal to the middle
surface of the shell such that thxe ¢, and z-axes form a right-

handed orthogonal coordinate system.
Figure 3 shows a typical element for the shell wity the

tractions and the force resultants afixl the moment resultants.

The tractions in the, ¢, andz-directions are denoted ky,, p,,,
andp,, the force resultants by, , Ny, N, N, Qy, andQ,,,

Fig. 1 A cord composite cylindrical shell

O 1) =

Fig. 2 A typical element for the shell

118 / Vol. 67, MARCH 2000

(b

Fig. 3 A typical element for the shell with (&) the tractions and
the force resultants and  (b) the moment resultants

and the moment resultants By, , M,,, M., andM,. Itis
assumed that the force and moment resultants may be represented
by a Taylor series. The equilibrium equations for the element in
terms of the tractions, force, and moment resultants are found by
setting the sum of the forces equal to zero and the sum of the
moments equal to zero. Setting the sum of the forces equal to zero
and setting the sum of the moments equal to zero yields

K
ERr L S I
%4‘%%7(343:0’ “)
axx N é 5(';A¢¢’X—Qx=0, (5)

and
Ny~ Ngxt Ma@( =0 ©

Solving Egs.(4) and(5) for Q, andQ,, respectively, yields

My, 1M,
= +_
X a Jde

Q, ™

and
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M, 1 OM
Qx_ IX +a d . (8)
Substituting Eqs(7) and(8) into Egs.(1)—(3) and (6), yields
IN, 1 9N,
__+ =
(9)( a (9()0 px 0! (9)
Ny, 10N, 1dM,, 1 oM,
x Tade a ox & ap PO (10
#PM, 1 °M 1 M 1#M, N
2X+— X = <px+_2 2‘P+_¢+pz_0’
X a dxde a dXde a“ Jde a
(11)
and
©X
NX¢—N¢X+ T:O (12)

Equationg(9)—(12) are the differential equations for the force and
and
M, . There are four coupled, linear, nonhomogenous, partial dif-

moment resultantN,, N,,, N, N,, My, My, M,

face of the shell in the, ¢, andzdirections are denoted hy v,
andw, respectively. Using the Kirchhoff-Love hypothesis to ex-
pressu,, va, andw, in terms ofu, v, andw yields

ow 13
Ua=u ZW, (13)
_ a—z2z Z JW 14
e 14)
and
Wa=W, (15)

whereu=u(x,¢), v=v(X,¢) andw=w(X,¢).

Strain-Displacement Relations. The normal strains in thg
and ¢-directions are denoted hy, ande,, respectively, and the
shearing strain corresponding with the directions of the axes of
and ¢ is denoted byy,,, . The strain-displacement relations are

ferential equations with constant coefficients in terms of eight

unknowns, and the problem is statically indeterminate.

Kinematics.

The shell undergoes a deformation, and pdéimhoves fromA to

A’. The displacements @ in the x, ¢, and z-directions are de-
noted byu,, va andwy, . The displacements of the middle sur-

Ua

Fig. 4 Exaggerated displacements and rotations for the shell
(a) in the xz-plane and (b) in the ¢z-plane

Journal of Applied Mechanics

Figure 4 shows exaggerated displacements and
rotations for the shelfa) in the xzplane andb) in the ¢z-plane.

ExT (16)
1 avA
8(’0:? %—WA y (17)
and
1 (9UA !9UA
YeTT o T ax (18)

wherer=a—z.

Matrix Force and Moment Resultants. The normal stresses
in the x and ¢-directions are denoted hy, ando,, respectively,
and the shearing stress corresponding with the directions of the
axes ofx and ¢ is denoted byr,,, . The stress-strain relations are

szﬁ(s)ﬁ- UnE o) (29)
m
m
U“’Zl—_vﬁq(a“’-i_vms)()’ (20)
and
E
Ty . (21)

¢ 21t vy) X

whereE,, is the modulus of elasticity ang,, is the Poisson’s ratio
of the matrix material. The subscripts and ¢ will be used to
denote variables related to the matrix and cord, respectively.

The matrix force resultants are found by integrating the stresses
over the thickness of the shell and the moment resultants are
found by integrating the first moment of the stresses over the
thickness of the shell. Figure 5 shows a typical element for the
shell with the in-plane stresses. The stressgand 7,,, act on a
differential area §—z)A ¢dz of the surface of the element with a
normal in thex-direction and the stresses, and 7, act on a
differential areaAxdz of the surface of the element with a normal
in the ¢ direction, all at a distancefrom the middle surface. The
matrix force resultants are denoted Ny,,, Ny,m, Noxm, Nem,

Qxm» andQ,,, and the matrix moment resultants are denoted by
xms Myom, Mgxm, andM .. The matrix force and moment
resultants are

1 h/2
Nxm=mfihlzox(a—z)mpdz, (22)

1 h/2
Nme:m f_h/ZTX¢(a—Z)A¢dZ, (23)
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Aw adv 1du

M(me:*(lfvm)gz am+§&*§£ , (37)

where terms oD(h/a)® have been neglecte,is the extensional
rigidity of the matrix and is defined to be

E.h

"

(38)

andD is the flexural rigidity or bending stiffness of the matrix and
is defined to be

£
. &
(A2 ..;"-“
> i e -

225

Enh®

D=1

(39)

Cord Force and Moment Resultants.  Figure 6 shows a
z cord loaded by an axial force and twisting moment, wheges
] ) ) ) ] the axial force M, is the twisting momentR; is the radius of the
Fig. 5 A typical element for the shell with the in-plane matrix inner wire, R, is the radius of the outer wire®, is the outside
stresses radius of the cordm is the number of outer wires, andis the
helix angle of the outer wires. The cord axial fofeg and twist-
ing momentM,. may be expressed as

Lo Fe e+ CR (40)
= — =18 2RcTe
Mym aho f—h/ng(a z)Apzdz, (24) AE. c cTe
and
1 Jhlz
My om=—— Two(@—2)Agpzdz 25
“hahe o @ ——3=Caec+CyRer, (41)
ECRC
h/2
N(pm:i f o ,Axdz, (26) Wher_eAC is the metalli_c cross sectio_nal arE_aa is _the modt_JIus of
AX | _pp elasticity of the materialg, is the axial straing, is the twist per
unit length, andC,, C,, C3, andC, are constants which can be
1 /2 determined analyticallj4]. Figure 7 shows a cor@) undeformed
Nexm=72 TyoAXdZ, (27)
AX ¢
~h/2
1 J‘h/2 M
Mom="+— o,Axzdz (28)
OAX S p ¢
and Fe
1 J‘hlz
M oym=-— TyoAXzdZz (29)
M AX J ¢

The change in these integrals due to the cross-sectional area of
cords is neglected.
Equations(13)—(29) yield

N c u vy dv vy D 9*w 30
=Cl—+————W|+——
xm X ade a a ox°’ (30)
o
N 1 v gu w) D 2 a1
= ——+ - | - —
em ade ""ox a POARRFIE (31)
N 1-vy, (dv 14u 1-vy, D [dv  ¢Pw A A
L) gx  ade 2 a’\ox  dxde)’
(32) Section A-A
N 1-vy (dv 10u) 1-v,D(1du J*w
L) X ade 2 a?lade oxap)’
(33)
, W Pw  du v
Msz—g aW+Umﬂ—¢2+a5+vmﬁ s (34)
D [ &*w , W
M‘Pm:—g 8—([32+vma W+W , (35)
M 1 D Pw v 36 *
= — — —_— —_— + J—

Xem ( Upn) a2 a(?X(?(p a(?X , (36)

and Fig. 6 A cord loaded by an axial force and twisting moment
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Fig. 8 A typical element for the shell with the cord axial force,
twisting moment, and bending moment

cord may be divided by the spacing of the cords and resolved into
the force and moment resultants in the shell. The cord force re-

sultants are denoted Y., Nyoc, Nexe, Nycy Qxe, @andQ .,
and the cord moment resultants are denotedMy., M.,
M e, andM .. Referring to Figs. 3 and 8 and comparing the

force and moment resultants with the cord axial force, twisting

moment, and bending moment yields

(; N¢c:Nx¢c:Qx: Q¢:N¢XC:M¢C:M¢XC:O’ (46)
FC
Fig. 7 A cord (a) undeformed and (b) deformed in pure bend- Nxc:F: (47)
ing

(48)
and(b) deformed in pure bending, wheké, . is the cord bending
moment, andp, is the radius of curvature of the cord. The corctnd
bending momenM . may be expressed as M,
C

M -
M X¢C
= = CoRuke, 42) °
EcRe whereb is the spacing of the cords. Equatiof)—(49) yield
wherex.= 1/p. is the curvature an@s is a constant which can be ACiEc[au  dw\ AC,E.R.[dv  d*w
determined analytically{4]). e=—— ——zC—2> + = (— + ) ,
Figure 8 shows a typical element for the shell with the cord b lax ox ab Ix  IXde
axial force, twisting moment, and bending moment. The (50)
z-coordinate of the cord axis is denotedzs The axial strain, A.C1E.z. du [ACiE.Z2  CsE.RY\ o2w
change in curvature, and twist per unit length of the cord may be M, o= ——( + )—2
expressed in terms of the strains, change in curvatures, and twist b X b b X
of the middle surface. Using Eq&l3)—(15) to expresse,, &, AC.ERzZ: (v w
and 7., yields ab X axa@) ,

(49)

(51)

% ‘ (43) and

2=z CiERZ[ou  Pw| C.ERI (v  oPw
W, MXW:*T(&i“W)* ab (5+axa¢>)'
ox%

€=

1

Ke=—

Pc

, (44)

C

o Note that by dividing the cord axial force, twisting moment, and

and bending moment by the spacing of the cords that the cord is

1

2

smeared out in the circumferential directi@p-direction but not
) (45) in the radial directior(z-direction. The position of the cord in the
Z=Z

J
Tc= &
Figure 3 shows a typical element for the shell wid) the

tractions and the force resultants ald the moment results. Fig-
ure 8 shows a typical element for the shell with the cord axial Total Force and Moment Resultants.  The total force and

Oa LW _ 3o
r de Jz

assumed that the spacing of the coldss sufficiently small to
yield accurate results.

radial direction is significant where bending is considered. It is

force, twisting moment, and bending moment. The transversgoment resultants are the sum of the force and moment resultants
load-carrying capacity of the cords is assumed to be negligiblef. the matrix and of the cords. The total force and moment result-

The axial force, twisting moment, and bending moment in thents may be expressed as
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Ny = Nym+ Nyc, (53) and

N, =Nym+Noc. (54) 0 CsEcR: u [(1-vm)D | CiER| %0
¢ b ox? b | aox?
NX(p: Nx<pm+ NXgoC ) (55) X a a X
CiER¥z. *w (D C,ERY #*w D aw
N_y«=Nyxmt Noxes (56) T8 T |2 A ey 27 2 07
A T @ \at Tab e 23 de
My =Mym+ My, (57) D #w
M,=M nt M, (58) sl (70)
Myxp=MyxpmTMxge. (59) Differential Equations for the Displacements of the Middle
and Surface.  The differential equations for the displacements of
the middle surface of the shell are found. Substituting EgH—
Mex=Mgxmt M gxc- (60)  (69) into Egs.(9)—(12) yields
Equations(30)—(37), (46), and (50)—(60) yield . A.C,E, ﬂJr 1— vy, . E @-‘r A.C,ER. &
N —(c+ AcclEC) U ACER. v v,C dv  v,C b Jox®> 2a° a?) d¢? ab  ox?
= - 2 me 7 Tme
b/ ox ab dx a Jde @ (1+v)C 0% vuCow (D ACiEcze| #w
D ACC1ECZC> W ALCLER, 7w (61) T T2 axde a x \a b ax3
el = ,
a b /ox ab  axde (1-u)D Fw  ACER Fw
u Cdov (C D D #w 23 gxdg? ab  9x%de TP=0, (71)
N¢:vaa—+—a—— —+t = W——3F, (62)
X ade \a a a de C:ER: 72U (1+v,)C 42
N (1—v,)C du . 171;,,,(C+ D v (1-vy)D Jw ab  ax2 2a  oxde
xp= - 2wt T o
2a e 2 a’jox 2 "X‘y(‘gg) (1-vm)C  3(1—vmD  C4ERY 4%
2 T T Ta |
N 11—y D au+ (1-v)C v (1-v,)D dw , o
=5y 270 > X 72 oxig’ . Cov  CsERcze s°w  C aw
(64) a’dg? ab ox® a? e
D ALCE.z) du  ACER.Z. dv  vyD dv (3—v)D  C4ERY] oPw
= - —+ — _— =
My a b X ab ox a de¢ 2a2 a’b |ax%de +P,=0, (72)
CsER;  ACIEZ) Pw  ACERZ W  y,Caou [ACiEczz D\ du CERE fu
—| D+ + B2V e e— — 7 el s 2
b b X ab IXde a ox b a/ ox ab  9x%d¢
D Pw (1-v)D Pu  A.CoER.Z. ¢°v
—7 7 (65) + 3 2 -3
a“ do 2a IXIp ab X
D( W azw) (3—v)D C4ERY % Caw (C D
M,=——| W+ vmai—5 + , 66 . m= T4 I Pt
Y] moxZ 92 (66) [ 2a2 &b |ox%oe 2o \a2 &tV
T C3ERS ou [(1-vy)D C4ERY] ov ALCiE.Z2  CsERY o*w
X b ox a ab | ax - b b b ax*
C3ER3z. 3w [CLE.R? . (1-v,)D] 7w AC.E.Rz. CiER3z)\ o*w
b x> ab a Xde' + ab T ab X3
(67) 2D C.ERY o*w 2D #w D dw
and \Z T T ot a e @ ot PO

a
Equations(61)—(68) are the total force and total moment resultlinéar, coupled, nonhomogenous, partial differential equations

M (1—vm)D( 1 u amw 02w) o (73)
= | "5ty ta : o . .
o 299 20x dxde and Eq.(12) is identically satisfied. Equation1)—(73) are three

ants. Substituting Eq(61)—(68) into Egs.(7) and (8) yields with constant coefficients for the three displacements, andw.
The coupling is due in part to the extension-twist coupling of the
[ D N A.C.E.z;\ #%u . (1-vmD ¢%u cords.
R R b M PO
n ACoER Z, v (1+v,)D 9% ACoEcR Z, Results
ab  ox? 237 xde ab

Axisymmtric Loading. Closed-form solutions are found for
CSECR‘C‘ AcclEng Pw D Jw a shell with the cords on the middle surface, axisymmetric load-
b + b i 22 Ixio? ing, and the in-plane tractions equal to zero. First, a general solu-
¢ tion for the displacements from the loads is developed. Second,

(69) the solution for a semi-infinite cylinder loaded by a uniform in-

I*w
X——
IX“dp
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ternal pressure and by end loads is developed. Third, the solution u=u(x), v=ov(x), and w=w(x). (75)
for a finite cylinder loaded by a uniform internal pressure and by
end loads is developed. ) _ Note that although the loading is axisymmetric, the displacement
The shell has the cords on the middle surface, axisymmetficihe ¢, directionu is not assumed to be zero. Since the loads and
loading, and the in-plane tractions equal to zero. Therefore, e displacements are functionsbnly, Egs.(74) and (75), all
P=0, p,=0, p,=p,(x), and z.=0. (74) derivatives with respect tg are zero.

Since the loads are functions g&fonly, Eq. (74), the displace-
ments of the middle surface will also be functionsxabnly and General Solution. Solving Egs.(71) and (72) for d?u/dx?

may be expressed as andd?v/dx? and integrating once with respectxoyields
|
1— vy, 3D| C4ER?
du 2 (CJF? % Cv, D d%w
= 3 —7—| —W———=|+By, (76)
dx - CiEAN[1— vy c 3D| C4ER:| C,CiEZRIA.\ a a dx
b 2 a? a’b a’b?
and
C3ER?
dv ab Cup D d?w B 77
dx - CiEA\[1- vy, 3D C.ER? j C,C.ERA | Ta VT aad) T 7
b 2 a® a’b a’h?
whereB; andB, are constants of integration to be determined.
Substituting Eqs(76) and (77) into Eq.(73) yields
d*w d?w
Alw +A2W +Aw=p, (78)
where
1— vy, 3D| C4ER?
A Dt CsE.R! (D)2 2 a? a’b .
e b a oy CiEA|[1-vn (3D} C.E.RY] C,CiEZRIA. [’ (79)
b 2 a?]"  a% a’b?
1— vy 3D| C4.E.R?
_2v,CD 2 a’ a’b 80
27 a? - CiEA\[1— vy, 3D C4ER? } C,C:EZRIA, [ (80)
b 2 a® a’b a’b?
1- 3D| C,ER?
, Um c+2 4 20 c
A C N D (v,C 2 a a‘h g1
a2 at | a oy CiEA|[1-vn( 3D C.ERY C,C.E2RIA. [ (81)
b 2 a? a’b a’b?
I
and 1(Az\12 A, |2
- —(— x| (85)
v,C 2\A, 4A,
p=—Bitp.. (82)

B;, B4, Bs, andBg are constants of integration to be determined,

Equation(78) is a fourth-order, linear, nonhomogeneous, ordinar§NdWp(X) is the particular solution that depends on the transverse
differential equation with constant coefficients ferand has the [0adingp,(x). An alternate form of the solution to E(78) is

solution w=D; cosh Bx)coq ax)+ D, cosh Bx)sin(ax)
—g Bx i
w=e "[B3 cogax) + By sin(ax)] + D3 sinh( Bx)cog ax) + D4 sinh BX)sin( ax) +w(X),
+eP{Bs cog ax) + Bg sin(ax) ]+ wy(X), (83) (86)
where wherea and g are as given above by Eq84) and(85), D4, D,
1A\ A, Y2 D, andD, are constants of integration to be determined, and
a=5\a + A, (84) w,(x) is the particular solution that depends on the transverse
1 ! loadingp,(x). The type of problem will determine which form of
and the solution is most convenient.
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end of a cylindrical shell with the equivalent shear force resultant.
Dividing both sides of Eq(87) by aAs yields the equivalent shear
force resultanfT, is

_EMCL: MX‘P_N

" aAs a Xe: (88)

X

When the transverse tractionps=p,+ p1X, wherep, andp,
are constants, the forcing temngiven by Eq.(82) becomes

v,,C
p= T51+ Pot P1X. (89)
The particular solutionv, of Eq. (78) for the forcing termp given
by Eq.(89) is
g+ (a) 2 ® 1 (v,C
. o . Wo=ns ——Bi+potpix]. (90)
Fig. 9 An element of the end of a cylindrical shell with (a) the 3\ a

loads with a moment about the centerline and (b) the equiva-

lent shear force resultant The particular solutionv,, given by Eq.(90) is valid regardless of

the boundary conditions. Therefore, it is valid for both a semi-
infinite cylinder with end loads and a finite cylinder with end

Consider the loads that may be applied to the end of a cylindlr?-ads'

cal shell. The force and moment resultants acting on the end of theSemi-Infinite Cylinder With End Loads. Consider a semi-
cylindrical shell areN,, N,,, Q,, M,, andM,,, . These are the infinite cylinder with a uniform internal pressung, and end
traction boundary conditions. Now consider the net moment @fads. The boundary conditionsat0 areN,=N, M,=M, Q,
these force and moment resultants about the centerline of the eyQ, andT,=T, and the transverse tractionps=p,, wherep,
lindrical shell. Figure @a) shows an element of the end of a cy4s a constant. It is most convenient to use the form of the solution
lindrical shell with the loads with a moment about the centerlingor w given by Eq.(83). The displacemenw is bounded irx and
The sum of the moments about the centerline is thereforeBs andBg must be zero. The forcing termis given by
Eq. (89), wherep,=0. The particular solutiomv, is given by Eq.

ML =My As—a(Ny,As). (87) (9%)? ag);ain whepréplzo. P 9 Y
The force resultanN,, and moment resultan¥l,,, can be re-  Applying the boundary conditiond,=N andT,=T atx=0 to
solved into an equivalent shear force result@iptacting on the Egs. (61), (63), (67), (76), (77), and (88), and solving for the
end of the cylindrical shell. Figure(B) shows an element of the constants of integratioB,; andB., yields

1- v, 3D C4ER? C,EAR: T
B — 2 a? a’b ab o1
e C+C1ECAC 1- vy, 3D|  C4ER] CoCiECR{A. (1)

b 2 a’ a’b a’b?
and
C3ERS ( CiEA

5 T Tap NGt )T o
2 o CiEcAc\[1—un (3D CiERY|  CoCHERRIA. (92)

b 2 a’ a’b a’b?

Applying the boundary condition81,=M and Q,=Q at x been determined in terms of the loads, and therefbuédx,
=0 to Egs.(65), (69), (76), (77), (83)—(85), and(90) and solving dv/dx, andw have been determined in terms of the loads. The

for the constants of integratiodB; andB, yields displacementau and v can easily be found by integrating the
equations fodu/dx anddv/dx, respectively, once with respect to
M+B D ACuy)  Ayp, x. The equations fou and v will have two new constants of
1l a 2ah, 2A, Q integration. The constants represent rigid-body displacements and
Bs=— 2a?A, T 278, (93) may be set equal to zero.

Finite Cylinder With End Loads. Consider a finite cylinder
of length 2L with end loads and a uniform internal presspe
The transverse traction i8,=p,, wherep, is a constant. The

and

M+B; E+M % boundary conditions ar&l,=N at x=*L, M,=M at x==*L,
B.— a 2ah;| 2Ag on Q=Qatx=-L, Q=-Qatx=L, andT,=T atx==*L.
4 2aBA; ’ (94) It is most convenient to use the form of the solutionviogiven

by Eg.(86). Since the transverse tractign=p,, thenp;=0 in
The constants of integratioB,, B,, B3, B4, Bs, andBg have Eq.(90). The cylinder is symmetric about thez-plane, and there-
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fore the transverse displacememtmust also be symmetric and whereE is the tensile moduluss is the shear modulud/ is the
Poisson’s ratio, and subscripts 1 and 2 indicate the in-plane ma-

the constants of integratidd, and D3 must be zero.

Applying the boundary conditiondl,=N and T,=T at x=
+L to Egs.(61), (63), (67), (76), (77), and(88) and solving for
the constants of integratioB; and B, yields Eqs.(91) and (92),

the same as for a semi-infinite cylinder.

respectively.
The cord volume fractioV,, is defined as

Equations(65), (69), (76), (77), (84)—(86), and(90) and apply- Ac

ing the boundary condition®,=—-Q andM,=M at x=L and

solving for constants of integratidd, andD, yields

Ve=pr-

terial properties parallel to and perpendicular to the cord direction,

(107)

The Akasaka-Hirano equations for the in-plane material prop-

Ag(M —Ag) +AsQ o5 erties are
l_ A Ag+AsA, (95) Ei=E.V., (108)
and E _%Em (109)
o _ ~AM=Ag) +AQ 06) I
N AAgtAsA7 G1,=Gp,, (110)
where v1,=0.5, (111)
A4=2apA; sin(al)sinh(BL), (97) and
As=2apBA,cogalL)cosiBL), (98) v,=0. (112)
B, ACum|  PoAs The properties of the constituents and the geometry of the cord
Ag=— " D+ oA )f T (99) composite cylindrical shell are
° : Steel cord: R;=0.15mm
A;=2aBA [ acod alL)sinh BL)+ B sin(aL)cosHBL)], R,=0.14 mm
(100) m=6
a=81.4 deg
and R.=R +2R,=0.430 mm
Ag=2aBA4[ a sin(aL)cosi BL)— B cog aL)sinh(BL)]. E.=200GPa
(101) v.=0.25
The constants of integratiod,, B,, D4, D,, D3, andD, have éi%g‘égmn?
been determined in terms of the loads, and therefibuédx, 01:0.0828
dv/dx, andw have been determined in terms of the loads. The 02=0.187
displacementss and v can easily be found by integrating the C3:O.0723
equations fodu/dx anddv/dx, respectively, once with respect to C4= 0.0638
X. The equations fou and v will have two new constants of Rubb : soT
: ) - . er matrix E,,=10MPa
integration. The constants represent rigid-body displacements and =05
may be set equal to zero. hell: hm:4l-‘\; —1.71mm
Selected results are compared with the solutions given By a=0 3C18 m
Gough-Tangorra and Akasaka-Hirano for a cord composite cylin- Y _(') 3
=0.

drical shell. In each case the cords are on the middle surface . . . e

are parallel to the shell axis. First, the results for an axially IoadZ@ﬂlte cylinder. ~ 2.=2a=0.635m

semi-infinite shell are examined. Second, the results for a semi-Consider a semi-infinite cylinder with an axial lobd=C. Fig-

infinite shell loaded by an edge moment are examined. Third, thee 10 shows the normalized displacemeuta, v/a, andw/a

results for an axially loaded finite shell are examined. The authotersus the normalized coordinatéa. The curves for the normal-

are not aware of any published experimental data on the lodged displacement/a are indistinguishable for the current solu-

deformation behavior of cord composite cylindrical shells to coniion, Gough-Tangorra, and Akasaka-Hirano. For the solutions of

pare with the analytical solutions. Gough-Tangorra and Akasaka-Hirano, the normalized displace-
A concise review of the solutions by Gough-Tangorra and

Akasaka-Hirano is given by Walter and P4i2]. Classical lami-

nation theory([3]) is used to find the stiffnesses of the lamina.

The solution given by Parif10] is used to find the force and 0.0005 L 3
moment resultants, and deformations of the shell. - c [
The Gough-Tangorra equations for the in-plane material prop- § . GTAH |
erties are 3 i ]
£ 00000 P T T T T R BT AR T
E;=E.V.+En(1—V,). (102) g Lo~ ]
\ 4
=l 4
4Em(l_vc)[Ech+Em(1_Vc)] ‘g F ™~ .
27T BEN HAEL(1-Vy) (103) 2 -0.0005 ~ E
cre m ¢ E r ™~ v/a, Current ]
G17=Gir(1- Vo), (04) * : ~
v1,=0.5, (105) 00010 Pt
0.0 0.5 1.0 15 2.0
and Normalized coordinate, x/a
E
Vyr= ,,12_2‘ (106) Fig. 10 Normalized displacements  u/a, v/a, and w/a versus
E; normalized coordinate  x/a
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0.00005 — 0.0003

= N ‘ M =‘ lj/a: EN=C u}a, C‘urr‘ent,I
E ¥ o ] . 00002 GT. AH
£ 000000 [, T 5 F e T
5] £ 0.0001 w/a, Current,
g X g b GT.AH ]
2 -0.00005 ] e 0.0000 =Z---- Tttt TG AR T
I L 5 £ ~ ]
5 [ : < —0.0001 £ ~w 7
=] C . 8 2 E
8 —0.00010 % -0.0002 & ~ — =
E E i E E_ . via, Current 3
E 00015 |- . 2 ~0.0003 ¢ ~ ]
= ] -0.0004 = ™~ 3
~0.00020 Lo b e b e ] ~0.0005 T T R R ]
0.0 0.5 1.0 15 20 0.0 0.2 0.4 0.6 0.8 1.0
Normalized coordinate, x/a Normalized coordinate, x/a
Fig._ 11 Normalized displacement w/a versus normalized co- Fig. 13 Normalized displacements  u/a, v/a, and w/a versus
ordinate x/a normalized coordinate x/a

mentv/a is zero. However, for the current solution, the normals,

zed displ My do/ f th der of “ant M, /M versus the normalized coordinaiga. Again, the
Izéd displacements/a andv/a aré or the same order of magni-, e for the current solution is dramatically different from the
tude. The magnitude of the normalized displacemerda is

almost twice the magnitude af/a. The sign of the normalized solutions of both Gough-Tangorra and Akasaka-Hirano. The

displ b/ais d dent the | fth ds: h thcurves for the solutions of Gough-Tangorra and Akasaka-Hirano
ISplaceémenb/a IS depeéndent upon the fay of the cords: here e very close. The normalized moment resulfsii M decays

cord§ are right'lgay and the sign of the normal!zed diSplaceme(—rzﬁponentially and has nearly vanished when the normalized coor-
v/a is negative; if the cords were left lay, the signwfa would dinatex/a>1 for the current solution, and wheda>2 for the

be POSilti\t'.e' Thedctl?]rves ro't‘.'/a aref i(r;distirr]w%yishable forc}h:kcur- solutions of Gough-Tangorra and Akasaka-Hirano. The normal-
rent sofution and the solutions of sough-Tangorra and Akasaga displacement/a and moment resultai¥, /M decay much
Hirano. The shell has significant extension-twist coupling due

) . 4 ore rapidly for the current solution than for the solutions of
the extension-twist coupling of the cords. picly

. B g . . Gough-Tangorra and Akasaka-Hirano.

Consider a semi-infinite cylinder with an edge momént Consider a finite cylinder with an axial lodd=C. This is an
=D/a. Figure 11 shows the normalized displacemefa VErsus o megiate length shell based upon the analysis of a semi-
normalized coordinate/a. The curves _for the n(_)rmallzt_ad dIS'infinite shell with an edge moment above. Figure 13 shows the
placementw/a for the current solution is dramatically different -0 4 displacementsa, v/a, andw/a versus the normal-
from the solutions of both Gough-Tangorra and Akasaka-HiranG, g cqordinatex/a. These results for an axially loaded finite
The curves for the normalized dlspla_cemmma for the solutions cylinder are similar to those for a semi-infinite cylinder above.
of Gough-Tangorra and Akasaka-Hirano are very close. At t

d of the shell where th lized di ) th e following discussion follows the discussion for a semi-infinite
end of the shell, where the normalized coordine® IS zero, the cylinder above. The curves for the normalized displacenéat
normalized displacememt/a for the current solution is one order

- . re indistinguishable for th rren lution, h-Tangorra,
of magnitude greater than those for the solutions of Goug e indistinguishable for the current solution, Gough-Tangorra

; - I nd Akasaka-Hirano. For the solutions of Gough-Tangorra and
Tangorra and Akasaka-Hirano. A larger displacement indicate Basaka-Hirano. the normalized displacemetd is zero. How-
smaller bending stiffness. The bending stiffness for the Goug ! '

; . . ‘ever, for the current solution the normalized displacemens
Tangorra and Akasaka-Hirano solutions is larger than the bendig du/a are of the same order of magnitude. The magnitude of the

stiffness for the current solution since the Gough-Tangorra ajtl,aised displacement’a is almost twice the magnitude of the
Akasaka-Hirano solutions smear out the cord over the thickness f 1 alized displacement/a. The curves for the normalized dis-

tr;e shell ;:m(/j th(f current SOM'OP ﬁoes ZOtr'] The norlmallzgdhd acementw/a are indistinguishable for the current solution,
placementw/a decays exponentially and has nearly vanis ough-Tangorra and Akasaka-Hirano. The shell has significant

when the normalized C°°fd'”a‘°‘?‘>1 for the current solution, extension-twist coupling due to the extension-twist coupling of
and whenx/a>2 for the solutions of Gough-Tangorra andtpe cords

Akasaka-Hirano. Figure 12 shows the normalized moment result-

s 10 [ Summary and Conclusions
s 08 L An analytical method for determining the load-deformation be-
g havior of cord composite cylindrical shells was developed by con-
s sidering the mechanics of the matrix, the cords, and the shell. The
2 06 T differential equations for the displacements were found for a shell
2 04 [ with a single ply of uniformly spaced cords with the cord axes
g 7t parallel to the shell axis. The equations were solved analytically in
§ o2 L closed form for a shell with the cords on the middle surface. The
ST response due to uniformly distributed axisymmetric end loads and
E 00 F uniform internal pressure was found for both a semi-infinite cyl-
2 r 1 inder and a finite cylinder.

Y AP E S S L] In general, the effect of the extension-twist coupling of the

cords on the displacements of a cord composite cylindrical shell
depends upon the shell constituents, geometry, boundary condi-
tions, and loading. The results show that the axially loaded cord
Fig. 12 Normalized stress resultant M, /M versus normalized composite cylindrical shells considered have significant

coordinate x/a extension-twist coupling.

0.0 0.5 1.0 15 2.0
Normalized coordinate, x/a
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v.madnavan § [Mlachining as a Wedge

Assoc. Mem. ASME
Department of Industrial and I d t t'
Manufacturing Engineering, n en a |0n
Wichita State University,
Wichita, KS 6720-0035 A case is made for the consideration of single-point machining of ductile metals as a
S. Chandrasekar special type of wedge indentation process. A general-purpose finite element analysis of
' Ve, ASME machining using iterative rezoning is developed based on this analogy. The accuracy of
Sehool of Industri lEeF”- . this analysis, which does not incorporate any separation criterion, is limited only by our
choot offn ”; ”3 ngmeenntg, knowledge of the material properties and the friction conditions at the tool-chip interface.
West L fur Ut? mvj%loyf Strain hardening, strain rate effects, and the temperature dependence of the properties of
est Lalayete, the work material can be taken into consideration. While Coulomb friction is assumed at
: the chip-tool interface in the present model, it can easily be reformulated to include more
T. N. Farris he chip-tool interf inthe p del, i ily be ref lated to includ
) l\/| ASME complicated frictional interactions such as adhesion. An analysis of the cutting/
Sehool of A tics and A ;am. i indentation of an isotropic work-hardening material at slow speeds under two different
ehOoTOT Aeronau 'CSPa”d SL;".”a“ '.Cts' friction conditions is presented. It is shown that many of the important features of ma-
West La?aryelife lr;\;vgzloy% chining processes are consistently reproduced by the ana]g0i621-89360)03501-7

1 Introduction workpiece along a previously defined “parting line” was due to

The main reason for developing machining models is the ne genkowskl and Carro[i3]. In their analysis, the nodes along the

to predict outputs of the machining process such as cutting forc rting line were “unhooked” when the effective strain at these
residual stresses, and the tool life for a given set of input para I-diisﬁéiief?rﬁgeoé?e'n‘:’ggts 2%3{}2{1?&&?%%?3' :tgg Lijéegg réi?eally—
eters like feed, speed, depth of cut, and tool geometry. Such mag: 4

els will help us address the inverse problem of determining tf?ém reference fram¢4]). This approach allows the mesh to be

inputs for achieving certain values of the output parameters. Var'i)-(ed in space and the material to flow through the mesh, thereby

ous models of machining at varying levels of complexity havav0|d|ng problems of mesh distortion and the need for a pre-

. defined parting line. The procedure required iterative modification
been proposed by different researchers. These models can - : ; |
broadly classified intdi) slip line field models(ii) finite element 05 e chip geometry so as to satisfy the velocity boundary con-

L . ditions and since a purely viscoplastic material model was as-
models andiii) atomistic models. A careful review of these mod med, it could not give information about residual stresses. Vari-

els suggests that finite element models are best suited for accuf)ug other researcher§5-8)) have carried out Lagrangian

prediction of machining parameters. . . ;
Based on similarities between experimentally observed def nalyses of metal cutting process by incorporating the concept of

mation patterns in machining and indentation of ductile metal € parting line along which nodes initially tied together are sepa-

and on atomistic analyses of these two processes, it is conclu %%fd as the tool advances into the work. The criteria used for this

that they are equivalent and that finite element models of machl[ﬂ hooking™” have included limiting values of strain, distance to

. . . i . . . e tool tip, etc. All of these criteria are completely arbitrary and
ing of ductile materialgwith production of continuous chipsio have a major influence on the residual stresses in the chip and the

not have to incorporate separation or failure criteria for the Workachined surfac3]). Though there is no inherent difference in

material. An iterative finite element model of machining which i : . . > . . .
capable of simulating machining by periodic remeshing of tége nature of chip formation while cutting with negative and posi-

workpiece(to offset mesh distortions due to deformation caused < rake angle .tools, these analyses COUId. not simulate cutting
by the infeed of the toglis described. Due to its closer represen‘-’vIth large negative rake angle tools suggesting that the modeling
) ?f the process is not accurate. Another source of error was the

tation of the actual machining process, such a model is mo . - - X
; P rseness of the mesh even in regions of intense plastic defor-
accurate than conventional Lagrangian finite element models tzeQion' These models require tremendous computational re-

incorporate a separation criterion. This model is used to analysources to effectively model the cutting brocess because of the
machining and gives results which are consistent with experim y gp

e ; e
. 7 . . . eed for a fine mesh of elements all along the parting line.
tal observations pertaining to cutting and wedge indentation. It can be argued that finite element analyses which incorporate

> Back d node separation along a parting line, simulate a process more akin
ackgroun to the splitting of wood than to the machining of ductile metals.
2.1 Finite Element Analysis. Finite element studies of the Unhooking the nodes when they are a small distance away from
machining process have been carried out by a number of reseatf- cutting edge, results in a small crack in the work material
ers. Klamecki’s model[1]) was limited to the incipient cutting @head of the tool. It is a well-acknowledged fact that there is no
stage. Usui and Shirakag] also assumed a steady-state chi§uch crack propagating ahead of the togl in the m?chmmg of
geometry and advanced the tool only incrementally. The firdictile metals([9-10). Though material “separation” occurs
analysis of orthogonal metal cutting where the tool was moveéond @ plane in the workpiece, it is more accurate to picture such

into the workpiece to generate a chip which separates from tp@paration as due to plastic flow of the material rather than due to
tensile rupture. The presence or absence of a crack ahead of the
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF cutting edge Isa blg faCt.Or in qetermmmg the aCt.ual mechanics of
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF AppLiED (e process. From consideration of the distribution of the hydro-
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Octstatic stress along the shear zone, given by Roth and Qigy
2, 1997, final revision, Feb. 23, 1998. Associate Technical Editor: M. Ortiz. Discugind reproduced here in Fig. 1, it can be seen that the hydrostatic
aﬁ]n on the paper should be add}ressed t'o thg Technllcal I_Edltor, Professor Lew%il'ress close to the cutting edge is compressive. Such Compressive
eeler, Department of Mechanical Engineering, University of Houston, Houston 4 N .
TX 77204-4792, and will be accepted until four months after final publication of th§tresses cannot produce tensile rupture of the work material. It is
paper itself in the ASME QURNAL OF APPLIED MECHANICS. also evident that if this small compressively stressed zone is re-
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Fig. 1 Variation of hydrostatic stress along the shear plane as given by Oxley
et al. [11]

placed by a crack, the tensile stress beyond this zone can be use2l2 Atomic Analysis of Machining. Recently there has
to drive the crack ahead of the cutting edge of the tool. The reasb@en some work directed at modeling the machining process at the
for the inability of such finite element analyses to simulate mdevel of the individual atoms of the workpiece and the tga¥—
chining with large negative rake angle tools is that even whenl&]). The aim of such analyses has been to study the mechanism
crack is artificially introduced ahead of the tool, the stresses duedbchip formation in ultra precision machining, deduce limits to
machining tend to close this crack rather than open it. Thus ttiee depth of cut achievable, and investigate the integrity of the
results obtained by finite element method studies where the nodeschined surface. The tool and the workpiece are modeled as
are unhooked along a parting ling3,5,8,7) neither reflect the separate collections of atoms. Each atom interacts with its neigh-
true nature nor the magnitude of the stresses and strains folnwis according to assumed force laws which express the inter-
close to the cutting edge in machining. atomic forces as functions of the interatomic spacing. The thermal
Two new analyse§12-13) have overcome such limitations of vibrations of the atoms are also taken into account in the models.
previous analyses by continual remeshing of the workpiece andCutting is simulated by forcing the atoms comprising the tool
chip material in the deformation zones. Sekhon and Chgi®t into the workpiece. No separation criterion for the atoms is used
have used a velocity approach in which velocities are the uim these simulations. Plastic deformation of the work material oc-
knowns at the nodes and the workpiece material is treated like @rs when the lattice strain energy exceeds a critical level upon
incompressible viscous fluid. Thus elastic effects are ignored amthich it is energetically favorable for the atoms to rearrange
so residual stresses cannot be estimated. However, their coupgleimselves(in a manner akin to that considered in theoretical
thermomechanical analysis does take into consideration the theatculations of the ultimate shear stressa different configura-
mal aspects of the process. tion of lower energy. Thus dislocations are generated and move in
Marusich and OrtiZ13] have developed a Lagrangian finitea zig-zag path from the cutting edge to the free surface resulting in
element model of machining using continual remeshing and arbroad zone of sheéas opposed to a shear plangpon contin-
explicit solution technique. Their model incorporates thermal efied infeed of the tool, a succession of progressive shearing mo-
fects as well as fracture criteria for the material and is able tns are found to result in the formation of a chip. These analyses
predict localized shear deformation in the case of high-speed nieve yielded useful information about the strain distribution in the
chining. Analysis of quasi-static processes is not possible by thedgep and the subsurface of the machined layer. But extension of
explicit solution techniques. Both this and the previous analysisese results to the macroscopic dimensions of most cutting pro-

mentioned ([12]) use proprietary codes for the finite elementesses is difficult.
analysis. In this study, experimental observations from prior studies as
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well as finite element analysis of machining are used to obtain ¥
better understanding of the mechanics of separation of mateiy
into the workpiece and the chip at the cutting edge. A compellir %
case is presented for considering machiningtting) of ductile ;
metals as a wedge indentation process. This insight is then appl
to develop a finite element analysis of machining without recour:
to separation criteria, purely by periodic remeshing of tha:

workpiece.

3 Equivalence of Machining and Indentation

Early researchers were fully aware of the similarities betwee .
machining and wedge indentation. By using sequences from rr{)&;
tion pictures of the indentation of a paraffin block by a wedge_ 2
shaped tool pressed into the middle of the block, and the cuttily;
action initiated when the tool is pressed into the block close to i
edge, Ernsf9] was able to conclude that machining is equivaler, N3
to asymmetric indentation with an inclined wedge. Bhattachary)."
[20] has also highlighted the similarities between machining ar ’ :
indentation. Due to the difficulty of analysis of the inclined wedg!
indentation model, and the simplicity of the shear-plane model of
chip formation, the latter has probably found favor as the modEig. 3 Etched cross section through a machining quick-stop
for analysis of machining. When detailed information about thepecimen involving sticking between the chip and the rake face
cutting process is required, the simple straight shear-plane mofeihe tool ([29]). The texture lines are curved around the cut-
has been found to be inadequate and extensive modifications hi €dge of the tool.
been proposed resulting in systems which are hard to analyze
([21,11)). In this context it is worthwhile to revisit the machining
problem as a special case of indentation. chining with sticking friction along the tool-chip interface also

Texture or flow lines are produced in any deformation procesiows flow lines bent around the tip of the tool as seen in Fig. 3.
as a result of elongation of the grains of the material in the diretr the case of frictionless indentation of a semi-infinite solid with
tion of maximum tensile strain. These lines can be furtheéxr wedge, the theory of Hill et aJ23] predicts that the material
stretched, compressed, and rotated by subsequent strains imp@éeed of the indenter and along the axis of loading “ruptures” as
on the material. ChaudhfR2] has recently investigated the subthe edge of the indenter is moved in. This has been found to be
surface deformation produced in mild steel specimens indentelighly true in experiments where split lead specimens with grids
with tungsten carbide cones by studying the deformation of natumprinted on the surfaces of the split were indented with lubri-
rally occurring texture linegformed by the alignment of pearlite cated steel wedges. A similar “rupture” of the flow lines can
grains produced by prior cold drawingrigure 2 shows an etchedindeed be observed in etched cross sections of quick-stop speci-
cross-section through the center of such an indentation produdeens of machining when the chip slides over the tool rake face as
by a 45-deg tungsten carbide cone. It is seen clearly that timeFig. 4.
texture lines are not ruptured by the penetration of the indenter,Further evidence of the similarities between machining and
but are actually bent around the tip of the indenter. In machiningiedge indentation comes from Hutchingsst] study of the de-
flow lines form as a consequence of the shear deformation occtarmation produced in mild steel surfaces by the oblique impact of
ring along the primary shear zone. These lines are then stretclsggiare plates made of hardened tool steel. A regime of deforma-
and rotated due to the secondary deformation taking place aldign intermediate between normal wedge indentations and cutting
the rake face of the tool. Thus the flow lines in the chip and theas observed in these experiments, which is consistent with the
workpiece also contain similar information as the flow linegrientation and the direction of motion of the indenter in the ex-
around the indentation in Fig. 2, and can be used for comparipgriments being intermediate between normal indentation and ma-
the deformation patterns in the two processes. Furthermore, rehining. These experimentally observed similarities in the defor-

mation pattern in machining and indentation have motivated the

Fig. 2 Etched cross section through the center of a conical

indentation in mild steel showing deformation of texture lines Fig. 4 Etched cross section of a machining quick-stop speci-
([22]). Note that the texture lines are not cut by the tip of the men involving sliding of the chip over the rake face ([10]). Note
indenter. that the flow lines are cut by the cutting edge of the tool.
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view that machining is indeed a special type of wedge indentatio

in which the indentation is made close to one of the edges of tF

surface being indented with the wedge positioned asymmetrical

with respect to the surface normal and the direction of motion ¢

the indenter is controlled. Similarity between machining and in:

dentation is also evident from atomistic analyses of the two prc

cesses where only the shape, location, and the direction of motit

of the tool/indenter are found to be different while all the physica

phenomena modeled are the same. Using this analogy betwe

machining and indentation, it is easy to picture machining as

process whereby a chip is generated from the workpiece by

process of pure shear. Thus machining can be analyzed by itel AN ANANAWAYAYAY

tive finite element analysis, without the need for any criterion for

material failure ahead of the cutting edge to produce the chip. Fig. 5 Configuration of workpiece and tool for the finite ele-
The real difficulty encountered in finite element analyses afient simulation of machining

machining is that points in the workpiece which start out close to

each other may end up being very far apart if some of them form

part of the chip and others constitute part of the machined surface.

Such “local” deformation of the material cannot be accommo-

dated in conventional Lagrangian finite element analysis. Thigerent limitation imposed by the model on the values of the rake
coupled with the idea that there was “separation” or “fracturé”ypgle and this can be varied arbitrarily. In fact, even in the present
of the material close to the cutting edge of the tool in machiningy 4 “the |ocal rake angle near the cutting edge of the tool is
has led to the incorporation of artificial failure criteria in maCh'nhighly negative, though the nominal rake angle of the tool is O
ing models which enforce separation of initially continuous mat g. The work'piece is a rectangular piece of metal 50 mm
rial into a chip and a machined surface along a predetermin agxzs mm deep, held rigidly along its bottom edge. The tool
parting line. Such models cannot represent the true nature of thes'y workpiece surfacéedges in 2-fiare connected together
machining process. contact elements along the interface which transmit sufficient

The atomistic analyses of machining processes reviewed earﬁgrces to prevent interpenetration of one body into another. Fric-

Cutting
Tool infeed

Workpiece

indicate that even in the case of tools so sharp that their cultti . -
edge radii are less than a few nanometers, the deformation in ﬂ'lgg and adhesion are also modeled for the contact region. The

: : : ; del of friction adopted is shear limited Coulomb friction with
workpiece produced as a result of dlslocatlon_s being genera d aximum shear gtress at the tool-workpiece interface limited
and moved along the shear zone can be considered to be a s R%{;ﬂ

deformation. This suggests that when the scale at which the work- 0 MPa. The tool is positioned so that it will interfere with the
piece is modeled is such that the elements representing the Wovylgrkplece when moved. The depth of cut was chosen to be 0.45

piece material close to the cutting edge of the tool are mu m in the present case. This small_valls@.o, of the ratio O.f the
smaller than the radius of curvature of the cutting edge, the e epth of cut to the cutting edge radius of the tool was deliberately

ments can be assumed to deform purely by shear with no tensiposen in order to clearly illustrate the similarities between ma-
rupture being involved. It is thus clear that machining can b g":tg an_d |r_1der|1t?t|3rg forcing the tool t into th K
analyzed accurately by an iterative finite element method so lon utting 1S S|”m_u ate yt or(XPtg N ood (; move Idn 0 | e W(f)rtr-l
as the size of the elements are small enough to realistically repP&zC€ N Small increments. Aller a predetermined vaiue of the

sent the stress state in the workpiece near the cutting edge, andGfigivalent plastic strairichosen to be 0.25 in this case as this
: : o ; ; &@rresponds to a pure shear strain of less than 3pisexceeded

elements with undistorted elements. The next section descrit@nY point in the workpiece, a new mesh is automatically gen-
ated to represent the deformed configuration of the workpiece. It

such an iterative finite element analysis of the machining proce§%¢ . . . h o
IS observed in our simulations that the results are insensitive to the

4 Iterative Finite Element Analysis of Machining remeshing criterion, when the equivalent plastic strain increment

. - . . between remeshing increments is varied up to 0.33. After interpo-
The Lagrangian finite element analysis described here usesIf; g b P

. . . . - >lafion of the stresses and strains onto the new mesh, the analysis is
erative rezoning, by which the mesh representing the discretizagiarteq by further infeed of the tool. During the automatic re-
tlonl of (tjhg Wor(l;_pf)flece tand tEef Cht'ﬁ for atn_ |:\terv?l ?ft.t'me'_l_'?neshing, adaptive mesh refinement is accomplished by making
replaced by a difterent mesh for the next intérvai ot time. e mesh finer in the regions of high gradients of stresses and
_dlstrlbutlon of stresses and strains represented by th‘? old MeSWRins and in regions of high plastic strain increments. This is
interpolated onto the new mesh. Thus the new mesh is a dlffer% e by fixing the minimum and maximum element sizes and
d;rsﬁftf'iz?é'on_r%f tzﬁ‘f erxa:‘ct sian:k? ??ﬁy r\]N'w r;he r;s%me srt1retsrs t wing the sizes of the individual elements to vary within these
Zna of tiesdisto?tionse t(?]ecglds m:sh l?ndgrwenetsdueoteosthg inecrﬂ?]its depending on the above criteria. Mesh refinement is carried

y oft . . Co &at only in regions where the fine details of the stress distribution
mental infeed of the tool during the time for which it was used t ve to be resolved
represent the Workplece.and the Ch'p.' This technique of continud he model descriBed above has been implemented using a com-
remeshing in between d!splacemen_t increments of the tool avolﬂﬁation of two commercial finite element method packages. The
problems due to excessive mesh distortion, namely inaccurate fe- ’

sults and, in extreme cases, the inability of the solution procedu‘sr“gtomateOI creation and refinement of the meshespracessing

o d the processing of the resu(fmst-processingare both done
to converge to an equilibrium stress state. It should be noted 5 :
only in order to circumvent these problems did most of the pre\)ij-Slng the P3/PATRAN package. PATRAN was chosen because it

; - roffers the Patran Command Langud&€EL) in which these tasks
ous analyses report to unhooking the nodes along the parting “ﬁg'uld be programmed efficiently and because of its ability to cre-

4.1 Analysis Methodology. Figure 5 shows the configura- ate input files for a range of solvers. The actual solution of each
tion of the cutting process being analyzed. The analysis performsep in the simulation when the tool is moved incrementally into
is a two-dimensional plane strain analysis. The tool is idealized t®e workpiece is performed in ABAQUS/STANDARD. CPE4
a rigid body having a rake angle of 0 deg and a clearance anglecohstant strain quadrilateral plane-strain elements are used to dis-
10 deg with a curvature at the corner representing the radiusavétize the workpiece. ABAQUS was chosen as the solver because
curvature of the cutting edge, 250m in this case. There is no of its ability to automatically interpolate values of the variables
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it strains in the machined surface are as high as 5.0. The elastic
as0k springback of the machined surface after it passes underneath the
400F tool is found to be=~2 um which is less than one percent of the
300- radius of curvature of the cutting edge.

The plastic strain in most of the chip formed during steady state
cutting is found to be between 1.3 and 2.0. It is much higher close
to the chip-tool interfac€up to 7.3. Most of the strain in this
layer close to the interface occurs when the material passes near
the cutting edge of the tool. The increase in the strain as the chip

, , - moves along the rake face of the tool is negligible. The strain
0.1 0.3 € gradient along the chip-tool interface is also low and therefore the
adaptive remeshing criterion used, based upon strain gradients and
strain rate as noted above, results in fairly large elements in the
chip in this region.

from the old mesh onto the new mesh, the flexibility provided in The cutting and thrust forces stabilize very ea.rly‘in the ‘analysis
the contact elements, and because of its reputedly superior h8KEN before a steady-state curvature of the chip is attained. The

Fig. 6 Strain-hardening characteristic of the work material

dling of plasticity problems. cutting forces, for a 1-cm wide workpiece, are 4600N fo¢0.2
and 5400N forw=0.8. The cutting pressure defined as the ratio of
5 Results and Discussion the cutting force to the interference ar@ehich is the product of

The finite element analysis described above has been usec}hte uncut chip thickness and the width of utepresents the
. y - : av%rage pressure required to deform the material in the interfer-
study the cutting process for two values of the coefficient of fric-

tion (x=0.2 and 0.8 at the chip-tool interface. In both cases, the&Ce ZONne. It_is found to be CIOS? to three times _the yield str_ength
rake angle is 0 deg, the radius of curvature of the cutting edge fthe material foru=0.2 and is e}round 3.4 times the y[eld
the tool is 250um and the depth of cut is 452m. The hardening strength foru=0.8. Th? thrust_force is between 0.5 anq 0.6 tlm_es
characteristic assumed for the work material is shown in Fig.tﬁe cutting force. It is interesting to note her_e that the |nde_ntat|0n
with initial yield beginning at an effective stress of 350 MPa. Theressure or hardness vqlue for most metals is about three times the
maximum shear stress along the tool-chip interface is limited ¥eld strength of the solid[28]). ,
150 MPa, which is less than the shear strength of the work mateFrom Fig. 10, the length of contact between the chip and the
rial even in its unhardened state. In the analysis, the minimui®pl is estimated as 0.866 mm for the casg.ef0.2 and 1.21 mm
mesh size(50 um) is chosen to be one-fifth of the radius offor the case ofs=0.8. It can be see(Fig. 12 that for x=0.8 the
curvature of the cutting edge. shear stress at the chip-tool interface,() is nearly constant at

Figures 7 and 8 show the stages in the formation of the chip 0 MPa, for most of the length of contact between the rake face
cutting proceeds, for the two casgs=0.2 andu=0.8). Equiva- of the tool and the chip. Close to the end of chip tool contact, this
lent plastic strain contours are also plotted in these figures. Figwteear stress along the rake face rapidly decreases to zero. A simi-
9 shows the steady state distribution of the von Mises stress aft@r feature is also observed in the distribution ef, (Fig. 10
approximately 5 mm of cuttingi.e., infeed of the toglby which  which remains constant at around 500 MPa for most of the contact
time a constant curl of the chip is established. Similar plots for thength and then rapidly decreases to zero at the end of contact.
three components of stresses{, oy,, ando,,) are shown in Another interesting observation from Fig. 10 is that the maximum
Figs. 10-12. The main features of the machining process as esntact pressure at the chip-tool interface is 819 MPaufe0.2
denced by these figures are summarized below. while it is only 700 MPa foru=0.8.

5.1 Stress and Strain Distributions in the Chip. A region The variation of the hydrostatic and shear stresses along the

of fairly concentrated sheafFig. 7) separates the nearly un-Shear plane can be dlrectl_y inferred from the plotSrgIa_ndoyy. _
strained work material from the fully strained chip. This regioffF #=0.2 the hydrostatic stress close to the cutting edge is
can be approximated as a parallel sided shear zone as shown sghe475 MPa. This decreases to-175 MPa in the middle of the
matically in Fig. 13. There is another region of secondary defoph€ar zone and rises te—325 MPa near the exit of the shear
mation (where the Mises stress is around 450 MBse to the Plane(i.e., near the free surface of the workpigedeor 1=0.8 the
rake face of the tool which is evident in Figga®and 9b). This three corresponding values ar&75 MPa,—190 MPa, and-330
region can be approximated as a triangular region as indicatedMiPa.
Figs. 1 and 13. The existence of such a triangular secondary sheakhe back surface of the chip is found to be wrinkled. This is a
zone has been commonly postulated by a number of investigategsult of concentrated shear occurring in the region where the
([25,26,11,27. The fact that secondary shear occurs even thoughear plane exits the work material. This is observed even in
the shear strength of the chip-tool interface is less than the shetudies with much finer meshes, so long as material workharden-
strength of the chip, implies that the slip lines in this zone are notg and strain-rate effects are minimal.
parallel to the interface. Such secondary shear can result in cur- . . .
vature of the flowlines close to the rake face of the cutting tool 2-2 Chip Curl.  From Figs. 11 and 10, it is seen that the
even though the chip may actually be slidifig., not sticking stress along the free surfati®ack of the Chl.p is h_|gh|y tensile. It
over the rake face of the tool. is also tensile along the surface of the chip which has moved out
A zone of plastic deformation extends underneath the machingficontact with the tool rake facéront side of the chip oy, in
surface. The depth of subsurface plastic deformation is found {f$¢ middle of the chip is compressive. Such a distribution of
be nearly equal to the radius of curvature of the cutting edge. TI§eSSes was seen to develop early on in the formation of the chip.
subsurface deformation results in compressive stresses in the malhe hypotheses propounded by various researchers to explain
chined surface. Though the stress patterns shown are those Wi curvature of the chip includ® the cutting moment causes the
the load applied by the tool still present, elastic recovery causelip to bend;(ii) the “crushing” of the chip in the secondary
by unloading of the tool is not expected to significantly change tigear zone and the resultant acceleration of the work material in
stress distribution close to the free surface andrgpat the sur- moving through the secondary shear zone causes the chip to
face can be taken to be the residual stress. The residual stredsngthen along this sidghe front sidg¢. This results in a curvature
compressive with a magnitude greater than 200 MPa, which d§ the chip, similar to the curvature of a bimetallic stripi) the
more than half the uniaxial yield stress of the material. The plasttiear plane is curved in such a way that the shear plane angle is
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Fig. 9 Steady-state von Mises stress distribution. Hundred units of stress equals one
MPa.

smaller near the exit of the shear plane. Thus the chip velocity ondary shear zone will result in compressivg, in the front of
the outside is smaller than the average chip velocity causing tthee chip, whereas the observed stress is tensile. Only a curved
chip to curl. shear plane would result in a stress distribution similar to that
The stress distributions which would be expected in the chipdfiven by the finite element analysis, while simultaneously ac-
each of these three hypotheses are true are indicated in Fig. dgunting for curl of the chip. It should be noted that though the
The bending moment on the chip considered as a beam woghip does acceleratélue to secondary sheas it flows along the
result in compressive stresses along the free suffzmel of the rake face of the tool, this is just an accessory to chip curl and not
chip if hypothesis(i) was true. Crushing of the chip in the secthe cause of chip curl.
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Fig. 10 Steady-state distribution of o, . Hundred units of stress equals one MPa.

The reason for the curvature of the shear plane can be foumad 130 MPaalong most of the chip-tool contact length, whereas
from a detailed analysis of the stress distribution in the zone fdr u=0.8 o, is nearly constant at 150 MPa, the maximum value
plastic deformation. Work in this direction, utilizing finer meshesallowed by the shear limited Coulomb friction used in the analy-
is in progress. sis, along the contact lengtkig. 12.

The chip thickness ratio is approximately 2.0 fo#0.2 while

5.3 Differences Due to the Two Different Friction Coeffi- it is 2.5 for u=0.8. This indicates the trend towards stubby chips
cients. The main difference between the stress distributions fior high friction coefficients. The reason for the relatively small
the two cases is found in the values®f, at the chip-tool inter- change in the chip thickness ratio is the fact that for the case of
face. Foru=0.2, g, is less than 150 MP&anges between 30 u=0.8, the chip-tool interface friction is limited by the shear
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Fig. 11 Steady-state distribution of o, . Hundred units of stress equals one MPa.

strength of the interface. The maximum plastic strain is found twas higher(up to three percejptwhile the variation in thrust force
occur in the chip forw=0.2 while the maximum strains are foundwas even greatdup to ten percent The computed stress values
in the machined surface far=0.8. There is a dramatic differenceare estimated to be correct to within 15 percent of the yield stress
in the chip curl for the two cases. The chip curl is higher for thef the material. This estimate on the accuracy is determined from
case of lower friction at the chip tool interface. the stress values reported at free surfaces, and the values of von
The variation in the cutting and thrust force components b&dises stress reported above the maximum possible von Mises
tween different iterations after steady state is reached was qusteess according to the definition of the work-hardening character-
small for u=0.2 (<2 percent for the cutting force ardl percent istics of the material. As in all other finite element analysis, errors
for the thrust forcg The variation in the cutting force fqu=0.8 at boundaries will be minimized if finer meshes are used.
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6 Conclusions sided primary shear zone and a triangular secondary shear zone

It has been demonstrated that machining can be simulated JEegr the rake face, gimilar to th‘f"t postulated_ by various other
special type of wedge indentation using Lagrangian finite elemdigSearchers. The residual stress in the workpiece, when thermal
analysis provided that the mesh near the cutting edge is fiReects are ignored in the analysis, is found to be compressive.
enough to represent the stress and strain gradients faithfully. THee normal stress on the tool rake face is found to be uniformly
mesh representing the workpiece should be periodically regenBigh along the rake face except near the end of chip-tool contact
ated in order to preclude solution inaccuracies due to distortion\where it rapidly decreases to zero. The hydrostatic stress is found
the mesh. to be highly compressive near the cutting edge of the tool. The

The principal zones where deformation occurs are in a paralleffects caused by variation of the coefficient of friction have also
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C. W. Cai
Department of Mechanics, The steady-state responses of damped periodic systems with finite or infinite degrees-of-
Zhongshan University, freedom and one nonlinear disorder to harmonic excitation are investigated by using the
Guangzhou 510275, Lindstedt-Poincare method and the U-transformation technique. The perturbation solu-
P.R. China tions with zero-order and first-order approximations, which involve a parameter n, i.e.,
Y. K. Cheun the total number of su_bs_ys_tems, as V\_/t_ell as the_ other structur_al parameters, are deri\(ed.
- N g When n approaches infinity, the limiting solutions are applicable to the system with
Department of Civil and Structural Engineering, infinite number of subsystems. For the zero-order approximation, there is an attenuation
The University of Hong Kong, constant which denotes the ratio of amplitudes between any two adjacent subsystems. The
Pokfulam Road, attenuation constant is derived in an explicit form and calculated for several values of the
Hong Kong damping coefficient and the ratio of the driving frequency to the lower limit of the pass
band.[S0021-893@00)01101-§
1 Introduction ordered subsystemsr nonlinear stiffnesk + eyx? (for disor-

gered ong wheree is a positive small parameter. In Figial, s

A detailed review of the dynamics of both linear periodic an enotes the ordinal number of the disordered subsystenxand

disordered periodic structures was given by Li and Benaftya tes the lonaitudinal displ t of it

The studies on the dynamic responses of harmonically excitdg0tes the longitudinal displacement of fitle mass. .

nonlinear systems can be found [i] and in references of the In order to apply_theiJ-tran_sformatlon_to uncouple the_ Ilnear'

book by Vakakis et al[3]. A geometric theory was proposed tol€rms .Of. the governing equation, an equivalent system with qypllc

analyze the mode localization and frequency loci veering withoBF”tOd'C'lgy ”.]tUSt be creta_tedl. Itis necezsary lto (teg(tendt_the orlgltn_al

reference to any specific syster(jg]). The nonlinear localized sysdgem ytlhs symme ”Cc?. |magge gnd ap[?y ﬁ an |fsym.me1r|c

modes in a perfectly cyclic periodic system was examined wiff2ding on the corresponding extended part as shown in Fi.

the averaging method of multiple scales by Vakakis ef{%]- in Wh'Ch.the f!rst a_nd last (2th) masses are |ma_g|na_1rlly ointed

Forced localization in a periodic chain of noniinear oscillators way/ & SPring with stiffnesgk, . This imaginary spring is not sub-
jected to any load for antisymmetric vibration. If and only if the

examined by using a “continuum approximation(6]). The . ! - !
U-transformation techniqug7,8]) was applied to analyze the dis_dynamlc response pf the extendgq system Is antisymmetric, two
fytreme end conditions of the original system are satisfied in the

ordered periodic systems with an infinite number of subsyste - ; . .
for localized modeg[9]). Recently, the localized modes of un-€xtended one, i.e., the extended system is equivalent to the origi-
damped periodic systems with infinite degrees-of-freedom afid One€: The response of the first halé., substructures-in) of
having one or two nonlinear disorders were investigafed]) by the eqw_valent system is the same as that of the_ original system.
Applying Newton’s second law to every mass in the equivalent

ing the Lin -PoincaréL-P) meth 11 nd th ; . . . -
ﬂs_{rgnstfo?ma{ioisiggﬁ,nig'ueca @L-P) method ([11]) and the system, one can write the differential equations of motion as fol-

In the present study, the primary resonance of the damped bcg_vs.
riodic systems with finite or infinite degrees-of-freedom and one ., : _ _
nonlinear disorder is investigated by using the L-P method and the MX;+2M woeloX; (K + 2eko)x; = eKelXj 1 %) 1) = €F;
U-transformation technique. By applying thetransformation to i=1,2 n (21
the governing equation, the new governing equation in terms of e '
the generalized displacements takes the standard form where Jhg
linear terms are uncoupled. Then by applying the L-P method to

the simultaneous equations with the standard form, the zero-order Fi=F,cosQt j#s, 2n—s+1
and first-order perturbation solutions can be found in explicit b (2.2)
form. Fi=FjocosQt—yx’ j=s, 2n—s+1

. . . . where the superior dot denotes the derivative with respect to the

2 Governing Equations and Perturbation Solutions time variablet, oy denotes the natural frequency for the single-

Consider the system shown in Fig(al which consists ofn  ordered subsystem ang,;=X;, Xo=X», due to cyclic period-
number of subsystems connected to each other by means dtity, eF;, denotes the amplitude of the harmonic force acting on
linear spring having stiffnesek. . Each subsystem is made up ofthe jth massQ denotes the driving frequency, andy, is the
a massM connected to both a dashpot with a nondimensionabefficient of the cubic term of the nonlinear stiffness in the dis-
damping coefficient{, and a spring with linear stiffned$ (for ordered subsystem. The external excitation for the equivalent sys-

tem must satisfy the antisymmetry condition, i.e.,

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF APPLIED Fonoj+10=Fjo 1=12,...n (2.3)
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, June

10, 1998; final revision, Dec. 28, 1998. Associate Technical Editor: W. K. Linhere[:10~Fn o indicate the real excitation acting on the original
Discussion on the paper should be addressed to the Technical Editor, Profe%vétem ' '

Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstor, L . . . .
Houston, TX 77204-4792, and will be accepted until four months after final publi- If the initial conditions are antisymmetric, then the dynamic

cation of the paper itself in the ASMEDIIRNAL OF APPLIED MECHANICS. displacements are also antisymmetric, i.e.,
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Fig. 1 Damped periodic system with a nonlinear disorder; (a) original sys-
tem with n number of subsystems, (b) equivalent system with cyclic period-
icity and 2 n number of subsystems

Xon-je1=X] J=12,...n, (2.4) 2ei(12my E 5( 1 o
One can now apply th&-transformation to the governing Eq. m J2n =t coq— 2 MiFj 0 | cOSI
(2.1). TheU and inversdJ-transformations may be expressed as
2n 1
1 , —cog s— = | Myyex(a1.9s, - . ., 2.8
Xj:\/T di-Umig =12 .. .2  (2.5) 5( 2) $yoxs(A1.92 O2n) (2.8)
Nm=1
K+2ek,(1—cosm
and oie C(M ¥) 29)
2n
1 .
qm—fﬁ e*'“*l)m'/ij m=1.2,...,h (2.80) ©Rp(m=0,1,2...,n—1) is the (m+1)th natural frequency for
V2ni=1 the undamped periodic system without any disorder. The lower

with ¢=m/n andi= /=T, where 2 denotes the total number of and upper bounds of the passband can be expressed, respectively,
subsystems for the equivalent system. Noting that the displa@é—

ments are always real variables, it can be proved that the gener- K
alized displacementg],,(m=1,2,...,2) have the following 0= wy= \/%
property: (2.10)

Qon- =0 M=12,....2 (2.6) K+ 4dek, ek,
. . . i wy= — 5 — Wo 1+4—.
and q,, g,, must be real variables, in which the superior bar M K

denotes the complex conjugation.

. i : _ . Introducing the time substitution
By using theU-transformation, i.e., premultiplying both sides

of Eq. (2.1) by the operator 2n=",e”'0-D™, Eq. (2.1) be- Qt=7+¢ (2.11)
comes into Eq.(2.7) results in
ef
8.+ 2woel o8+ 02 0= —0 2.7 " fm 2wolo ,
Um 0€£00m* @mdm M 2.7) am+ v2Om= e( o2 g 9m m=1,2,...,A
where (2.12)
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and

2 2
1) g 2k.(1—cosmyy)
A VT N e

where the prime symbol designates differentiation with respect to

the new time variable- and ¢ is an unknown phase angle.
Consider now the case of primary resonance, {)xw,. By
letting

2

az S —1+en,. (2.14)
Equation(2.13 can be written as
2=1+enn (2.15)
where
= 0+ ) (2.16)
Inserting Eq.(2.15 in Eq. (2.12 gives
antqm=€eGn mM=1,2,...,D (2.17)
in which
2gl (12my n
Gn= MQZ\/_ (z s( )mzﬁFJo)cos{rﬂp)

1
*005< S— E)ml/wox?(%'%- -+ Oz2n)

20’0{0

qm mlm - (2.18)

According to the perturbation methdd.1]), we seek a solution

of Eqg. (2.17) in the form of a power series im, not only for
dm(7), but also forg. Hence, let

Al ) = Amo(7) + €Q(7) + € p(7) +++ (2.19)
and
©0=@ot+ €@+ 2Pt (2.20)
Equation(2.19 is equivalent to
X;(7) = Xjo( 7) + €X;1(7) + €2X;o(7) - - (2.21)
with
1 &
X (1)=—== >, ei-Dmig = r=012.... (2.22)

\/ﬁmzl

Substituting Eqs(2.19 and(2.20 into Egs.(2.17) and(2.18),
the coefficients of equal powers efon both sides of Eq(2.17)
must be equal, i.e.,

Omo+ dmo=0 (2.23)
26l (2my

” + -
qml Um1 MQZ\/%

! 1
(le Fio cos(jf E)m«//) cod 7+ ¢q)

2wolo

TqunO_ mAmo

1 3
—cog s— 5| myyoy | -

(2.2%)
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zei(/2)m|//
n + -
Um2 T Am2 MQZ\/E

Bl -3l

1
X (= @y Sin(7+ o)) — CO{ S— E) My(3yoX5Xs1)

2wodo ,
- Q Om1~ 7mAmz - (2.2%)
The solution of Eq(2.233) may be expressed as
Omo=&@mo COST+bosSinT m=1.2,... 2 (2.24)

with aon— mO_amO and b2n m,o0— me due to Oan- m0™— c]mOr
wherea,,g andb,,o (m=1,2,...,2) are complex constants to be
determined.

The physical displacements correspondingtg shown in Eq.
(2.24) can be obtained from Eq2.22 with r=0 as

XjO:AjO CcoSsT+ B]O sint j:1,2, PR ,2] (22&)
where
1 2n
Ajoz\/ﬁmzzl gili-vmig
(2.25)
B.Ozi § el (i—Hmipy "o -
) \/%m 1

Ajo and Bj, are real numbers andl,,; o=Ajo, B2n—j0=Bjo,
which leads tXz,_j 0=Xj 0.

Without loss of generality, we can assume that the initial ve-
locity for the disordered subsystem is zero besides the antisym-
metry for both initial displacement and velocity, which leads to

By=0 (2.26)
and
X50: ASO COST. (227)

In order to prevent secular terms, the coefficients of casd
sin 7 on the right side of Eq(2.23) must be zero. Introducing
Eqgs.(2.24 and(2.27) into Eq.(2.2%), letting the coefficients of
cos 7 and sint be equal to zero, gives

2¢/(12my (E“ . S( 1) )
T — 10COS j— =|my | cos
MQZ\/% = jo J 2 b $o
1 370 2008
—cos<s— E)mwTAi’o ~ g Pmo~ 7mdmo=0
(2.28)
2gi(12my (2“: 1 )
co miy | sin
MQ? \/_ j=1 Fio S( ) ¥ o
2w
+ Toéoamo_ 7bmo=0 m=1,2,... 2.

Consider now a specific loading condition as that there is no
excitation acting on each subsystem except the disordered one,
i.e.,

Fio=0 j#sand j=12,...n Fg#0. (2.29)

Introducing Eq.(2.29 into Eq.(2.28, the solution fora,,, and
b Of simultaneous Eqg2.28 can be expressed as

1 2
Amo= Zk \/—

(D+1—cosmy)l;+Cl,
(D+1—cosmy)?+C?

mys

|(l/2)mt// CO{ S— —
2
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[ Aso

b :iiei(lm)mxpco{sii m Cl;—(D+1—-cosmy)l, e, =02  £,=02  &k.=025
™2k \2n 2 (D +1—cosmy)2+C? K=2.5 £F,=30
(2.30) ‘er
in which

3 .
I1=FgyCOS@y— ZYoAgo: l,=Fgsingy (2.313)

- MQwoé’oi Q  €lo

C = —
Ke wo (ek/K) (2.310)
K—MQ? )2 ekc)
D=—=[1—| — 2—
ZEkC o K

C andD are two nondimensional parameters. They are depende

on the nondimensional frequency, stiffness, and damping co, | ‘ | | ‘ | | | | . 0’
stant, i.e.Q/wq, ek, /K, andely. In Eq.(2.31a), Ay andgg are 1 2 3 4 S5 6 7 8 B w?
unknown variables.
Substituting Eq(2.30 into Eq. (2.2%) results in Fig. 2 The frequency response (JAso|—Q/wg) curve
A ! (aijl1+B;il,)
jo= o (&l T Pjl2
2ke (2.32) on
1 1 E 2 col 1 D+1—cosmy
Bio=g (Bilimayla) j=12,...2 *Tonge ST 2 m¢(D+1—cosm¢//)2+Cz(2 38)

where
C

1 2n 1
Bfﬁmzzl 2 cog(s_ E)ml'/l(DJrl—cosml/f)zJFCz’

2n

1 ) 1 1
aj—%m:1 cos | > my cog s > mys
where C and D are dependent ofi)/wg besides the structural
% D+1-cosmy parameters as shown in E@.31b).
(D+1—cosmy)?+C? 233 If the parameters of the system and loading are given, the re-
5 (2.33) sponseAy, for the loaded subsystem can be calculated from Eq.
1 1 1 (2.37), and the otheA, andB;, can be obtained by substituting
Bi=5, > |2coj- 5| micog s—5Imy Eq. (2.34 into Eq.(2.32 as
m=1
« C _ajagt ,BJ-,BSA
D+1—cosmy)?+C?|’ 10724 g2 70
( ) astBs (2.39)
Consider now thesth set of simultaneous equations in Eqg.
(2.32. Insertingj =s and Eq.(2.26) in Eq. (2.32 yields _Bjas—aiBs -
BjO_TﬁZASO ]—1,2, R B
-~ 2KeasAs _ 2KeBsAso (2.34) s
! a§+/3§ P a§+ﬁ§ ' ' The characteristic of the frequency respong&y{| — (Q/ wg))

curve is similar to that for the single nonlinear subsystem, i.e., the

Noting the definitions ofl; and1,, shown in Egs(2.31a) and jump phenomenon may occur. For the specific casejgi=0.2,

(234, may be rewritten as €{y=0.2, ek.=0.25,K=2.5, andeF =30 with n approaching
3 s 2keaAg infinity, the frequency response curve is as shown in Fig. 2.
Fso COS(PO:Z VoAt a2+/32 Introdqc[ng Egs(2.27 and (.2.24) into Eq.(2.2:-h) and noting
s Fs (2.35) the coefficients of cos and sint on the right-hand side of Eq.
2k BAs (2.23) vanishing, yields
. CIFs" s
FsoSiN@o=—7"—7
asT Ps 26 (V2my 1 Yo s
From the above equation, we can find the phase angle with Gmitdm1=— —MQZ\/%CO< S— E)mllfjAso cos 3r.
zero-order approximation as
(2.40)
L 2kepBs _
po=tan 3 (2.36) The solution forg,,; of Eq.(2.40 can be expressed as
2k ast 1 YoAZ (a2 + B2) _
Om1=@ami COST+ by SinT
and the frequency response curve as A3
F2 a2 Ia. |3 3 2 + 70—zsoei(1,2)m¢, cos( s— %) my cos 3r.
_SO) :2—62"‘% _VoAgo)"'(_)’oAgo) 16MA \/%
Aso agt By ag+psl4 4 (2.41)

(2.37)
in which ag and B¢ are dependent of). They can be expressed asSubstituting Eq(2.41) into Eq. (2.22 with r=1 results in
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3
. YA 1
Xj1:Aj1 cost+ le sint+ m %
2n

. 1
x D, elli=12my cos( s— —) mgcos3r j=1,2,....,7
m=1 2

ajast BiPBs Bjas— a;PBs
W g A Bum oz Aae (25D
S S S S

The forced response with first-order approximation can be ob-
tained by substituting Eq$2.25), (2.39, (2.42), and(2.5)) into
Eqg. (2.2), as

(2.42) aiast BB
s jPs
=53 (Apt €A
where X] a§+,8§ ( s0T € Sl)COST
1 2n 1 2n ﬁ ﬁ AS
Am—e S gili-bmig B.— Qili-Dmypy L Pi%sTAPs 0 L0s0
j1 \/%mEzl mi j1 \/ﬁmzzl mi a§+,8§ (Aot €Agp)sinT+ € T6M Q2
(2.43) on
Noting the initial velocity vanishing for the nonlinear subsystem X 1 2 Cog(j_ 1) my cos( 5— E) my |cos 3r
and Eﬁ{‘:l cos(s— %)mt//zn, insertingj =s into Eq.(2.42 gives 2n§=1 2 2
A YoAd, . - j=12,.... 2 (2.52)
X517 As1 COSTH 3012 €08 (44 \ith 7= 0t — (o + €gy).
and Consider now the sum of series in the square brackets as fol-
lows:
1 2n on
By=——= >, €S Umip =0, (2.45) 1 1 B 1)
N 7n & cosj—5 mys cog s > my

Substituting Eqs(2.41), (2.44), and(2.27) into Eq. (2.2%), and

letting the coefficients of cos and sin7 on the right side of Eq.

(2.2%), being equal to zero, gives

am

_ 1
— 28|(1/2)m1// CO{ s— _) m
2ke\2n 2|™

(D+1-cosmy)l7 +Cl3
(D+1—cosmy)?+C?

(2.46)

) 1
bt 2l (M2my coE( s— E)mg//

" 2key2n

CIT —(D+1-cosmy)ls
(D+1—cosmy)?+C?

in which
) 3 YoAY
IT=—¢1sinpFg— 1 VoAgo( 3Ag+ W;}Z

(2.47)

| ; =@1 COS(POFSO .
Introducing Eq.(2.46) into Eq. (2.43 results in

1
A== (ajl* +Bi1%)
i1 i'1 ji'2
2ke (2.48)
l * *
B]lzz—kc(ﬁlll_ajlz)

in which the definitions ofy; and 3; are as shown in Eq2.33
Recalling Eq.(2.45 and inserting/ =s into Eq. (2.48), yields

*:2kca’sAsl I*:2kchAsl (2.49)
boaleplt P Bl '

Introducing Eq.(2.47) into Eq. (2.49, gives

373A%, 9 2k
A=~ Toavaz/ |z YoAZ+ m(aﬁ Bstaneg)
(2.50m)
_ ZkCBSAS]. _ E
(a2+ B2)Fgcosey  Ag
Inserting Eq.(2.49 into Eqg. (2.48 yields
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2n

T > [cogj+s—1)my+cogj —s)my]
Nm=1

0 j#s, 2n—s+1
=41 2.
5 j=s, 2n—-s+1. (2:53)

Introducing the above result into Eq2.52, and noting
@onj+1= @) and By, 1= B yields
ajas"'ﬁjﬁs
X2nfj+1:Xj:W(AsO+EAsl)COST
+Bjas_ajﬁs

A+ eAg)SinT
a§+,3§ ( sO 51)

i=12,...n and j#s (2.549)

£Y0A%
32M Q2

COos 3r.

(2.5%)

It is obvious that the forced vibration shown in Eq2.54a,b)
satisfies the antisymmetric condition shown in E24), i.e., the
solutionx;(j=1,2, ... n) is applicable to the original system.

In Eqg. (2.549), «; and B; are dependent on the total number of
subsystems besides the parameterand D. Consider now the
periodic system with an infinite number of subsystems. By letting
n approach infinity, the limit of the series summation on the right
sides of Eq(2.33 become the definite integrdl7]), respectively,

l.e.,
1 2 1 1

D+1-—cosé
D+ 1—cosf)?+C?

Xon—s+1=Xs= (Asgt A1) COST+

X
1 27 ) )
:EJ'O [cogj+s—1)0+cogj—s)b]

D+1-cosé
D+ 1—cosf)?+C?

><( (2.5m)

and
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Table 1 Attenuation constant  &,(&,) for ek./K=0.1. a) The numerical results in the round
brackets denote &,; b) Case of Q=w, ; c) Case of Q=w,,.

&, 0.00001 0.00100 0.01000 0.10000 0.20000

/ey

0.8 0.2679491920 0.2679450672 0.2675379778 0.2360679775 0.1867233484
02674919200 (0.2679450672)  (0.2675379778)  (0.2360679775)  (0.1867233484)

0.9 0.3819660094 0.3819475651 0.3801450670 0.2892626024 0.2042325086
(0.3819660094)  (0.3819475651)  (0.3801450670)  (0.2892626024)  (0.2042325086)

I.Ob) 0.9900497512 0.9047621882 0.7270194833 0.3460143392 0.2168453354
(0.9900497512)  (0.9047621882)  (0.7270194833)  (0.3460143392)  (0.2168453354)

1.1 0.9998789013 0.9879630216 0.8864552245 0.3833046482 0.2215530221
(0.9998789013)  (0.9879630216)  (0.8864552245)  (0.3833046482)  (0.2215530221)

12 0.9998904637 0.9891055471 0.8964375957 0.3877945824 0.2174286857
(0.9998904593)  (0.9891055471)  (0.8964375957)  (0.3877945824)  (0.2174286857)

13 0.9998683525 0.9869214264 0.8772952844 0.3612922949 0.2058395544
(0.9998683525)  (0.9869214264)  (0.8772952844)  (0.3612922949)  (0.2058395544)

1.49 0.9891812677 0.8968356116 0.7066092868 0.3130958493 0.1895643223
(0.9891812677)  (0.8968356116)  (0.7066092868)  (0.3130958493)  (0.1895643223)

1.5 0.3819660082 0.3819352703 0.3789568507 0.2599562179 0.1715728753
(0.3819660082)  (0.3819352703)  (0.3789568507)  (0.2599562179)  (0.1715728753)

1.6 0.2679491916 0.2679409423 0.2671293807 0.2149005549 0.1540711857

(0.2679491916)  (0.2679409423)  (0.2671293807)  (0.2149005549)  (0.1540711857)

a) The numerical resuits in the round brackets denote &, ;
b) Caseof Q=w,;

c) Caseof Q=w,.

1 2 ] ) 1 2m C
Bi:ﬂ L [cogj+s—1)f+cogj—s)b] ,BSJrk—E J; COSkH(D+17cos¢9)2+C2d0’

C do ) 55 k=0,+1,+2,.... (2.560)
><(D+1—cose)2+c2 ' (2.5%)
Since an infinite periodic system is an idealization, the impor-

tant question is when a finite structure can be approximated by t
infinite idealization. This question was first addressed by

Ly functions, such as

Skudrzyk[12,13. Igusa and Tan{l4] later determined a relation as=(D+1)Eq—E;, Bs=CEp
between the total number and damping of the substructures and
the accuracy of the Riemann integral idealization. _ =[(D+1)2+C21E-—(D+1)E.—1
When a finite periodic system is considered, ireis a finite @s-1= @51 =[(DH1)7+ CTE—( JE1 (2.57)
number,a; and 8; can be expressed exactly as the series forms
shown in Eq.(2.33. The series form can be regarded as the rect- Bs_1=Bs1=CE;
angular integration formula for the definite integral shown in Egs.
(2.55) and (2.5%), where the integration intervg0, 2| is di-
vided into 2h subintervals, i.e., each subintervalgsif the inte- Y
gral form is adopted instead of the series form, the error is in
agreement with that for rectangular integral formula, Gxn~1). Where
Generally, there are infinite subsystems between the disordered
subsystem and the extreme one at infinity, i.¢4¢—1) is an 1 (2= de
infinite number. Introducing the Riemann lemma into E@s55) Eo= o D+1—cos0)2+C2
and (2.550) yields mJo ( )
1 (2= D+1—cosf =[2(D?+2D+C?+[(2+D)?+C?(D?+C?))] 12
s+k= f cosk#o ——dé,
2T Jq (D+1-cosh)-+C 1 1
+ (2.5%)
k=0,£1,%2, ... (2.569) JDZ+C?%?  (2+D)?+C?
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Table 2 Difference of phase angles

sults in the round brackets denote

A0,(A6,) (degree) for ek./K=0.1. a) The numerical re-
A@,; b) Case of Q=w, ; c) Case of Q=wy.

&4y 0.00001 0.00100 0.01000 0.10000 0.20000

Q/ay

0.8 0.0029587412 0.2958701883 2.954809549 26.56505118 43.80251522

000295874147 (0.2958701883)  (2.954809549)  (26.56505118) (43.80251522)

0.9 0.0048617080 0.4861451448 4.836423380 36.79497241 53.97312668

(0.0048617081)  (0.4861451448)  (4.836423380)  (36.79497241) (53.97312668)

1 .Ob) 0.5729530204 5.724792592 17.96423592 51.82729237 65.53019948

(0.5729530204)  (5.724792592)  (17.96423592)  (51.82729237) (65.53019948)

1.1 60.00000024 60.00242543 60.23852969 70.47593457 77.80809134

(60.00000025)  (60.00242543)  (60.23852969)  (70.47593457) (77.80809139)

1.2 90.00000000 90.00000000 90.00000000 90.00000000 90.00000000

(90.00000000)  (90.00000000)  (90.00000000)  (90.00000000)  (90.00000000)

13 119.9999997 119.9971337 119.7189490 108.6373579 101.3892055

(119.9999995)  (119.9971337)  (119.7189490)  (108.6373579)  (101.3892055)

1 .49) 179.3767671 173.7737712 160.4907647 124.7702433 111.4677448

(179.3767671)  (173.7737712)  (160.4907647)  (124.7702433)  (111.4677448)

1.5 179.9937236 179.3724114 173.7774321 136.9286010 120.0000000

(179.9937236)  (179.3724114)  (173.7774321)  (136.9286010) (120.0000000)

1.6 179.9958157 179.5815819 175.8267916 145.2509396 127.0128869

(179.9958157y  (179.5815819)  (175.8267916)  (145.2509396)  (127.0128869)

a) The numerical results in the round brackets denote A6, ;

b) Caseof Q=w,;

c) Caseof Q=wy.

1 2m cosfde
2w ), (D+1—cos#)?+C?

=[2(D?+2D+C?+\[(2+D)?+C?|(D?+C?))] 2

1 1
X - .
(\/D2+C2 J(2+D)?+C?

(2.5%)

which indicate the symmetry of the forced vibration about the
nonlinear subsystem.

The localized level of the mode is dependent on the attenuation
rate of the amplitudes. Let

All of g andBq.(k=1,2,...) can bexpressed as the linear
combination ofE, andE; . Let us investigate the localized prop-and
erty of the forced vibration mode. The periodic response with

zero-order approximation shown in E@.25) can be written as

Xj:AjocOST+BjosinT:Xj COST_ej) j:1,2, LR
(2.59)
where
2 2
aj +,8j
= A (2.60n)
! B
B] s ajﬂs
0. =tan ! 2.6Mm
! ajas+ﬁjﬁs ( )
It is clear that
Xs=Ag and 6,=0. (2.61)

Because ofvs_j=asj andBs_j=Bsyj, we have

XS*j :XS+j and 05,1- = 05+j
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(2.62)

Ktk ali it Bok
&= X = 5 > k=12,...
stk—1 g1t Bsrk-1
(2.63)
A =05k Osik-1 kK=12,.... (2.6%)

A 6, indicates the phase difference between the corresponding dis-
placements ing+k)th and 6+k—1)th subsystemss, and A 6,
are only dependent on three nondimensional parameters, i.e.,
Olwgy, ek /K, ande{y, and independent from the nonlinear pa-
rametere yy. The numerical results are given as shown in Tables
1 and 2.

The accurate numerical results show that

===

A01:A02:"' y

(2.640)

(2.6%)

which are in agreement with those obtained from the linear peri-
odic system.

By using the results shown in Eq&.64a) and (2.6%), Eq.
(2.59 can be written as
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Xe_k=Xss k= Ao cog 7—kAO;) k=0,1,2... . have been derived. The solutions include explicitly the total num-
(2.65) ber of subsystems as well as the other structural parameters. The
total number of subsystems, i.@, may be finite or infinite. By
letting n approach infinity, the limit of a solution is applicable to
a system with an infinite number of subsystems. It is interesting to
note that the expression of the limiting solution is simpler than
hat for the system with a finite number of subsystems.
The system considered possesses the properties of both the non-
linear and linear systems, i.e., there are jump phenomena in the
870A§0 nonlinear system and the wave propagation constant in the linear
Xso k=Xss+ k= EX(Agp+ £Ag;)COL 7— KA 6;) + Wcos 3rd  periodic system, which may be expressed a&1mé, .
(2.66) The ef_fect of the damping and drivi_ng frequenc_y on the wave
) propagation constant has been examined numerically. It may be
wherer=Qt—(¢o+e¢;) and o denote the Kronecker symbol. concluded that the effect is similar to that of a perfect periodic
For the zero-order approximation shown in E2.65, the am- system.
plitudes decay exponentially on either side of the nonlinear disor-
der and for the first-order approximation shown in E266), the eferences
same conclusion can be obtained, except for the nonlinear sEE)-l b B 1 1062, “Dynamice of Periodic and Near-Periodi
system. From the above property, the forced mode for the consid-t! slfruci'u?ens,” :gﬁgﬁpﬁw oo 'Rev%;’z_)"j“;"f_ig?_fsrg’_ Ic and Near-Feriodic
ered system looks like the linear one. On the other hand'_thefz] Nayfeh, A. H., and Mook, D. T., 1984onlinear Oscillations Wiley, New
frequency response curve for every subsystem has the nonlinear vork.
property as shown in Fig_ 2. [3] Vakakis, A. F., Manvetich, L. I., Mikhlin, Y. V., Pilipchuk, V. N. and Zevin,
Finally, let us discuss the results shown in Tables 1 and 2. Qg@-y})ﬁfev Normal Modes and Localization in Nonlinear Systeméley,
Table 1 points to the_followmg conclusmn(;t) when(} lies far [4] Liu, J. K., Zhao, L. C., and Fang, T., 1995, “A Geometric Theory in Investi-
from the passbandé is much less than one and the effect of gation on Mode Localization and Frequency Loci Veering Phenomena,”
damping on¢ is very weak;(2) when( lies in the passband and ACTA Mech. Solida Sinica8, pp. 349-355.
e{, is very small.¢ is approximately equal to one béidecreases [5] Vakakis, A. F., Nayfeh, T. A,, and King, M. E., 1993, “A Multiple-Scales

rapidly with increasinge{y,. From Table 2, one comes to the j‘_”,i'g;l'j;’fec’“h"_%{;‘e;‘;2";@2‘;3,“"“65 ina Cyclic Periodic System,” ASME

| is always less than one except thal,=0 andQ lie in the
passband as shown in Table 1. The casé|efl indicates that the
corresponding mode is not localized.

Moreover let us consider the forced vibration with first-ord
approximation. By using the above results, E¢®.54a) and
(2.5%) can be expressed as

conclusion that(3), When02=w§(1+(28kc/K)), A, is iden- [6] Vakakis, A. F., King, M. E., and Pearlstein, A. J., 1994, “Forced Localization
ticaIIy equa| to 90°. which can be proved mathematically as fol- in a Periodic Chain of Nonlinear Oscillators,” Int. J. Non-Linear Me@9,

: . P . pp. 429-447.
lows: Ins_ertlng Q= wy(1+(2ek:/K)) _|nt0 Egs. (2.31b) and [7] Cai, C. W., Cheung, Y. K., and Chan, H. C., 1988, “Dynamic Response of
(2.58), yields D=—-1 andE;=0, leading toas=0 and B, 1 Infinite Continuous Beams Subjected to a Moving Force—An Exact Method,”
=0, then introducing these results into EQ.6M) gives A#, J. Sound Vib. 123 pp. 461-472.

_ —on° ; [P ; [8] Cai, C. W., Cheung, Y. K., and Chan, H. C., 1990, “Uncoupling of Dynamic
=05,1=90°, which is independent of the dampin@) when Equations for Periodic Structures,” J. Sound Vib39, pp. 253—263.

92<w§(1+(28kc/K)). A6y increases with increasingl,; and [9] Cai, C. W., Cheung, Y. K., and Chan, H. C., 1995, “Mode Localization
when 92>wg(1+(28kc/K)), A6, decreases with increasing ﬁgnomenam Nearly Periodic Systems,” ASME J. Appl. Me6B, pp. 141—

8QVO' [10] Cai, C. W., Chan, H. C., and Cheung, Y. K., 1997, “Localized Modes in
. Periodic Systems With Nonlinear Disorders,” ASME J. Appl. Med#¥, pp.
3 Conclusions 940-945.

. .. . 11] Meirovitch, L., 1975,Elements of Vibration AnalysisMcGraw-Hill, New
The primary resonance of the damped periodic systems with én] York. Y

arbitrary number of subsystems and one nonlinear disorder ha] Skudrzyk, E. J., 1968Simple and Complex Vibratory SysterRennsylvania
been analyzed by using thé-P method. Applying the g glt(atg UT(IVEVSIJW liges%& LTJEIVG;\;SIW P\flr:« PQ- hod of Predicting the D )
_ : : : udzryk, E. J., , “The Mean Value Method of Predicting the Dynamic
U-transformation to th.e governing e.q”at'of‘ beforehand leads {6 Response of Complex Vibrators,” J. Acoust. Soc. A6V, pp. 1105-1135.
the standard form of simultaneous differential equations. The pef14) igusa, T., and Tang, Y., 1992, “Mobilities of Periodic Structures in Terms of
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Equilibrium Solutions and
r.c.o.wo' I Exjstence for Traveling, Arbitrarily

Department of Mechanical and

Industrial Engineering, Sagged EIaStic Cahles

Southern Illinois University,
Edwardsville, IL 62034-1805

Mem. ASME The exact, closed-form, three-dimensional solutions for the steady motion of traveling,
sagged, elastic cables under arbitrarily distributed and concentrated loading are devel-

C.D. Mote, Jr. oped in this paper. Three components of displacement describing two equilibrium states

Glen L. Martin Professor of Engineering, of an extensible traveling elastic cable are derived. These exact solutions apply to straight
Office of the President, and sagged cables traveling under their own weight and uniformly distributed loading.

Main Administration Building, The exact solutions are also used to investigate the steady motion of three-dimensional
University of Maryland, traveling cables under the uniformly distributed and concentrated loading. Traveling

College Park, MD 20742 elastic cables with large sag can be modeled approximately through the inextensible

Honorary Mem. ASME cable model when both the loading and the translation speed are very small. A slightly

sagged cable must be modeled as extensible, rather than inextensible, even though both
the loading and transport speed are very small. These solutions can be applied to multi-
span cable structure$S0021-8936)0)02601-5

1 Introduction tained from the eigensolutions of discretized continuum models,
d also some experimental results were reported.

The equilibrium configuration, tension, and displacement &" he nonstraight equilibria have been determined by approxi-

elastic cables under arbitre_lry loading are nee_ded_in the desi_gnh? te means. For stationary cables/strings, Dicke§] investi-
cable _structure_s. Rohid] first modeled th_e vibration of a Un- gated a nonlinear string under a vertical force and gave tensile and
forr_n, |nexten5|bl_e suspended chaln hanging freely und_er its o Bmpressive equilibrium solutions. Antmdn5] extended the
weight and obtained the approximate natural frequencies and ffizkey investigation and investigated comprehensively the exis-
sponses of the cable. RouftB] considered the symmetric trans-tence, multiplicity, and qualitative behavior of equilibrium for
verse vibration of a heterogeneous chain hanging in the form ohgnlinear elastic strings under different loads, and the translating,
cycloid, and application of this chain model to the uniform chaigagged string possesses two nontrivial equilibrium states because
yielded the Rohrs model when the sag ratio is small. The chai centrifugal loading. O'Reilly and Varadil6] investigated the
was still modeled as inextensible. Pugs|&y developed a semi- equilibria of translating elastic cables. In 1996 O'Reilly showed
empirical theory for the in-plane natural frequencies of the firghat if one used an observation due to Rofhfor inextensible
three modes of a uniform, inextensible suspended chain. Saxirings, then the work of Antmafi5] and Dickey[14] on static

and Cahn[4] developed an asymptotic method for the naturatquilibria for strings can be extended to examine the steady mo-
frequencies of the chain for large sag to span ratios. SimpSpn tions of these strings. Healey and Papadopoll@$extended the
investigated the in-plane vibration of a stretched cable through igextensible cable results to all the elastic strings. O'Reill§]
equilibrium and also determined the natural frequencies of mul@btained the steady motion and stability of elastic and inextensible
span, sagged transmission lines using the transfer matrix meth®@ings, and it was also shown that multiple steady motions were
Irvine and Caughey6] used a similar approach to investigate th@ossible. In the gquantitative investigation of _elastlc cables, Irvine
free vibrations of a sagged, stretched cable hanging under its ol] used the method of Dickell4] to determine the exact equi-
weight. Hagedorn and Schafff] showed that geometrical non_Ilbrlum _conflguratlon and the approximate dlsplacements of two-
linearity is significant in the computation of natural frequencies gfimensional cables under positive tension. For a single concen-
in-plane vibration of an elastic cable. Luongo et[8] analyzed Uated vertical load, the predicted displacement is constrained by
the planar, nonlinear free vibrations of sagged cables throug hf assumption that the eq“"'b““m conflguratlor_w is parabolic and
perturbation method. Perkih8] considered the three-dimensionalmhggstgg ?Qgss;[]ttigiscaﬁllgnage {'r)\(/?gw]': (r)é Til:g'zleeg%gﬁen;ated
nonlinear vibrations of elastic, sagged cables analytically and e initiél configuration gTo ove)r/come thesglimitatri)ons Yz et al
perimentally, and gave a brief review of recent developments 9 X ' :

. . . . ! EEO] followed Irvine’s procedure and computed the tension and
cable dynamics. For translating cables, Simpfs] mvestlgated. equilibrium configuration in three dimensions under uniform and

. i s ®bncentrated transverse loading. The aforementioned exact solu-
around the equilibrium. TriantafylloLL1] used an alternative ap- tions describe the equilibrium but not the response because the
proach to derive the linearized equations of motion at the equiliByitial configuration is not known.
rium. Perkins and Mot¢12,13 developed a three-dimensional The exact closed-form solution for the steady-state motion of a
cable theory for traveling elastic cables. The natural modes for tﬂﬁveling, arbitrarily sagged elastic cable will be derived under
vibration and stability of translating cable at equilibria were obgjstributed and concentrated static loading in this paper. The
closed-form solutions under the uniformly distributed and concen-
To whom correspondence should be addressed. trated loading will be formulated, and discontinuity in tension and

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF equi]ibrium configuration caused by concentrated forces will be
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED discussed as well
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. ’
16, 1998; final revision, Aug. 10, 1999. Associate Technical Editor: N. C. Perkin
Discussion on the paper should be addressed to the Technical Editor, Profe!
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, . . . .
Houston, TX 77204-4792, and will be accepted until four months after final publi- 2-1 Equation of Motion. Consider a traveling, sagged elas-
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. tic cable passing through two eyelets, as illustrated in Fig. 1. The

o Modeling
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are mtroduced. The material is linear elastic, and the exact non-
linear strain is modeled. Hence, as in Luo ef{ 2l], the equations

B, of motion for a cable segmeift;_;,s;] between concentrated
forces Fi™1 and F®) (i=1,..n,n+1), are obtained through
~ force balances of the deformed cable, and when the geometrical
y A Initial relations are used, the equations of motion become
configuration _\ A )
B i (Xﬁl)_,’_u(l ) _qf(l)
d 7| 2. 20 X u My x5 g
7 \\\_:[) Z/ cg+ e VX+ul ) (X(+ul) 1](Xf<i)s+u(ki)s
B u ! (l) (l) (I) (I) ) '
_ - : Xj st Uj o) (Xj st
5> \ Equilibrium \/( o o S
X - configuration (4)
The reactions at end3;(sy=sg,=0) andBy(s,1=sg,=1) are
F© and F("* Y, For traveling cables, the variablgis used as a

/ fixed coordinate system arglas a traveling coordinate system.
/ Therefore, transformation afto »

Y

/ n=s+ct, (5)

results in equations of motion for segmdny; _;,7;] mapped
from [si_1,Si]

Ny

Fig. 1 Equilibrium and deformation of a traveling sagged

cable under arbitrary loading PU(I)n*ZCU(I) +CZ(XS,),],]+ US,),,,,)
2 2
co—C
=g 2 o _~p (i 4y
_ _ _ q +{ o+ \/(xt”+u<”)(x“>+u<'))}(x +uy )}. (6)
horizontal and vertical separations of the eyelets larend H,

respectively, and the length of cableSsThis cable travels at a \when s= X =x and X =x{=0, Eq. (6) reduces to the two-

co(;tstant speed. x, IX Y andhz are fixed relctanglular Carte_?llar; Cocglmensmnal straight cable model. The boundary conditions for the
ordinates(y is colinear with gravitational acceleration. The fixedhqjiibrium displacement and initial configuration are

end points B, and B, are positioned arbitrarily. gt 4O I
—{q,g,q"}={q"} and FO=(FO F FO ) E =(F(1 for the | ,—o=ax,u" ~|,—1=by and
ith segment are distributed and concentrated forces on the cable, Xf< )|”=0=Ak :Xﬂnﬂ)b:l:Bk- @

andu®={u® v, Wy ={uf} is the displacement from the ini- _ O
tial f tion XM =X v 7 X(') i ilib From (7) the ratio of the chord to arc length of the cable at initial
lal-connguration { p={Xi’y to equilibrium ;o601 ration is determined through the nondimensionalized vari-

xW =[x yi) Zih = {_(')} VX jsxk('js 1 and T =% - X" . ablexg={A—B)(A—By. Continuity requires
For straight cabless= xl (s) andx =0. The strain of u{(u) (|+1)| and an: ”i:X$+1)|

n=n" =7 ®)
equilibrium under initial tensmff0 is

=17

2.2 Equilibrium

“)—s<')+[\/(x(')—t_">)( l—) 1], (summation onj) 2.2.1 Existence. With vanishing of the time variations i),
(1) integration ovef 71, 7] gives

2 2
_ cg—c . :
where () 5=d(-)/ds, s =TO/EA, andE, A, ands are Young's o P c,z,—cz) (Xﬁ'),ﬁr Uﬂ')n)
modulus, the cross- sectional area, and the arc length of the cable [ \/(X{") +ull))(X{1) +u() ) ' '

in the initial configuration. For inextensible cableEA— ),

=0 because/X{’X{.=1 anduf’=0, {X{’} depends on the - f qidn+cl, )
external loading except the initial tension. The tension in the cable
at equilibrium is wherec{’(k=1,2,3) are integration constants. With the tension

(2), (9) reduces to the model of Yu et 420] whenq{’=c=0
TO(E)=Ty+EA \/(X('l+ U('))(X“Lr_‘”) 1. (2 and ql)(k#1) are uniformly distributed. The Irvine two-
dimensional model is also a special case®fobtained byq”
For the sake of general solutions, the nondimensionalizations —q(')—c 0.
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The squaring of both sides @9) for eachk and summing of
them for allk leads to

\/(X(l) +u(l) )(XU) +u(l)

.
N

2 2
7| (Cp—Co)

. (10)

Similarly, ¢’ andd{") can be determined. Equati¢h6) and(17)

show thatX(') is independent of the initial tension. For the inex-
tensible and elastic cables under the same loading, it is assumed
that the two cables possess the same initial configuration. For the
inextensible cable, its displacement is z¢ie., u(')—O), which
implies that the equmbrlum of the inextensible cable is the initial
configuration (i.e., X{"(7)=X{"(#). Therefore from(15) and

(17) the dlsplacement of the elastic cable is

The translating cable ifl.0) possesses two equilibria. When the

translation speed equals the wave spéesl, c=E/p), reso-
nance occurs and the stretch ragi¢X") +u{")(X{") +u{")) be-

comes infinite. I(10) the stretch ratlo mcreases W|th increastng

for c<c,.
The substitution 0f10) into (2) with (3) leads to

) 1
2 2
T(I):ETCZ CZ(Cp*CO)
p

tcz\/ fq,')dn cj" (fq}i)dn—c}i))

showing that the tension increases monotonically vatfor c
<cy,. For stationary cables, setting=0 in (11) and choosing
TO>0 for all the segments gives

(qu(”dn—c}”).

T = \/(fq}”dn—c}”
u)=1 (or

In the inextensible cabley/(X{ +u{’)(X{ +
ul’=0), the stiffness in(9) becomes To— pACz) identical to
Routh[2], and the tension is

TO=c2=+ \/(jq}i)dnc}” (fq}”dn*cg”). (13)

Cable/string models require positive tension, i®!)>0. There-
fore, a condition of existence of steady motion fr¢hi) is

1 . .
el [ore

(11)

12

c0< c (14)

qil)d"’_cj(i)

A critical condition for the existence of steady motion is obtained

atTD=0 or equality in(14).

2.2.2 Displacement. Substitution of(10) into (9) and inte-
gration gives three components of displacement

u{(i):dLi)_Xf(i)J {

X

ool
(c3—c?)

2 2
Cp—Co

e o daan—ap)

Whered (k 1,2,3) are constants. The boundary conditiéhs

displacement continuity8), and force balances at eaél) are
used to determine all coefficients {8) and(15). The force bal-
ances are

- [ avana]

The _inextensible cable requirespﬂoo and (10) gives
\/Xk( 577Xk( 577 1 indicatingu{’=0. Substitution of tha:p and uf”
into (15) gives the equilibrium conflguratlo)(

x(k”=tf
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] d»n, (15)

_FS):(_f qf(Hl)dr/-‘rCf(Hl))
n=1; Kl

(16)

_fq(|)d7]+ C('

dydf)
JTaPan e aaan a7

7

u<i>:J' —fad'dn+el!
k (CIZ)*CZ)
c5—ch _
dp+dP
ST (4 ) ] :
—fq(')dn-i-c(') ~)
”\/(fq}')dn ey (aan gy 74 (9

3 Applications

3.1 Uniformly Distributed Loading. Consider a sagged
cable traveling at constant speedThe cable is subjected to a
uniformly distributed loady={aqy,q,.q,}. The chord ratio of the
cable isxg and a constant, initial tension & . The superscripts
denoting the particular segment have been dropped. The boundary

conditions are
Ul y=0=Ul =1=0, Xi| ,—=o=A=0 and X/ ,-1=Bj. (19)

The displacement is given Ki8)

1 1 (cp—co) [ a
UkZ(C‘z)TZ)( 5 Ok7 +Ck77) (CPTZ’){—EKG)W)
Cd;—C{q)d;
+uiqﬂlog[5(n)+®(n)] +dy

[ Ak (& —Caa;, -~ - ~
+[—Ek®(77)+ == ‘Iog[:(n>+®<n>]]—dk,
(20)
where
\
cjq; cic;
) :\/2—2 +-,
(n7) ] A
- k)
ﬂ(ﬂ)zﬂ_?, g=0q;q; (21)
A ¢ it ~ Ciq;
@(n)z\/nzfz%m%, Em=n—-7"
q q a” )
The boundary condition€l9) with (20) give
c2-c? q
——_p 0 ] Hk
dk_+(c§—cz){ q@)(o)
Ckd;— ;A ;
L o ] %9 Iog[E(O)JrG)(O)]], (22)
. +(C§_Cg)(ckqj_chk)qj o E(DH+06()
* ik K EURCIC)
» oo 1 (ch-cd)a
=By (c2—c?)+ EqkiT[@)(l)—@)(O)]- (23)

The ¢, and d, in (20) are determined through solution of the

nonlinear algebraic Eq22) and (23), and thet, and ak for the
inextensible cable are determined from
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ak [%(&)(0) (quj;CjQK)qj
(qu] ¢;a1q; o 2(1 )+®(1)
q° £(0)+0(0)

The exact displacement solution is complete. The tension and the

equilibrium configuration are

1
T(1)= =l C¥(ci—c)) = cjad(n)].
p

[@

—0(0)].  Yx)= i

wherec, andc, are determined through the boundary condition at

Iog[é(0)+(:)(0)]], (24) 7=S. The qu_iIibrium under nonpositive tension (81) is un-

stable. Setting{o=c,/q, sinh (¢, /cy), (31) becomes
-~ A AQ-—
cos}‘(—g(x Xo))—cos!‘(prgxo) .

Letting T, 1(0)= +c1:+[T0(0) pAc?]cos6(0) where dx/

dn=cosd(n), (32) is given by O'Reilly[18] (see p. 188 X0 is
determined by the boundary conditiongt S. If the inextensible

(26) cable is sufficiently straight that cé@s-1 andc,>¢,, then X,
~0 and(32) becomes

(32)
(25)

1o 2 - . o(aym )
— 3 0k7°+Ck7) (C —cf) X(7)=*£=—sinh" (;)
X=X+ Uy = q c
k k k (CIZ)_CZ) ( - ) - y — ,
Ak (6= CjaWa; Wﬁ)—ig(l— 1+ qu) ) (33)
_E®( 7)+ Tbg[ﬂ(ﬂ)"r@(ﬂ)])- jy N C1
27) :12 cos)‘(ﬂ)—l}.
qy Cy )

For the inextensible cable, the equilibrium configuration is

This stable solution is given by Simpspt0]. However,(33) does

N - Ok (&9 =g, -~ - not provide the equilibrium solution of the inextensible cable be-
X 7l)=dk+[ ——0(n)+ 3 loglE(7)+©O(7)]{. cause the boundary conditions are not satisfied. The linear model
q q ©28) of the straight cable gives
3.1.1 Special Cases.Consider a two-dimensional traveling = — L 1)y, v=— _ 4 —1)n. 34
cable wittig, =0, G, = — pAg=WI/S, B,—L/S andB,—H/S. The T R Tr-mr L A

substitution of(3), (22) and (23) |nto (27) and use of inverse

hyperbolic functions leads to the equilibrium of the two- 3.1.2 lllustrations. In all the figures to be referenced next,

dimensional deformed cable,

€y

__EA-T,

XD=E= DA

)

y

C,
sinhfl(:z)
Cy

1 ( 1,
Y(E)—m — 5 0y7 27
EA-To)C; A 0,7\’
LEA TG \/1+ E—Z —\/1+ Z_qﬁ) J]
1

Ay

The bar indicates dimensional variables and parameters. For the
stationary cabled=0), let T,=0 and neglect the solution with

T=<0, (29) becomes

. c,_ ¢S . (
xX(7n)= EA7]+ W sin
c,—Wn/S
_Sinh_l(i)},
C1
_ W7 ¢, 7)
W[a(v—v‘z—s !

2

1

g

cS \/ c\° \/
W ( 1+ (E—l) 1+
which is the solution of Irving19].

settingE A—oo.

() +_

- WilS

sinh ! :) sinh™ (
C
2

C

y

Il

The inextensible, axially moving cable is obtained fr(g) by

)|

1

Journal of Applied Mechanics

2
S o=

Cy

CZ qy

/)

(€1Y)

the solid and dash lines represent the upper and lower(—)
branches of the equilibrium configurations, respectively, and the
dotted line denotes the unstable equilibrium of the cable vhen
<0. The longitudinal and transverse wave speeds @fe

=740.87 andcy=
06
E)
(29) <
0.6 | | | |
00 02 04 06 08 10
X
1.2
(30)
E

Fig. 2 Longitudinal (upper) and transverse (lower ) equilibrium
displacements of a straight elastic cable under q,=0 and g,
=—1 for ¢=10:¢,=740.87 and c,=0
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Fig. 3 Displacement (upper) and tension (lower) versus trav-
eling speed of a sagged elastic cable (xz=0.8) for g,=q,=
—1 with various transverse loads:  ¢,=740.87 and ¢,=0

25

20+ —

Fig. 4 Multiple equilibrium configurations (upper ) and tension
distributions  (lower ) of a sagged elastic cable (xz=0.8) under
its own weight (g,=—1) and various longitudinal loads for c
=1:¢,=740.87 and ¢,=0
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1.6

u (x104)

Fig. 5 Longitudinal (upper) and transverse (lower) displace-
ments of a sagged elastic cable at equilibrium (xz=0.8) under
its own weight (q,=—1) and various longitudinal loads for c
=10:¢,=740.87 and ¢,=0

Consider a two-dimensional horizontal straight catig=xg
=1, B,=B,=0) hanging undgr its own weightq{=0, q,=
—1). Two components of displacement=x(7)—#» and v
=y(#n) computed from(20) at c=10 are shown in Fig. 2. The
chain line denotes the linear prediction of displacement ft8.

The maximum longitudinal displacement is 3.9980 > (lower
branch and 2.92% 10 ® (upper branchat =0.21 and 0.79.
The linear prediction of the longitudinal displacement is zero be-
cause ofg,=0. The maximum transverse displacement is 8.828
x 103 (lower branch and 7.54% 10 % (upper branch but
1.25x 102 for the linear prediction. For the inextensible cable,
two components of displacement are zero.

The maximum transverse displacement and minimum tension
in the two-dimensional sagged elastic cab®€xg, B,=B,
=0) for g,=—1 is plotted in Fig. 3 when the chord ratio xg
=0.8. The lower branch of the equilibrium configuration for any
traveling speed always exists, and the displacement and tension
increase with the transverse load and transport speed. The upper
branch of equilibrium configuration is stable only when the trans-
port creates positive tension.

The equilibrium configuration and tension of a cable under its
own weight @,= — 1) and the longitudinal loadgj(=0,—1) are
illustrated in Fig. 4 akg=0.8 andc= 1. The equilibrium configu-
rations and tension distributions are symmetric ge=0. The
longitudinal and transverse displacements from the initial configu-
ration to equilibrium of the sagged elastic cable are illustrated in
Fig. 5. Unlike the straight cable in Fig. 2, the longitudinal dis-
placement of the sagged cable is the same order of magnitude as
the transverse displacement.

The maximum transverse displacement and the related tension
versus the chord ratio are illustrated in Fig. 6 at10. The
maxima occur akg= 1. The results indicates that slightly sagged
cables kg=0.9~1) must be modeled as extensible to achieve the
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Fig. 6 Displacement (upper) and tension (lower) versus chord
ratio of a sagged elastic cable with various transverse loads for
¢=10:¢,=740.87 and ¢,=0

1 (i+1) 1 (i+1) 2 Cg 2d(|+1) d(')
+ c o)+
Cg_co ko 7T 5% 2 ¢ ——l( ),
(36)
and force balances ifL6) give
Sl e =g gl Y. @)
The boundary condition i(19) at =1 produces
(c(Mg(M—c(Mg(M)q(™
S g E M)+ 0 (1)]
+(d" +cV) 7
p 0
2 2 (n) (n)
c.—cC 1 gy (o1%
=B +—— en 38
kCS—CS CE—CO 2 q(n) () (38)

Thec{) andd{" are determined by solving>6n nonlinear alge-

braic Eq.(35—(38). Similarly, the¢, andak for the inextensible
cable are determined by the following<é nonlinear equations:

q(kl) . (C(l)q(l) C(l)q 1))q(1)

I=F gl q™)?

I
+

(o)
=

xlogl EM(0)+0™M(0)]1, (39)

accuracy for most applications. The sagged cable model reduces
to the straight cable model ag=1.

3.2 Concentrated Loading. Consider a three-dimensional
sagged traveling cable carrying—1 concentrated loadg{’ (i
=1,2,..n—1 andk=1,2,3 forx, y, z) which divide the cable into
n segmentsq(')(l =1,2,...n) are uniformly distributed loads and
cg is a constant initial tension. The boundary conditions satisfy
(19). Three components of displacement frét®) are computed
through (200 and (21) when {u,qy,Cy,d,E,0, q} and
{ck,dk,_,G)} are replaced byu{ g ,c{,di? =2, @M qM}
and{e¢!’ ,d» 2O @0y,

The corresponding boundary condition {@9) at »=0 be-
comes

C2—02 q
1) — p 0 k
d<k>_+—z—(C el el

(Mg~ cVg)q!Y
(q(1>)3 L log EM(0)+ (0]

The displacement continuity between il and § + 1)th seg-
ments (=1,2,..n—1) is

(c(')q]”—c(” M)ql? )

(39)

e . _qk )
)3 |09[E(')(ﬂi)+®(')(ﬂi)]+m®(')(7]i)
1
+ Co(ck i~ Zq(')n.z)
p
(C(|+l)q(|+1) C(|+l)q(|+1))q(|+l)
- (q D)2

Fig. 7 Equilibrium configuration
from segment 1 to segment 2

(x5=0.8) under its own weight
force (F,=—2) for ¢=10:¢,=740.87 and c,=0

q(|+1)

xlog[““”) 7])+®(|+1) (m)]+ (H_l)@(wl)(nl)

Journal of Applied Mechanics
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(lower ) of a sagged elastic cable

(g,=—1) and a concentrated
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Mold Surface Wavelength
Effect on Gap Nucleation
in Solidification

A theoretical model that predicts the time and position of gap nucleation along the
metal-shell interface during solidification of a pure metal on a sinusoidal mold surface is
presented. The ratio of the mold surface amplitude to its wavelength is assumed to be
much less than one and hence it is used as a perturbation parameter in the analysis. The
molten metal perfectly wets the mold surface prior to the beginning of solidification, and
this leads to a corresponding undulation of the metal shell thickness. A nonuniform
distortion develops in the shell due to the lateral temperature gradient induced by the
modest spatial variation of the mold surface. This causes a variation in the contact
pressure so that the growing shell pushes harder on the mold in some places, but in other
places it starts to pull away from the mold. Gap nucleation is assumed to occur when the
contact pressure falls to zero. The conditions for gap nucleation in the surface troughs
are examined since a corresponding increase in pressure at the crests signals the possi-
bility of a growth instability in the shell at later stages of the process. A series expansion
for the contact pressure is presented which is appropriate for early solidification times.
This reveals how the contact pressure varies with the mold surface wavelength. This

solution is compared with a numerical solution for the contact pressure that is not limited

to early solidification times. Gap nucleation times are calculated for pure aluminum and
iron shells for selected mold surface wavelengths. The associated mean shell thicknesses
are calculated as a function of wavelength at selected mean molten metal pressures.
[S0021-893600)02901-9

nomenon has led to the suggestion that the humps grow as a result

1 Introduction \ : .
The most critical region during the earliest stages of metal ca; f 9ap nucleation at regions of the mold surface that lie beneath

ing processes is the mold-shell interface. It is through this int le thinnest regions of the shdfiee, for examplel2-3). It is

face that heat is extracted from the molten metal resulting in t léely that this is.’ but one Of. several contributing factors to solidi-
growth of the metal shell. Some of the most difficult proces ICation growth instability since process-related phenomena, such

related problems are gap nucleation and subsequent gap gro\ﬁ&]superheat, mold velocity, mold distortion, meniscus behavior,

and remelting of the shell along the mold-shell interface. There %‘d.ﬂﬁid flodw [é)la|y7prgminlent rdolesbin th?hproce(ge]zj. 't |
indeed a substantial body of experimental literature that consid%f;'c mond et al[7] developed a beam theory model to explore

the nucleation and growth of gaps during solidification process onset Of. the propgsed macrosc;_;lle QTOWth instability mecha-
nism assuming that thickness nonuniformity of a pure metal shell

(see, for examplé,L]). qs due to a periodic heat extraction profile. This assumption was

Gap nucleation is largely caused by irregular thermomechanilﬁased upon the premise that small scale disturbances in the heat
distortion of the shell which leads to localized separation from t upon the p :
gxtraction profile at the mold-shell interface led to larger scale

mold surface. The nonuniform thermal field that gives rise to i ell thickness nonuniformities via aap nucleation and arowth. It
regular distortion can result from spatial variations in the hegp gap 9 :

extraction profile along the mold-shell interfai@hie, for example was proposed that gap nuc_leation occurred when t_he contact pres-
to mold surface topography, release agents oxide)s Btirience’ sure along the mold-shell interface fell to zero. Richmond et al.

. ; : L 7] found that gap nucleation occurred beneath the thinnest re-
of nonuniform shell growth due to irregular distortion is found aoégns of the shell, which presumably diminished further growth of

raised “humps” along the internal surface of the shell which ar ese regions, with a corresponding increase in contact pressure

apparent when solidification is interrupted and the residual molt g . rresp 9 . - P

metal is decanted. The humps are a macromorphological phen neath the thickest regions of the shell, the thicker regions sub-
' guently growing at a faster rate. The mismatch in growth rates

enon reaching several centimeters in span. They are a clear i o the shell is what leads to the humps discussed above. Be
cation of a shell growth instability which is most prominent durs ndg ab nucleation time. their model wasno lonaer valid sinc.e it
ing the early to intermediate stages of casting. This type égf)uldgno[z account for con’tinued rowth of the ags and the shell
irregular growth has been linked to a variety of problems with ca; P edg . gap . )
and Barber{8] extended this work using a stress function ap-
proach and found that the Richmond model was appropriate for
the earliest stages of the casting when the shell is very thin. Their
érpodel assumed that the temperature and stress fields in the grow-
Ing shell were coupled along the mold-shell interface through a
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF prﬁsiured-gependenrt] thgamgl Contalm re.SIStance' Addltlonal lmOd.els’
MECHANICAL ENGINEERS for publication in the ASME GURNAL oF AppLiep  WHICh address such added complexities as strain rate relaxation
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jandue to viscous creef)9]), Stefan numbe({10]), and mold distor-
12, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: J. R. Barbgjon ([11])7 have subsequently been developed.
Dlsclussmn on the paper should be addrgssed tc_) the' Techn!cal !Edltor, ProfessoA” of the preceding theoretical work on the grovvth instability
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, .
Houston, TX 77204-4792, and will be accepted until four months after final publprOblem has as_"su_med a perfec_tly smooth_ mold surface _W|th a
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. superposed periodic cooling profile. In practice, no surface is per-

ingot surface quality, among the most significant of which are
microstructure that is unsuitable for subsequent procegsinch
as hot rolling and surface cracks.

Previous experimental work on this cellular undulation ph
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fectly smooth. Most ground finishéfr example can be thought is the thermal contact resistanogherein we have assumed that
of as nothing more than a mixture of spatial frequencies each Bf,=0 without loss of generalifyand P(x,t) is the contact pres-
which has an amplitude that is a perturbation on a smooth badure along the mold-casting interface. We define

ground surface. It is therefore the purpose of the present work to

reformulate the model originally proposed by Richmond ef4l. e=all @®

for a pure metal solidifying on a sinusoidal mold surface of 10Wq the mold surface aspect ratio, wherex/2r= 1/m. The aspect
aspect ratidi.e., the ratio of the amplitude to wavelength is muchyig js a convenient perturbation parameter since we assume
less than one The stress function formalism of Li and Barli&i <1 "hs is not an unrealistic assumption since a ground finish in

ifg Tgllqweg which IIez?]ds”to s(;)llﬁ]tions for the temperatlure ar;]d Streﬁfctice might havénominally) a~1.0 xm and\ ~5.0 mm, and
lelds in the metal shell and the contact pressure along the mo ince,e=2Xx 10" 4. We assume a negligible Stefan number ma-

shell interface. A series solution for the mold-shell contact pregs..- “in which case Eq1) reduces to the steady-state heat equa-
sure at early times in the solidification process is derived from t '

stress field in order to reveal how the contact pressure depen
upon key process parameters. This solution is compared with
numerical solution for the contact pressure that is not limited to Q
early solidification times. Gap nucleation in pure aluminum and n-vi= K 9)
iron shells is explored for selected process parameters. The varia-
tion of the mean shell thickness with mold surface wavelength wheren is the unit normal vector to the mold surface at any point.
gap nucleation time is examined at selected mean molten met@wever, the difference between E¢R) and(9) can be shown to
pressures. be O(€?) (this relies in part on the fact that the unperturbed solu-
tion is independent o). A similar comment also applies to Eq.
(4). The following perturbation analysis will only keep track of
2 The Thermal Problem ';eerrrresr;cing(e), and hence we may retain E) without loss of
The system to be modeled is shown in Fig. 1. A pure metal .
shell soiidifies from a quiescent bath of molten metal that has2-1 Perturbation of the Thermal Problem. We assume the
perfectly wet a sinusoidal mold surface. In the planar referené@llowing forms forT, Q ands:

a?\Iote that Eq(2) is more appropriately written as

coordinates, the mold surface is givenyy a cos(2mx/\), where _ 4
a is the surface amplitude, andis the wavelength or center-to- TGYD=To(y, D+ T2y, (10)
center spacing between adjacent crests. The mold, which is as- Q(X,Y,1)=Q,(t) + Qy(X,y,1) (11)
sumed to be a rigid, perfect conductor, is held at a temperature
Tm, WhereT,,<T;, andT; is the fusion temperature of the mol- S(X,t) =s,(t) +51(Xx,t) (12)
ten metal. . i L .
The temperature problem in the shell is yvhere terms with suffix 1 are implicitl®(e). We insert Eq(10)
into Eq. (1) and separate the zeroth-order and first-order govern-
PT PT R ing thermal equations. We then expand E@$.and(6) in a Tay-
(TXZJF a2k at (1) lor series abouyy=1lecosfny to O(e) and group terms corre-
sponding to the zeroth-order and first-order conditions. After
aT  Q - proceeding in a similar fashion with the other conditions, we sepa-
W K at y=lecogmx) (2)  rate expressions corresponding to the zeroth-order and first-order
thermal problems, which are written as follows:
T=T; aty=s (3)
The Zeroth-Order Problem.
JdT  plL ds ‘ 4 -
—=— at y=s d
gy K at g &y;’ =0 (13)
s=lecogmx) att=0 (5)
aT,
where a—y" = % at y=0 (14)
QR=T at y=Ilecogmyx). (6)
Note that T=T; aty=s (15)
R(X,1) =R(P(x,1)) ) Mo _pLds _
oy~ K dt aty=s, (16)
S,=0 att=0 17)
liquid y where
freezing front QoRo=T, aty=0 (18)
t
Wﬂwld The First-Order Problem.
cI€st surface 2T 2T
PAERN RN gresy . ML AR S (19)
/ \ W 0 W f \ IX 8y
{€cos (mx) planar reference ’ﬂ-l Ql
mold (9— = ? at y=0 (20)
e — y
: I - i i T,
Fig. 1 Pure metal shell solidifying on a rigid mold with a sinu- _0° — —
soidal surface 517 T1=0 aty=s (1)
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82T°+8T1—pL B aty= 22 I IPEAL COE )R’ Py (t 40
Szt oy TR o YT (22) Ql()_R_O oy 1(0) = Qo()R'Py(t)|.  (40)
s;=leco{mx) att=0 (23) Substitution of Egs(26), (27), and(31) into Eqg. (40) gives
where KTR'Py(t) leTy

A(t) —mKR,B(t)= - . 41
. ® RBU= S OTKR, soDFKR, Y

o

Q1(x,0t)= Ry |€WC05{mX)+T1—QoR1} aty=0 We next insert Eq(30) into Eq. (22):
(24) . pL| dsy(t)
1 A(t)sinhkms,) +B(t)cosiims,) = YT (42)
Ri=—(T1—Q1Ry). 25

! Qo( 1~ QiRo) (23) Solving Eq.(32) for B(t) and substituting the result into EGL2)

givesA(t), andB(t) follows. Substitution ofA(t) andB(t) into

2.2 The Zeroth-Order Solution. The procedure for solving Eq. (41) gives

the zeroth-order problem may be found in Li and Bar&r We

therefore summarize the solution without proof: [so(t) + KRy J[MKR, cosims,) + sinhimg,) 154(t)
B y+KR, _ mKT; _
To(y,1)=Tx S (D+KR;| O=sy=sy(t) (26) + p—L[mKR0 sinh(ms,) + cosiims,) ]s;(t)
= KTy - KTy mK*T{R'Py(t) 43
Qo(t)= SO+ KR, (27) =L oL (43)

ey 2KTf which is a linear first-order differential equation $g(t).
So(t)=—KR,+ K°Rg+ p—L (28)

Using Eq.(28), we definety(y) as the time when the mean melt

line reaches the positioy; thus 3 The Mechanical Problem

Based upon the form of the temperature field, we assume that

_yrL the total stress field in the shell and the resulting contact pressure
to(y)= 2KT; (y+2KR,). (29) at the mold-shell interface have the following forms:
2.3 The First-Order Solution. The solution to the first- aij(x,y,t) =0y (y,1) + oy, (y,t)cogmx) (44)
order thermal problem may be written as
P(x,t)=P,+ Py(t)cogmx) (45)
T,(x,y,t)=[A(t)cosiimy)+ B(t)sinhkmy) Jcogmx) (30) here
w
whereA(t) andB(t) are unknown time functions. Application of
Eq. (20) to Eg. (30) gives Po=—0yy,  Pit)cogmx)=—oy, (46)
Q4(x,01) at y=le cos(ny, and P, is the mean pressure from the molten
B(t)cogmx)= K (31) metal. The mechanical boundary conditions for frictionless con-
tact at the mold surface are
Application of Eq.(21) to Eg. (30) gives oy=0 : y=lecogmy) @7)
A B(t)si __| STy U, =0 : y=lecogmx) (48)
[A(t)cosiims,) + B(t)sinh(ms,) Jcogmx) = — m . n Y

(32) whereoy, is the shear stress in the,) coordinate system that
rides along the mold surfacesee Fig. 1 and u,, is the normal

At this point, the following definitions are convenient: velocity. Equation(47) is appropriate for situations where the
Q41(x,04)=0Q;(t)cogmx) (33) shear strength of the interface is negligible, such as when a thin
lubricating film is applied to the interface. Note that E48) can
S1(x,t)=s,(t)cogmx) (34) only be stated in terms of a time derivative since there is no
reference state for displacement of the shell. Solidification at the
Ta(x,y, 1) =Ty(y,t)cogmx) (35) freezing front is assumed to occur in a state of hydrostatic stress
R1(0,P(x,t))=R’'P4(t)cogmx) (36) oxx=0y=—Py , 0,,=0 | y=s(xt). (49)
P(x,t)=P,+ P (t)cogmx) (37) Once the stress field is determined, tHfey(t) is obtained from
Eq. (46).

where the same symbol is retained for each of the perturbation _ ) _ _
quantities on the right-hand sides of E(&3)—(37). Note that Eq. 3.1 The Particular Solution. The stress field corresponding

(36) comes from the Taylor series expansion to the particular solution can be constructed in the fésae[12])

R(P(x,t))=R(Py+ Py(t)cogmx)) 2pu=vy (50)

—R(P,)+R'(P,)P;(t)cogmx) (38) Where the scalar displacement potentiglx,y,t), satisfies
2ua(l+v)T E
and V2= u Dou= e (51)
(1-v) 2(1+vw)
,_dR(P,)
R,=R(P,) ; R'= —ar (39) andT is given by the sum of Eqg26) and (30). The stress and
displacement fields corresponding to the particular solution are

Equation(24) may therefore be written as then derived from
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o >y ] >y _ pa(ltw)

myZTf( y+3KR, )

Toa™ Ty 0 DT gxay 52) Tm1-v) | 3 |s()+KR,
N A S 21eKR, Ty | Ao
T T uyfﬂﬁ By s.(D) T KR, sinh(my)cogmx) (t)y sinh(my)
where the rate-dependent form of E§0) has been usehs pre- sinh(my)
viously discussedand the subscript “1” denotes a first-order +B(t)]y cosiimy) — — ——|rcogmx) |, (63)
component. A particular integral of E¢G1) is
which provides a velocity fieldcorresponding to the particular
_ pa(l+y) my*T; ( y+3KR, ) +y{A()sink(my) solution) that automatically satisfies EG48). The stress field cor-
m(l—v) 3 So(t) + KR, responding to the particular solutioaﬂif}l , can now be derived via
Egs.(52) and(63).
+B(t)cosmy)jcogmx) . (53) 3.2 The Homogeneous Solution. We pose the following

We can simplify the problem somewhat by adjusting Eg) so form of the zeroth-order homogeneous solution

that the component of Eq48) corresponding to the particular (rgy0=*Po ; UQXO=F*(y) ; O'QVOZO (64)
solution, U, is satisfied automatically. We first express the dis-

e . iy . .
placement normal to the mold surface in the planar reference ¢§2€reéF*(y) is an unknown function of position. Itis convenient

ordinates via the following transformation equation: to transfer the zeroth-order term fromf, (determined from Eqgs.
] ) o (52 and(63)) to F*(y) by writing
UP =P cog ) —Uf, sin(¢) (54)
1 1 1 h o 2paTdl+v)| y+KR, 6
where UXXO__ (1_V) So(t)+KRO +F(y) ( 5)
dy . whereF(y) is also an unknown function of position. From Egs.
¢=gx € Sinmx. 9 (49, we havedr, (s,)=—P,. Hence,
Since <1, Eq.(54) can be written as 2uaTi(1+v)
T Fy)=—Pot+ ——7— (66)
Up =Uy + €Ul sin(mx). (56) (1=-v)

and the zeroth-order lateral stress corresponding to the homoge-

Since the zeroth-order solution requires tht=0y , itis true o oo oo

thatufj1 is at least ofO(€) and hence the second term in E§6)

2uaTi(l+v)| syt)—
is at least ofO(e2). We may therefore write aL‘x0= —Py+ ® (11(1/) ) s (Ot()J)r K);{ } (67)
0 0
uglmu;’l . y=lecogmx) 67 Also
since we are only interested in termsQ@ge). Using the expres- U)fgy =0 Uf;y =—P,. (68)
sion for u'y’1 from Egs.(52), along with Egs.(53) and (57), we ° °

: The first-order stress field corresponding to the homogeneous so-
obtain O X
lution is derived from

a(l+v) d| 2eKR,T
( ) o +B(t) [cogmx) h P> h PP . h PP

l'Jp||s Imx) — I =— =— =—
yltecotm = om(I=v) dt|so() + KRy - T G7 T gy 0 T e (89
which results after we expand the hyperbolic functions in a Tayleﬂhereq) Is the Alry stress function, which is written as
series abouly=1Iecosmx) and retain terms td(e). We can @ =[{by(t)y+by(t)}cosimy)
eliminate this unwanted velocity by superposing a suitable har- )
monic function ontoy in Eq. (53). Let +{bs(t)y+b,(t)}siniimy) +g(y)Jcogmx).  (70)
.= C(t)sinh(my)cog mx) (59) Note that theb; are unknown functions of time ang(y) is a

time-independent function that represents residual si@sthe
whereC(t) is an unknown function of time. The expression fostress field in the shell when it is cooled to a uniform temperature
l'J5 from Egs.(52) gives and relieved of all boundary tractionsThe stress field corre-
! sponding to the homogeneous solutimﬂ,l, can now be derived

d via E i i -
p_ 2 gs.(69) and(70) in terms of the unknowb;(t). The com
Yiodt| 2u cosl{my)cogmx) | (60) ponents of the total stress field are obtained through superposition
In order to eliminate the term on the right-hand side of &), of the particular and homogeneous stress fields vial&4).
we write 3.3 Determination of theb;. The b;(t) in the Uihjl are de-
pa(l+v)[ 21eKR,T;  B(t) termined by requiring the total stress field to satisfy Edg) and
C(t)y=— = DTKR —} (61) (49 and the homogeneous stress field to satisfy(E8). The total
M(1=) [S(t) o M shear stress in the mold surface system may be written in terms of
and hence the planar reference via
- p _ (1(1+ 1/) d 26KR0Tf B Unt:ny(CO§(¢)7Sin2(¢))+(o'yy7 Uxx)sm( ¢)COS{¢)
P |1e cogmo = — Im(1—) dt| S0+ KR, B(D|cosmx) (71)
(62) which, using Eq(55), may be written as
since cosh{cosmx))~1. When Eq.(59) is superposed onto Eq. Ont=Oyy— (Oyy— 0yy) € SIN(MX). (72)

(53), there results
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Equations(47), (52), (63), (72) and that foro')h(y give We expand each of Eq$49) in a Taylor series about the mean
! position of the freezing fronts,, beginning witho,. Hence
_ 2pacTi(1lty) P50 |

by (t) +miy(t)+9g'(0)= (73)

m(1-v) xx(S) = 0yx(So) + (8= S) ay =—=Py. (75)
where we have retained terms @(€). The elastic constitutive We have
law for plane strain(where the associated rigid-body displace-
ments have been negleciad Ty (X,Sg T 2uaTi(l+v
glect o X:So ):_ 1;“ ( KF\? +0(e) (76)
R h g h g ay (1=v){so+ KRy}
Uy, = —g~|@=v) | oy dy=v [ o dy]. 74 where ay,= 0P, + o, is derived from Egs(52) and (63). Equa-
L h . h tion (75) may therefore be written thus
Application ofu,=0 aty=Ie cosfnx from Eq. (48), using o,
! 2uas;Ti(1+v)

and acyl, gives by(t). Equations(74) and that forb,(t) give

Uxx(s) = Uxx(so) T 1 Nfe kD 1
b,(t). Application of the boundary conditions at the freezing (1= 2){So+ KRo}
front, Eqgs.(49), provides expressions fdm,(t), bs(t) andg(y). Substitution of the sum of, and of}x into Eq. (77) gives

cogmx)=—P,. (77)

|
2bs(1)

m

g"(so)
m2

+b3(t)sy+ by(t) by(t)s,+by(t)+ cosiims,) +

[Zbl(t) sinhlms,) +

B pae(l+v)
T mi(1-v)

$1(t) — eKR, sinhkms,)
f s+ KR,

+{2 coslims,) + mg, sinh(ms,) }A(t) +{sinhms,) + ms, cosims,)}B(t) |.

(78)
Following the same procedure fot,, and oy, gives, respectively,

by(t) ba(t)

(s0)
by (D)5 +ba(t)+ == :

sinhkms,) + R

+bs(t)s,+by(t) [cosims,) +

{sinhkms,) + mg, cosims,) }A(t) + ms,B(t)sinhms,)
2eTKR,
So T KRy
[b1(t)So+Dba(t) Jecoshms,) +[ba(t) S, +ba(t) Jsinh(ms,) +g(so)
pa(l+v)|[2eT{KR,
C mA(1-v) || st KR,

B pa(l+v)

T mA(1-v) _ (79)

]cosh ms,)

- msOA(t)]sink( ms,) —{ms, cosims,) —sinh(ms,)} B(t) |. (80)

Elimination of b,(t) between Eqs(78) and (80) givesb(t). lidification, then we can proceed with confidence to examine the
Substitution ofbs(t) into Eq. (80) gives b,(t). Note thatb,(t) short-time behavior of the contact pressure and what it implies
andbs(t) are not reported here due to their lengths. about the gap nucleation process for pure metals.

The coupled differential equations mentioned in the previous

3.4 Differential Equations for P,(t) and s,(t). = Substitu- section may be written in terms of the following dimensionless

tion of b,(t) andbs(t) into Eq. (79 gives a single differential

equation relating the unknown functiogés,) ands;(t). By defi- variables:
nition, mZKTf
P.(t)cOS M) = — gy (X,01). (81) T=or b 7EmS(y)=my

Using Eqgs.(44), (52), (63), and that forogyl, we find msy(to(y))

Siro(m)=—
P1(t)=m?{b,(1) +g(0)}. (82) e

Substitution of Eq.(82) for P,(t) into Eq. (43) gives a second m2(1— ») . — EaT.R'

differential equation that relat@gs,) ands,(t). We shall present g )= g(y) R,=mKR, ; R'= =

each of these equations in dimensionless form in the following EaeT; (1-v)R,

section since this will facilitate subsequent algebraic and numeri- )

cal manipulations. = (1-v) m°(1-»)

Pi( ﬂ):mpl(t) v ba( ﬂ):TEbez(t) ;
3.5 Dimensionless Formulation for Perturbation Quanti-

ties. It will be necessary to examine each of the perturbation w=tanH 7)

quantities(i.e., P;, Qq1, T;, ands;) at sufficiently long timegin

the absence of a mean presgur&ach quantity must tend — Qo(t) — R,Q1(t) — T,(04)
smoothly to zero as time increases since the mold-shell interfaBe(7) = mKT, o Quln)= €T, v T(0m)= €T,
will have a diminishing impact on the freezing front morphology (83)

as the shell thickens. Once it is verified that each perturbation
quantity vanishes at sufficiently long times after the start of sétence
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1 1 1 1 2
~ (W= = W)G () +T () — = (W4 W— 7)G( ) — =:(1_1+”—w). (90)
2 2 n+R, R?

RO RO (0]
1 W W For N=5, this gives(using Eqs(87), (88)—(90), (A1), and(B1))
=—- —S](n)+ — 1 S1(7) the early time form ofP,(7)
2 n+R n+R
© 0 2 3 "2\ .4 B2\ .5
_ Py L7 +(6_Ro)77 (15-2R5) 7
2(1—v)—nw 2R W\n)=—""— - —
_ 277wy +— (84) 2R, 2R? 12R3 30R?
(1-w)cosiin) (5+R,)cosh 7) - -
B B (720-5(4+9R’)R2+32R%) »°
WV_VR, 7 T]W + — + (91)
——|9"(n)— 1+ —9(n) 144@R;
2 coslin) cosh 7) 2 A . . . .
TheA; andB; used to generate E(PY) are listed in Appendix B.
WR,R’ R’ cosh )sinh( ) — 7 Note thatB, was eliminated in the course of calculatiRg.
= + . e .
n+R, |2 costin) 7+ R, 5 Gap Nucleation at Early Solidification Times
_ In many casting processes, the molten metal pressure is insuf-
sinh(7) | _, ficient to prevent gap nucleation during the earliest stages of so-
—costin) = ——si(7) lidification when the shell is very thin. It is therefore of interest to
0 determine the conditions for gap nucleation to occur. This can be
R'Wsi 1 achieved through examination &, which is the ratio of the
n w sini( n)—sinr(n)— coshi7) Sy +— total (dimensional contact pressure in the trougtto the mean
2(77+§0) ﬁo ! 70 pressureP,, at the mold surface troughs. Hence
_ P Py
! _ Pl=—=1——. (92)
- {n secR(n)+w(1-2v)} (85) Po Po
2(1=») Gap nucleation at the troughs will indicate the possibility of ir-
where the primes o ands. denote differentiation with regular growth of the shell since contact will simultaneously in-
respect to”p and Weﬁh(:v)e usedl(n) crease at the crestéhe sign in front ofP, will be positive, rather
’ than negative, due to the cas{ term in Eq.(45)). Writing Eq.
dsy(7) S)(7) (92) in dimensional form using Eq$83), and inserting the result
( ar ) = TR, (86) into Eq.(92), we obtain
T=T, o
ol . 2EaTia (5,2
Note that we have saj(0)=g’(0)=0 since these are arbitrary PT=1- KR,Po(1— 1) | A
and will not affect the final results. The contact pressure pertur-
bation is determined from _ [3=2/A% _, [15- 8/\2 s
. . X|1-s,+ 3 o= 15 Se
P1(7)=Dby(7) (87)
— D/ 2 4
whereb,(#) is listed in Appendix A. " ( 720-20{4+9R'}/ A"+ 512/A >§4_.,, (93)
An analytical solution is available fas;(7) from Eq. (85) in 720 °
the uncoupled casdr(=0). Subseq.ue.ntlﬁ 7) can be obt.alned where
from Eq. (84) by the method of Variation of Parameters in terms
of indefinite integrals. However, the form of this is lengthy and — S . A
colrlnplicated, and in practice it is easier to solve B#) numeri- So™ KR, <1 A= 7KR,’ (94)
cally.

If one neglects all terms except the lowest order terrg,inthen
it is possible to make some cursory observations about the effect
_ that key process parameters haveRsh for a specifics, (or set
4 Small n Solution for P1(#) time). For example, an increase in(holding all other parameters
We seek an early time form d?( 7) using Eq.(87). This can _constan), causes a decreasef, and a corresponding increase

be derived from Eq¥84), (85), and(Al) by assuming the follow- I P'. An increase ina (holding all other parameters constant

ing truncated Taylor series expansions $o¢7) andg(7): causes an increasefy , and a corresponding decreaséfh. An
increase inR, (holding all other parameters constacauses a

_ . decrease i?; and a corresponding increaseRH. An increase in
Si(m)=1+ 2 Ain' (88)  the mean molten metal pressuRg,, causes a decreaseRq, and
=1 a corresponding increase Ri". The contact resistance sensitivity,
N R’, first appears in the coefficient §§. Hence, for early solidi-
q(n)= 2 |§i+l,7i+1 (89) fication times, the contact pressure variation with time at the mold
i=1 surface troughs is essentially controlled through uncoupled phys-
ics since the sensitivity is more of a longer time effect. The re-
aining perturbation quantities are written in dimensional form in
ppendix C.
Gap nucleation occurs when

N

where n<1. Note that the time-independent term in E88) im-
plies that the thin shell is compliant to the mold surface at initi
time. The unknown constant coefficienfg,andB; , are obtained
by first inserting Eqs(88) and(89) into Egs.(84) and(85), and
then replacing each transcendental function with its series form, PU"=0. (95)
and finally by writing
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If P">0 during the time frame of interest, then gaps will not Table 1 Material properties for pure aluminum and iron
nucleate in the troughs.

At gap nucleation, we require that each of the perturbation
quantities be much less than one, exceptor which must be of Fe
the same order &8, . This requires that Eq95) be subject to the

Material

. - o k ; P Al val Fe Ref
following restriction via perturbation of Ed6): roperty alue © neference
R'P T; (°C) 660 1536 [14]
229.4 36.2 15
ALY} 96) K ( w [15]
0 m-°C

(the derivation of Eq(96) is found in Appendix D. This limits

- . 2650 7265 16
the present analysis to either weakly coupled systems, or the ex; (k_%) [16]
treme case of a fully uncoupled system. m
) ) J 3.9 2.7 [17]
6 Results and Discussion L (10‘5k—g
Prior to conducting an examination of gap nucleation for pure
metal systems, we verified that at sufficiently long times, the di- E ElOmGPa) ) 3‘;-2 ;g-j Hg%
i i ities. P.. O. T. a (10°¢°C” : :
mensionless perturbation quantitiss, P,, Q,, and T, tend ; 033 033 [18]

smoothly to zero. Following the method of Li and Barkéi,

each quantity was numerically evaluated as a function of the di-

mensionless time variables,(#) (which is the dimensionless

form of Eq.(29)), for selected mean contact resistanégs, over

a range of 0.XR,<50, for a fixed value of the dimensionlessR, =10 3m?sec°C/J. Note that the turn around in each of the

contact resistance sensitivitRR'. It was verified that each quan- short time curves, which denotes the limit of validity of the short

tity tended smoothly to zero for sufficiently largg(»). As a time solution, is more sudden at the shorter waveleng@iher the

second test, each perturbation quantity was evaluated for a fix@psen time rangeEach of the curves predicted by the long time

value Ofﬁo, running through a range @ from —0.1>R'> .solutlon,.howev.er, proct:eeds to. decrease in a linear fas.hlon.. Their

—300. Again, each of the perturbation quantities tended smoottifjfersections with thé>*=0 axis denote a gap nucleation time

to zero at sufficiently large values of,(7). This provided the (negative values oP'" have no meaning in the present confext

confidence we needed to proceed to the gap nucleation analydr®r design purposes, reasonable estimates of the gap nucleation
We wish to examine gap nucleation during the solidification %}]mes can be obtained from the series solution by simply ignoring

pure aluminum and iron shells. In particular, it is of interest tJ'€ turnarounds, and stubsequgntly extending the linear portion on

examine how the mold surface wavelength affects gap nucleatit® curves toward the=0 axis. The resulting values overesti-

time and the mean shell thickness at gap nucleation for these tigte the gap nucleation timgvith the estimates becoming pro-

materials. In order to accomplish this, we propose to fix the arggertsss']};g% ‘{‘(]Cgsneu"nﬁ?iégffgﬁ't??nCompamd with their counter-

plitude, a, of the mold surface and vary the wavelength. As . X i

consequence, a variation of the wavelength results in a vr;triatigp':'g.ure 3 sh(;awsl the gumerlcial sorl1ut|(_)rnhﬂéi’ versust for pure

in the aspect raticg, given by Eq.(8), and hence a variation in the uminum and selected wavelengths. The process parameters are

— — — —3 2 o
slope of the asperities relative to the planar reference re@des P,=10,000Paa=1 um, andR,=10""m sec C/‘].' The smaller
wavelengths lead to faster gap nucleation, while larger wave-

Eq. (55)). The following question then remains: Why not fix th . 4
wavelength\, and vary the amplitude? In practice, either ap_elengt_hs, such aS—_S0.0 mm, do not 'e‘?‘d to gap nucleation over
the time frame of interest. If metallurgical requirements are such

EL%%\(/:S tﬁglt“gnbﬁlg?gg\év: %(Eg?é?nz t&?&?ﬁg?L?Lacr;qsgoggr’gnqéterghat the shell must retain contact with the mold during the first two

fixed) results in a corresponding decrease in the lowest-order term
of the heat flux perturbatio, . A similar effect is at hand when
the amplitudeag, is decreased. However, it has generally been the .
case in the experimental literature on mold surface topography
design, wherein groove-type surface morphologies are applied, 1.0
that the wavelength is varied while the amplitude of the topogra-
phy is held fixed(see, for example[13]). This is perhaps an
attempt to avoid inducing failure sites into thin molds that are
common to many commercial casting processes. In practice, the
molten metal will not perfectly wet the mold surfagee., it will g
not completely fill the trough regionslue to surface tension ef- s
fects, and hence we anticipate a diminishing return from variation
of a.

Since the contact resistance sensitivity, appears in the sixth- ot \ \ \ N

order term in Eq(93), indicating that it is a longer time effect, we \ k:me\ A= 3mmy, LN A= s |
\

aluminum

== short time
solution

—ee= numerical
solution

choose to limit our analysis to the case of fully uncoupled sys- kzlmm\‘

tems. The elevated temperature material properties used in the ‘\ \ N

calculations are specified in Table 1. \ \ \ | N
0

Figure 2 shows the variation & versust as predicted by the 05 0 is 110 1.5 50

short time solution and that due to numerical solution of E&4) t (sec)

and (85) (followed by conversion to dimensional coordinates via

Egs. (83)), for selected wavelength@n millimeters, during so- Fig. 2 Evolution of P' at selected A for pure aluminum as

lidification of pure aluminum. The solid curves are those due f§redicted by short time solution and numerical solution. P,
the short time solution, given by E(3), and the dashed curves=8000 Pa, a=1.0 um, and R,=10"3 m2sec°C/J. Note that the
are those due to the numerical solution. The process parameisit time solution predicts a fictitious turn around in P for all
used to generate this figure welRy=8000 Pa,a=1 um, and cases.
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Fig. 3 Evolution of P! at selected A for pure aluminum solidi-
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Fig. 6 Mean shell thickness variation with \ for pure iron so-
lidification at selected P, for a=1.0 um, R,=10"% m2 sec°C/J
(numerical solution )

seconds or so, then the present theory suggests that a mold surface
having a wavelength of =12.5 mm(or greater might be a rea-
sonable choice.

Figure 4 shows the numerical solution I versust for pure
iron with the same process conditions used for Fig. 3. It is inter-
esting to note that while the same observations made for Fig. 3 are
applicable to Fig. 4, there is one important difference between
pure aluminum and pure iron that is highlighted by Fig. 4: The
time to gap nucleation for pure iron is nearly an order-of-
magnitude smaller than that for pure aluminum. This difference is
largely controlled by the quantitifaT; /K for fixed a/P,R, (see
Eqg. (93) and Table L

Figures 5 and 6 show, evaluated at the gap nucleation time as
a function of\, at selected®,. Note thats,(0)=0 for all cases.
A linear variation with\ is predicted for any given value &, .
Shell growth is improved at higher pressures and longer wave-
lengths. Note that under the same process conditgn&r the
pure aluminum shell is of the order of millimeters, whersg$or
the pure iron shell is of the order of hundreds of microns.

7 Conclusions

A model of pure metal solidification on a sinusoidal mold sur-
face was developed for the purpose of examining the gap nucle-
ation process at the mold/shell interface. Gap nucleation was as-
sumed to occur when the contact pressure locally fell to zero. The
contact pressure was found to consist of a superposition of the
mean pressure from the molten metal and a time and position-
dependent perturbation which led to changes in the contact pres-
sure due to the evolving distortion. The evolving distortion of the
metal shell was initiated by the small lateral component of heat
flux due to the geometry of the mold surface.

A series expansion for the contact pressure at the mold surface
troughs, which was limited to early solidification times, was de-
rived and compared with a numerical solution which was appro-
priate for all times. The numerical solution predicted that the con-
tact pressure always falls to zero at the troughs. However, the
series solution was only valid over a limited time range prior to
gap nucleation since it suffered a turnaround toward increasing
values of the contact pressure. It was concluded that the series
solution could still provide an estimate of gap nucleation time for
preliminary design purposes through a linear extrapolation to the
time axis. An additional insight provided by the series solution
was that coupling between the thermal and mechanical fields at
the metal-shell interface becomes important at longer solidifica-
tion times.
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It was found that increasing the mold surface wavelengttation. This could be achieved from data via experiments such as
(while fixing the amplitudg led to longer gap nucleation times.those reported by Nishida and Matsubg28].
Also, the mean shell thickness increased with increasing wave-The present theory assumes that the metal shell is hypoelastic.
length under the same conditions. Gap nucleation was faster Adthough the constitutive law can be modified to account for
the iron shell than it was for the aluminum shell under identicaitrain relaxation due to viscous creep, it is anticipated that, during
process conditions. the early stages of solidification, creep effects will introduce

Although in the sinusoidal case the pressure perturbation filigher order corrections to the contact pressure similar to that due
becomes zero at a trough, there is no reason why this shotddthe contact resistance sensitivity in the present model. We sus-
necessarily be the case for a non-sinusoidal profile. In this masect that same to be true for the case of finite thermal diffusivity
general case, a different criterion might be relevdot example (and hence nonzero Stefan number
the point of greatest curvatyrevhich happens to coincide with a
profile trough in the special sinusoidal case examined in this Fépknowledgments
per. The authors wish to express their gratitude to F. Yigit of King

The linearization of the resistance relation introduces a fair§aud University, J. R. Barber of the University of Michigan and
severe restriction on the extent to which we can examine the cdi- Weirauch of Alcoa Technical Center for providing critical re-
pling process at shorter times. With a slightly more numericaiews of the manuscript. The authors are grateful to W. R. D.
treatment in the present theoretical framework, however, it shodldilson of the University of Washington for several stimulating
be possible to implement a more realistic expression for the catiscussions on the mold surface wavelength effect in casting pro-
tact resistance variation with pressure during directional solidiftesses.

Appendix A
Expression for b,( 7).
1-2v\| psechn) . — _ __
(—) ———— +sinh(n) |+ pwW[g"(7) —9(n)]—20(7)
_ 1 1-v 1-2v
bo(m)=—"— (A1)
2 coslin) 1 o — ) -, )
—{7WSs1(7) + 2R, sinh( 1) + [s1( 7)sinh( %) +5;( ) cosh ») ][sinh( ) — nsectti7) ]}
(77+R0)
Appendix B
Coefficients of Egs.(88) and (89) for N=5.
. . 1 . 2-R . 8—5R2— 7R’
A=0 ; Ap=—— ; Ag=—— | Aj=-
2 6R, 24R?
. 40-12(3—-R')R2-47R’ . _ . 1
As= i By—Arbitrary ; B;=
120R? 6(1-v)
. 2B,R,—1 . 18+3R2-5R'—»(18-5R’) . 300-8R2—155R’—24B,R}
By=—— , Bs= — Be= — (B1)
12R, 1801— »)R? 288(R?
Appendix C
Expression fors;, Q;, and T4(0, t).
S5\ ? 2—-R'|_ [8-7R'—-20/A%\ , [40-47R'—48{3-R'}/A?|__
s;=a 1_2(K) [1—( 3 )so+( 1 Sg— 60 So t°° (C1)
4T (5,)?2 R'| [7-5R"|_ [96-8{8—R'}A2-87R'|_, (3{240-25%R’'}-4{256-70R'}/A?|_,
CRrREWA) VT2 T T ) 24 So™ 120 So
8640- 1004R’ —4{2512-370R' —45R'2}/A2—32{155+ 16R'}/A*)_,
i 1440 SoT (C2)
aT , oy [3-4{7-2R'}IAZ)_, [6—-{96-5IR'}/A2+64IA%|_,
Tl(O,t)——K—RO 1+(1-4/A?) 0—( 3 S+ 5 st
30— 3{240- 17R'}/A%+16IA%|_, [90—9{240-179R'}/A%+2{1256-67R'}/A*+ 1240 °|_,
- 30 Sot ) Se— 1| (C3)
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Appendix D

Derivation of Eq. (96). Differentiation of the resistance rela-

tion Eq. (6) gives

T1=Q1R(Po) + QoR'Py. (D1)
Substitution of the following ratios
~ Ql ~ Pl [~ Tl
== P==— T==— D2
°°Q "TR T 2
into Eq. (D1) gives
ToT =QoQR,+QoR'PP,. (D3)
Dividing Eg. (D3) by T,, and using Eq(18) gives
- -~ RPP
T=0+—"— (D4)
Ro

We impose the conditions thaitc 1,0<1, butP=—1 sinceP; is

to be of the same order &%, . Based on these conditions, Equa-

tion (D4) gives
R'P,

<1.

05)

o
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Interaction Between a
angvong e | S€Mi-Infinite Crack and a Screw
wancyuLee' | Dislocation in a Piezoelectric
oatmrtaeraia oo, - [\l @t@rial

Yonsei University,
Seoul 120-749, Korea
The interaction between a semi-infinite crack and a screw dislocation under antiplane
mechanical and in-plane electrical loading in a linear piezoelectric material is studied in

Y. Eugene Pak the framework of linear elasticity theory. A straight dislocation with the Burgers vector
Micro Systems Laboratory, normal to the isotropic basal plane near a semi-infinite crack tip is considered. In addi-
System and Control Sector, tion to having a discontinuous electric potential across the slip plane, the dislocation is

Samsung Advanced Institute subjected to a line-force and a line-charge at the core. The explicit solution for the model
of Technology and CRI, is derived by means of complex variable and conformal mapping methods. The classical
P0.Box 111, 1/r singularity is observed for the stress, electric displacement, and electric field at the
Suwon 440-600, Korea crack tip. The force on a screw dislocation due to the existence of a semi-infinite crack

subjected to external electromechanical loads is calculated. Also, the effect of the screw
dislocation with the line-force and line-charge at the core on the crack-tip fields is
observed through the field intensity factors and the crack extension force.
[S0021-893600)01501-4

1 Introduction media. But they obtained only the distributions of the fields, not

Due to their intrinsic electromechanical lina phenomen %he direct interaction of forces acting on each other.
ue 1o their INtrnsic electromechanical coupling pRenomenon, |, yue nyrely elastic case, however, many researchers consid-

plezoelectr_lc materials are used widely in the device ap_pllcatlogﬁed such defect interaction problems. For example, Majumdar
such as high-power sonar transducers, electromechanical aciffy Burng14] considered the screw dislocations positioned near
tors, and piezoelectric power supplies. It is well known that dghe crack tip, while Ohr et a[15] studied the condition for the
fects, such as dislocations, cracks, cavities, and inclusions, egfiission of dislocations from a semi-infinite wedge crack to de-
adversely influence the performance of such piezoelectric devicesmine the ductile versus brittle fracture behavior in metals.
These defects carrying charges in piezoelectric semiconductorsConsidered in this paper is a simple continuum model of a
for example, can be sources of internal electro-elastic figlds.  single screw dislocation near a semi-infinite crack in a hexagonal
Therefore, to predict the performance and integrity of these deiezoelectric crystal subjected to antiplane mechanical and in-
vices, it is important that the behavior of various defects in eleglane electrical loading. The analysis is carried out in the frame-
trical and mechanical fields is analyzed. Dd&g examined the Work of linear elasticity theory without consideration of nonlinear
effect of a dislocation, a crack, and an inclusion on the coupIéPSponse due to domain wall motion in ferroelectric materials

response of piezoelectric solids theoretically. Pakconsidered ([16,17). The difslocation Iing is asgumed to be spraight and is
the problem of a finite crack in an unbounded piezoelectric mlao_cated perpendicular to the isotropic basal plane in a hexagonal

. . ) . : rystal exhibiting 6-mm symmetry. An infinitely long screw dis-
dium subjected to far-field antiplane electromechanical loads. I%'Zation suffering a finite discontinuity in the displacement and in

the paper, it was shown that the traditional square root Str&gs o|ectric potential across the slip plane is modeled. The dis-
singularities exist near the crack tip. Sosa and [aklid a three-  53cement jump across the slip plane corresponds to the Burgers
dimensional eigenfunction analysis of a semi-infinite crack in @ectorb, which is perpendicular to the basal plane. The jump in
piezoelectric material, while P¢l6] considered a screw disloca-the electric potential (“electric-potential-dislocation} corre-

tion in a material and derived the generalized Peach-Koehlgsonds to the electric dipole layer along the slip plane. The dislo-
forces acting on a screw dislocation subjected to external loadstion core is subjected to a line-force and a line-charge.

Kuo and Barnetf6] and Suo et al[7] studied the singularities of  In this work, conformal mapping and complex variable ap-
interfacial cracks in bonded anisotropic piezoelectric media. Reroach are used to solve the governing equations. Using the gen-
cently, efforts have been made to develop inclusion models inealized Peach-Koehler force, we will calculate the forces acting
piezoelectric material[8—12)). The results on the interaction be-0n & piezoelectric screw dislocation near the semi-infinite crack,
tween defects in the piezoelectric media are very rare. Meguid afgd discuss the effect of a screw dislocation and a line-force/

Deng [13] discussed the electro-elastic interaction between Ggarge on the field intensity factors and the crack extension force
screw dislocation and an elliptical inhomogeneity in piezoelectr cting on the c_rack_ up. T_he relation t_)etween the crack extension
orce and the field intensity factors will be presented.

Presently at Daewoo Motor Technical Center, 199 Chongchon-Dong, Pupyong-

Gu, Inchon 403-714, Korea. 2 A Screw Dislocation Near a Semi-Infinite Crack
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . . . . -
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF APPLIED Let us examine a piezoelectric material containing a charged

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Julyscrew dislocation near a semi-infinite crack, wherein the crack
7, 1999; final revision, Sept. 21, 1999. Associate Technical Editor: J. R. Barb§font is parallel to thez-axis as shown in Fig. 1. Consider a screw

Discussion on the paper should be addressed to the Technical Editor, Profe! : ; : ;
Lewis T. Wheeler, Department of Mechanical Engineering, University of Housto?glocatlon located at a pomlx&,yo), which is assumed to be

Houston, TX 77204-4792, and will be accepted until four months after final pubISUaight. and infinitebf long in the—direction,. SUffefinQ a finite
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. discontinuity in the displacement and electric potential across the
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=ReU(Z), ¢=Red(2), @)

where
U2)=As log(ﬁ— Jz—wi+ VZo)
+ A, Iog +C JZ,
Z+ f
®
®(2)=B110g(\Z~\Zo)(NZ+ Zo)
+B,i IogJ— J—+D JZ.
VZ+\z,
S, P ? G The first term corresponds to the line-force/charge and its im-
T T T T T T age, the second to the dislocation and its image, and the third to
D, orE, the uniform external load#\,, A,, B;, B,, C, andD are all real
constants which are determined by the displacement and electric
Fig. 1 A screw dislocation with a line-force and a line-charge potential jump conditions across the slip plane, the force and
near a semi-infinite crack in a piezoelectric material charge balance conditions at the core, and the far-field loading

conditions at infinity.Z(=x+iy) is a complex variable.
The strains, the electric fields, the stresses, and the electric dis-

placements can then be expressed in the forms
slip plane. The dislocation has a line-force and a line-charge along

its core. In this configuration, the piezoelectric boundary value 0Uz 6’UZ_R U'(z
problem is simplified considerably because only the out-of-plane Yox= o T oz eu’(2),
displacement and the in-plane electric fields exist such that
CU=0, U= (xy) au, _[au, )
Uy=Uy=0, U, =UyX,Y), 1) Yay= (9y =j 2 =—ImU’(2),
E.=EdxY), E,=E,(xy), E,=0. ©)
In this case the constitutive relations become E,=— ‘Zi’ = % = —Red'(2),
du, N do D, au, dp
=Cas— T€15—, =5 € d d
ax ax ax ax ) £~ (;15 _ |( ag) Imd’(2).
My 0 ou, b y
0,y=Ca—— te =€ —— €1
WMy T gy Y gy Sy Tp=RACLU (2)+ 10 (2)],

where oy, Dy, (K=X,Y), Cu, €11, €15 and ¢ are the stress —Im[cU’ (Z) +erd’ (2)],

tensor, the electric displacement vector, the elastic modulus mea- (20)
sured in a constant electric field, the dielectric permittivity mea- D,=RdeU’ (Z)— ey, ®'(2)]

sured at a constant strain, the piezoelectric constant and the elec-

tric potential, respectively. Dy=—ImleU’(2)— e, @' (2)].

The governing equations are simplified to
2 2, Consider a contou€ with the outer normal unit vectom, ,
CaaV Uzt €15V =0 (3) surrounding the dislocation core. Teeomponent of the Burgers
e,V2U,— €,,V24=0. vector is equal to the jump in the displacement across the slip

plane &>xgq, Yy=VYo):
These simplified governing equations can be made in the forms o 0

V2,20, V24=0. @ b=AU,=U,(X,Y5) ~UxY5)=RgAU()],  (11)
We will consider four possible cases of far-field boundary covhere A denotes the jump across the slip plane. Similarly, the
ditions as follows: jump in the electric potentialA¢, across the slip plane is
Case 1:0,~=r. and Dy=D.., Ap=(x,yo)— d(X.Yo) =RLAD(Z)]. (12)
Case 2:vy,,=7v. and E,=E., 5) From the Egs(10)—(12), we obtain
Case 3:0,,~=1. and E,=E,, b Ag
A2:__, BZZ__. (13)

Case 4:vy,,=v. and Dy=D., 2w 2

wherer.., y.., D.., andE.. are an uniform shear traction, sheaiThe z-component of the traction integrated along the cont@ur
strain, electric displacement, and electric field, respectively. Theust balance the line-forcep, applied at the core in the
boundary condition on the upper and the lower surfaces of thelirection:
crack is free of the surface traction and the surface charge for all
cases of far-field loading conditiorig3]) _

-p é a,n;dl.

0,,=0, D,=0 atx<0, y=0, (6)

The solution for the governing E@4) can be found by letting From an infinitely narrow rectangle contoGrcontaining the dis-
u, and ¢ be the real parts of some analytic functions such thatlocation, we obtain

(14)
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p=—27[ChqA1+e15B4]. (15)

Similarly for the charge balance we obtain
a= %CDinid|:27T[elSAl_EllBl]- (16)

From these balance conditions we obtain

_ Teppte] _ €15P+Cauq
1T ) =Ty A7
T(Cyqq€111 €75) (Cys€117T €75)

Extending the traditional concept of stress intensity fadtdr,
to other field variables, we introduce the electric field intensity
factor,KE, the strain intensity facto&® and the electric displace-
ment intensity factorkK®. Using these field intensity factors, we
can represent the far-field loads as follows:

E_g | iKE | iKS
=E,=—Im| — s =V,= m| — ,
Y 2z T 27z
as Z—w, (18)
| K D,=D | Ss
Oyy=Te=—IM| — , =D,=—Im| — ,
“ 27z Y 27z
I
At infinity we obtain eb— e A
D,=Rd—-1(2)— B—MiM(Z)—KDiN(Z) ,
u'(2) c D' (2) D! z (19) ° o (26)
=— =——=, asZ—o,
’ ’ e1sh— €144
2\z 21z Dy=lm[%L(Z)—15 S ¢iM(Z)KDiN(Z)},
Substituting Eqs(18) and (19) into Eqgs.(9) and(10), we obtain
€150+ Cy40 Ag.
o D E,.=—Rd————— 5 L(Z)— —iM(Z
Case 1:C=-— \E% X % 27 (Cay€11+ €25) (2)= 57 1M(2)
T Cyy€ €
44511 15 (20) elusri C44KD N(Z)}
o D By | )
D=- \/g—FefKeiiﬁK et €is 27)
44€117T €15 e;sp+c A
E,=Im| — e —¢iM(Z)
2 2 27(Cyq€11+ €715) 2
Case 2:C=—+\/—KS5, D=/—KE (21)
m m e1sK7—CaK®
- —————iN(2)|,
_ \/§K"+ esKE \/E . Cas€11t €15
Case 3:C=-— ;C—44' D= ; K (22) where
Case 4'C——\/§KS D——\E—ewKLKD L(Z)= - L)LJFL;
T a ] B T €11 ’ \/Z_O \/2_02\/Z 2\/2—0\/2_\/2—0
(23)
1 1
From these four results, we can define the relatikifis= c,,K*> - —_ =
—e;KE andKP=g; K5+ e,KE. 2\Z, VZ+ \/Z_O
Substituting Eqs(13), (17), and(20) into Eq. (10) and using 1 1 1 1 1
Egs.(9) and(10), we can obtain the following field variables for M(Z)=—| —=+ —|—=+ -
Case L: VZo \Zo)2VZ  2VZo NZ- 12,
p CafotesAe ) 1 1
0= Re{— 5-L@2)- = _——IM(2)-K"IN(2)|, e (28)
(24) 2VZo \Z+Z,
Capte
ozy——lm[—%L(Z)—MZ—;SA(#iM(Z)—K”iN(Z)}, N(Z)= 1
2wz
“R —€uPteq L(Z)- iiM 2) In Egs. (24)—(27), the first term is related to the line-loads, the
Yax 27(Cag€11+ €35 2w second to the screw dislocation and the third to the external loads.
” 5 The field variables of the Eq§24)—(27) reveal the classical {Z
_ €1:K7+esK iN(Z)} (or 1/Jr in the real coordinategype of singularity near the crack
Cas€rrt €l ’ 25) tip.
_ — €11P+ €550 b
Yay= —Im 277(Caa€rrt €2 L@~ 57IM(2) 3 Force on a Dislocation
e Ko+ e KD The forces acting on a dislocatidh with a line-force and a
_ ur“\](z)} line-charge due to the stresses and the electrical fields generated
Cys€11+ €15 by a crackT are obtained from the following relatior{g5]):
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Fy=bol +A¢DJ+pyl,+qEy 29)

Fy=—boj,—A¢DI+py,,+qEy.

The expressions foyy;, o1, ET, andD] can be obtained by
subtracting the fields generated by the dislocation from &
(27) in the forms

i

1 e pte 0o 0
T Sl (sin fo+tan—-

P r——adCUE % sin 6, +
Y2x= 4r0[2w(c44ell+ eZ) 0

b

2
. b

ek re kP T2

2 ’
Cas€ennt €15 2ar

€110 — €150
=
27 (Cyq€111 €75)

(30)

0o b
tan—- cosao 7T(cosBOJrl)

1
yzy 4rg

to
COS—-
€K7 +e,KP 2

2 1
Cas€11 T €15 271

1 p o Cab+esAh 0o
T . .
Ty 4r0{ 5 tan—-sind, 7 sin fp+tan—
)
sin—
_KU\/Z_’
g 31)
11p o Cap+esAd
T__ —  —
Ozy 4I’0[2 tanzCO 60— —2 (COSHO+1)
o
coso
+K ,
\27Tr0
1 €15p+ Cyq0 o A¢( ) o
El= o o o2 fansing sin 6+ tan—
X7 4rg | 2m(Cagers+ €25) o 27 0 2
)
elsKU—C44KD S|n2
Conennt+ €% ’
44€117 €15 \27r (32)
1 €150+ Csqq o Ad
ETZ— —t n—cosO cosfy+1
Y 4r0{ 27 (Cage11+ €59 0 77( ot 1)
o
elsKO-_C44KD COSZ
Caserst s 271,

1)q o eh—enAd o
o |4 o, ST enadr 00
X 4r0{277tan25|n00 5 sin 6o+ tan—

)
sin—
—kb 2
277!’0 (33)

1 q o e1sh— €A
T__— ) _ T _ 2 7
y 4r0{ 27Ttanz cost, o (cosfp+1)

o

COS—

2

+KP .
\/27Tr0

In the purely elastic case, Eqe30)—(33) are reduced to the
relations of Ohr et al[15]. From Egs.(29)—(33), we obtain
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Cas0°+ 261500~ €1,p° o

4771 o Caa€rr+ €75) 2
C44b + 2615bA¢_ EllA ¢2
4’7Tr0

Fx=

6
cog—>

pb—gAé
2 " dmr,

B P(e11K7+e15KP) +q(CcaKP—eK?)
V271 o(Cag€11+ €30)
bK?+ A ¢pKP

2771‘0

0o

OS? s (34)

2 2
Ca40°+2€15pg— €11

= >

Y 87T o(Cas€111 €15)

_ Cadd?+2e1hA p— €A $?
8’7T|'0

o
costy tan—-

F

. o
sin 6o+ tan—-

_ pb-qAg

Cos6,
471y 0

P(€11K7+e15KP) +0(CesKP — 1K)
V271 o(Caserst€ls)

bK+A@pKP

+ ——SsIin—
\/27Tr0

2
where a negative term contributes to the attractive force and a
positive to the repulsive. In Eq§34) and(35) the first term is the
interaction between the line-loads and the free surface of the
crack; the second, the interaction between a screw dislocation and
the crack surface; the third, the effect of the crack surface on the
force generated by the line-loads acting on the screw dislocation;
and the fourth and the fifth are, respectively, the effects of the
external loads on the interactions between the crack tip and the
line-loads, and between the crack tip and the screw dislocation. In
case of no electrical and mechanical loads, E8#). and(35) can
be reduced to the solutions of Majumdar and BUr4. Also, in
case of no crack, the Eq§34) and (35) can be reduced to the
solutions of PaK5].

Let us consider the case of a screw dislocation with the line-
loads near the free surface parallel to tpexis, wherein the
forces can be calculated without using the conformal mapping
technique. The results are

C44b2 + 2815bA Q’) - 611A ¢2

o

2

(35)

N Caa0?+ 261500~ €14p°

F=— 47d 47d
+br,+A$D.., (36)
€117t €15D ) +q(CqsD . — €157
Fy= p(egs 15D ) +g(Cad 15 )_ 37)

Cas€r1+ €5

The interaction between the line-loads and the free surface shows
up in F,, but vanishes irF, . The third terms in Eqs34) and

(35 do not appear in this case. Equatiaid$) and (37) are re-
duced to the solutions of P4k] in the absence of external loads.

4 Stress and Electric Displacement Intensity Factors

The resultant stress and electric displacement intensity factors
can be calculated by the following relations, respectively,

Kg=lim[\27Za,], KR=Ilm[\27ZD,].  (38)
Z—0 Z—0
Substituting Eqs(24) and(26) into Eq. (38), we obtain
=K{+KJ+K, (39)
KB=KP+K5+KP, (40)
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Table 1 Crack-tip shielding effect induced by a line-force, a line-charge, and

a screw dislocation when b,A¢,p,q are positive (+) (©:shielding, @:anti-
shielding )
Position —7<6,<0 6,=0 0<0,{nm
variables
intensity factors p|a|bjagp b iag|p| a|b|ag
K% e|lx|e|e|x|x|e|le]le|x|o|le
K2 X le|lo|@|Xx| x| 6|80 X| 0|0 |8
where s % 5
Au, 5=A;log| 1+ ——|+2A,tan ! \/——+C’' \/— Vé—x,
' d—x d T
ko= _gin koo gt (45)
L \ 27Tr0 2 ' - \ 2’7Tr0 2 l

6—X 2
+2B,tan * \/——+D’\/— Vé—x.
d T

1)

1 6o
Ki=——=(cyb+e COS—, 41) The stress and the electric displacement are
d \/m( 44 15A ¢) 2 ( ) p
cubteAg  Vd K”
1 60 O-Zyz 2 !
K§=— ——=(e;sh— e Adp)cos—-. . Vx(x—d)  2mx
d \/m( 15 11 (15) 2 (46)
exp—endep  Vd KP
In the purely elastic cas&g in Eqg. (41) becomes the solutions of y= o o d) + P
- ar.

Majumdar and Burn§l4].
Examining Egs.(39) and (40) one can observe the crack-tibFrom Eqs.(42)—(46) along with Eq.(34), we obtain the crack
shielding effect due to the line-force, the line-charge and thtension force in the form
screw dislocation. In case of the Burgers vectarthe electric
potential jump,A¢, the line-force and the line-charge to be all 611K"2+ 2e15KDK"—c44KD2
positive, K§ and KB are not affected by the line-charge and the 2(Cane +925)
line-force, respectively, as shown in Table 1. The line-force in- 445110 =1
creases the crack- tip antishielding effect in the upper-half plam@e second term is the crack extension force due to the external
(0<gp<m), since it adds to the far-field mechanical load. But itoads in the absence of the dislocation. For the purely elastic case,
decreaseKpg in the lower-half plane { w<6,<0). The screw Eq.(47) becomes the solution of linear elastic fracture mechanics:
dislocation(b and A¢) decreaseKg in any position, which is
same as the result of Majumdar and Bufdg] in the purely G
elastic case. On the contrary, the line-chargeplaced in the
upper half-plane (& 6,< ) decreaseK?, since the line-charge
induces an adverse electric field to the applied electrical load n
the crack tip. But, in the lower-half plane it increaﬂég. Re-
gardless of the location of the dislocatidndecrease& R but A¢
increases it.

G=—F,+ (47)

K
S 2u

é_ﬂting 0p,=0 andry,=d in Egs. (39 and (40), G can be rear-
ranged from Eq(47) as follows:

(48)

2 2
€1KR +2e1KRKE— CaKR
G: >
2(Cqs€11+ €15

This result is in the same form as the second term in (E@).
5 Crack Extension Force Therefore, thls_ is the ger}eral relatl(_)n _betwee_n the crat_:k extension
) ] ~ force and the field intensity factors in linear piezoelectric material.
The crack extension force can be obtained by considering thgom Eq.(47) or (49), we can now obtain the crack extension
work done in closing the crack tip over an infinitesimal distafice force in the case of a screw dislocation at any position near a
crack tip in the form

(49)

S

51 1
AWZZJOEUZVAUZ"SdXJFZJOEDyA%dX’ (42) - Casl?+26,pq— €10 . O,
- 477 o(Cag€11+ €3) 2
whereAu, s and A ¢ represent the change in the displacement 5 )
and the electric potential due to the virtual extension of the crack, Cadb™+2€10Ad— €A co§ﬁ— pb—qgA¢ sing
respectively, A7r, 2 4rg 0

Aps=p(X—6)— p(x).

The crack extension forc&3, can then be calculated as follows:

Auz,r?: UZ(X_5)_UZ(X), (43)

G=Ilim—/—.
5—0

(44)

To simplify the calculation, we first consider the screw dislocation
positioned at a distancd, along thex-axis from the crack tip. The
changes in the displacement and the electric potential are

Journal of Applied Mechanics

N (Per— e K+ (peystqc,)KP Sin@
V271 o(Caser1+ €30) 2
bK+ApKP 4,

COS— +
A} 27Tr0 2

2 2
€K7 +2e,KPK7— ¢, KP
v
2(Cys€111€75)

(50)

A lead zirconate titant€PZT-5H) ferroelectric piezoceramic is
considered. The material properties are given([3y)):
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1.04 I | T With no line-force-chargef{=0, q=0), the position for the mini-
mum is #5'"=0. As the values of the Burgers vector and electric
potential jump increasei,g“” approaches zero, while it approaches
—ar with increase of the line-loads.

K° = 10 Nym/m?
P = 1.1349%x10° C\m/m?
1.00

L\ /| 6 Conclusions

p=10 N/'m ] A A theoretical analysis was performed for a screw dislocation
\ —  — ¢=1.0x10*C/m y with a Ime-fqrce and a line-charge near a seml-!nflnlte prack ina
Zoss N\ . —_ - — 1=1.0x10°m ) —  hexagonal piezoelectric crystal subjected to far-field antiplane me-
&) RN — - - Ap=1V /o chanical and in-plane electrical loads. The solution was obtained
L \ ’ | by complex variable and conformal mapping technique. The clas-

N . 4 sical 1Ar singularity was observed for stress, electric displace-

NN o ment, and electric field near the crack tip. The forces acting on the
092 — N T T s — dislocation were obtained, which were in agreement with the pre-
N vious works. The effects of the screw dislocation and the line-
loads on the stress and the electric displacement intensity factors
were calculated. The crack extension force was also calculated,
which consists of the force obeying the law of action-reaction and
0.88 | L | L I the force acting on the crack directly by the external loads. The
-3 2 -1 Y 1 2 3 general relation between the crack extension force and the field

o) . intensity factors was presented. In the limiting case of vanishin
Angular position, 8o (radian) electricgl guantities, aFI)I the results obtained ir? this paper was r(g-
duced to those for the purely elastic case.

cr

Fig. 2 The effect of the line-loads, the Burgers vector, and the
electric potential jump on the resultant crack extension force
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Stability of Rectangular Plates
With Free Side-Edges in
c.a.auc' | TWO-Dimensional Inviscid
u.p.Paidoussis | Ghannel Flow

Department of Mechanical Engineering, The linear stability of rectangular plates with free side-edges in inviscid channel flow is
McGill University, studied theoretically. The Galerkin method and Fourier transform technique are em-
817 Sherbrooke Street West, ployed to solve the plate and potential flow equations. A new approach is introduced to

Montreal, Quebec H3A 2K6, Canada treat the mixed fluid-plate interaction boundary condition, which leads to a singular

integral equation. Divergence, single-mode flutter, and coupled-mode flutter are found for
plates supported differently at the leading and trailing edges. In some cases, single-mode
flutter at vanishingly small flow velocity is predicted. The effects of mass ratio and
channel-height-to-plate-length ratio on critical velocity are studied. An energy balance
analysis shows how different types of instability arise for plates with different supports.
[S0021-8936)0)01801-9

1 Introduction types of instability for plates with different support conditions at

. . . . S the leading and trailing edges afig) effects of fluid density and
Stability of plates in axial flow is a problem of practical impor-- - nnel height on the critical flow velocity.

tance in aerospace and nuclear engineering and has been exam-
ined by many investigators. For parallel-plate assemblies usedzs Governing Equations and Boundary Conditions
core elements in some nuclear research and power reactors,

theory was first presented by Millgt] for predicting the critical The one-dimensional equation of motion of an elastic plate is

flow velocity for divergence, later improved by Johansg®jhand given by
many otherg[3]). Other investigators have studied the flutter of a J*w 9*w
panel in subsonic or incompressible flow; e.g., Dugundji ef4d). D e +pphpW +p=0, (1)

Dowell [5], Weaver and Unny6,7], and Epstein et a[8]. More

recently, a plate in axial flow has even been chosen as a modelioere D= Ehg/[12(1— v?)] is the plate stiffnessE being

study human snorinq9])! Young’s modulusy Poisson’s ratioh, the plate thickness, the
However, compared with the stability of pipes conveying fluidplate densityw=w(x,t) its lateral deflection, ang=p(x,t) the

a similar problem now becoming a paradigm in dynanfjd®]), net load per unit area on the plate, equal to the difference between

our understanding of the stability of plates in axial flow is far fromhe perturbation pressures on the upper and lower surfaces of the

complete, and some controversial problems such as postdivelate caused by its deflection. Because of antisymmetry with re-

gence flutter still remain to be resolvfd 1]). No theory is avail- spect to the plate, these perturbation pressures must be equal in

able to explain why and under what conditions different types @fagnitude but opposite in sign.

instability exist in different cases. Assuming an inviscid, incompressible two-dimensional flow,
The purpose of this paper is to investigate some fundamenthé perturbation pressures can be given by the unsteady Bernoulli

characteristics of the instability of plates in axial flow. To concerequation,

trate on the fundamental aspects of the problem, we consider a

finite length rectangular plate with free side-edges in a channel p= _2p[a_¢+u ‘9_(’9

(Fig. 1), and treat the plate as one-dimensional and the channel

flow as two-dimensiongk three-dimensional model has been pre-

sented by the authors for a similar problem; E&k. In the analy- yvherep is the fluid density, and) the unperturbed flow velocity

sis, the Galerkin method is employed to solve the plate equatiiaéthl_e crannel. TT.e perturbation velocity potentiaiust satisfy
while the Fourier transform technique is used to obtain the pertur- aplace equation

bation pressure from the potential flow equations. The mixed Po P

fluid-plate interaction boundary condition along the plate and its WJF ?=0- 3)
up and downstream extensions leads to a singular integral equa-

tion, which is solved numerically. Investigated in this paper(are

: @

z=0
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To put these equations in dimensionless form and to analyze the _ 1 (=
problem in the frequency domain, we let o(a,2)= ZJ o(x,z)e”'*dx. (14)
_ _ h pl
x=Ix, z=hz, ¢= T RT pohy’ The solution of(12) satisfying(13) is given by
P i T ) @(a,2)=B(a)[e”tlz+eclelz-2)], (15)
I pphp I pphp @

Taking the inverse Fourier transform f(k5), we get

D _ . D
e(x,z,t) =\ —— (X270, p(x,t)=zp(Xx)e"",
pphp I

w(x,t)=lw(x)e' .

Inserting these int¢1)—(3), and dropping the overbars for sim-
plicity (only valid in this section and in Sectior,3ve obtain the
dimensionless governing equations of the problem in the fr
quency domain:

(p(X,Z)=fw B(a)[e ®l*74+eflelz=2giexqy. (16)

—

With this expression, conditio(8) is satisfied automatically, and
only the mixed boundary conditiof10) is yet to be satisfied.
e Inserting(16) into (6), we obtain the expression of perturbation

pressure,
d*w
Fvae w’w+p=0, (5) * . 72 ,
X p(X)= | B(a)(—2w)i(w+aU)(1+e 2ld)glexdq,
a —
p=—-2un iw(p-i-U—(P} , (6) 17)
X =0

5 5 Substitution of(17) into (10) yields a pair of dual integral equa-
17_<P+ i 5_@070 7 tions for the unknowrB(«). In order to reduce the dual integral
a2 c? o2 7) equations to a single one, we upé&(x) as the basic unknown.

The boundary conditions for solving are given as From (17), it follows that

+=0, 8 * - i
P (®) p'(x)=f B(a)(2p)a(w+aU)(1+e el Xda.
de -
— =0, ©) (18)
z=1
14 dw Taking the inverse Fourier transform @18), incorporating
2 Ljew+U—, O0=x=1, (1ca)  (100), we obtain
caz|, dx
1 1 ot
(9 — ! —la
p=—2u iw¢+u&—ﬂ =0, x<0, x>1, (1) Bl = el + aU)(1+ e 20 fop (§e*de.
z=0 (19)
in which the antisymmetry with respect to the plégmad its ex-
tensions to infinity is taken into account. From (16) and (19), we have
10 * )
_ i :f B(a)|a|(—1+e 2lel)elexdy
3 Solution Cdzl,o J-=
Galerkin's method is used to solve the plate Eg). The di- 1
mensionless plate deflection is expressed as = | H(X&p'(§)dé, (20)
M 0
WO = 2, AnWin(X), (11)  where
=
where w,,(x) are the beam eigenfunctions satisfying the plate “ |a|tanh(c|al) —_—
boundary conditions at the leading and trailing edges. H(x,§)=— v a(wtal) © da.  (21)
Because the perturbation pressprés dependent on the plate -
gg{gﬁ%@q’hgm‘éﬂig;&f ), 10 solve Eq.(5), we must first Substitution of(20) into (10a) yields an integral equation for

p'(X):
3.1 Solution for Perturbation Pressure. For a given plate
deflectionw(x), we must now find the corresponding perturbation 1
pressurep(x). f H(x,§)p'(§Hdé=iow(x)+Uw'(x), O0sx<1. (22)
By applying the Fourier transform to(x,z) with respect to the 0

variablex, Eq. (7) and boundary conditiof®) become o .
Premultiplying Eq.(22) by iw+U(d/dx), we have

1 #¢(a,z) o~

2 a2 @ ¢(a,2)=0, (12) 1 _

¢ f G(x,&)p'(§)dé= — w?W(X) +i2wUw’ (x)+UW"(x),

~ 0
de(a,z)
oz =0, (13) (0=<x<1), (23)
z=1
where in which
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G(x,&)=1wH(x,&)+U

IH(X,€)
IX

* |altank(c|al)
e

_4WM

|

1

ia(x=8)qq

= %[E + f:[tanl‘(w)f l]sina[(x—¢)]da}.

(24)

first-mode eigenfrequency and the critical velocity of first-mode
divergence is fairly goodto within 0.2 percent In spite of this,
we have taken ten terms in the calculations.

For symmetrically supported(clamped-clamped, pinned-
pinned, and free-frgelates, we have obtained four complex con-
jugate modes for the eigenvalue parameter;iw; otherwise,
only two have been found. This conclusion can be proved math-
ematically from Eq(27). In the figures, only those modes with a
non-negativewg have been plotted.

Equation(23) is a Cauchy-type singular integral equation, from 4.1 Clamped-Clamped, Pinned-Pinned, and Clamped-
which p’(x) can be obtained numerically by the Gausspinned Plates. Figure 2 is a typical diagram of the first and
Chebyshev method12]). Thenp(x) can be obtained by integrat- second-mode dimensionless complex eigenfrequengiesrsus

ing p’(x). .
The perturbation pressumx) can be expressed as

P(x)=— w?p™(x)+i20Up P (x)+U?p ) (x),  (25)

the dimensionless flow velocity for a clamped-clamped plate.
The solid and dotted lines represent the real and imaginary parts
of the complex eigenfrequencies, respectively. It is clear that the
plate first diverges in the first mode, it is then restabilized and,

in which p™M(x), p®(x), and p(x) are the components of shortly after that, it undergoes coupled-mode flutter involving the

p(x) obtained by retaining on the right-hand side of ER3)
terms associated withv(x), w’(x), andw”(x), respectively.

3.2 Solution for Plate Deflection. Applying Galerkin's
method to Eq(5) gives

1 M

A Wi (X) = @2Wy(X) + Py X) JW, (X)dX=0,
om=1

(r=12,... M), (26)

first and second modes. For a pinned-pinned plate, results very
similar to Fig. 2 have been obtained.

Figure 3 is for a clamped-pinned plate. It is different from Fig.
2 in two respects{i) the imaginary parts are nonzero prior to
divergence and(ii) after first-mode divergence, the first and
second modes interact in some way, but they do not combine
into one, so it is hard to say whether the flutter is single or
coupled-mode.

Calculations have shown that clamped-clamped and pinned-
pinned plates lose stability by first-mode divergence for any mass

in which p,(x) is the perturbation pressure corresponding teatio x4 and channel-height-to-length rateo This is also true for

W (X).

clamped-pinned plates with relatively largeand c; otherwise,

Inverting the integration and summation order and rearrangingability is lost by single-mode flutter at vanishingly small flow

we can rewrite(26) as

M
> [—0AMP M) +i20UGH )+ K P + UK IA,=0,

m=1

(r=12,... M), (27)
in which
1 1
MP) = fo Wi (X)W, (X)X, Kgﬁ’r):J'O W (X)W, (x)dx,
1 1
Mg/ = f P oW, (x)dx,  Gif/= f PLe ()W (x)dx,
0 0
(28)

1
Kind = f P ()W, (x)dx.
0

velocity. o
For divergence, the dimensionless critical velodity, is in-

@y, 0,

The first two integrals in28) can be evaluated analytically andrjg. 2 pimensionless complex eigenfrequencies versus flow
the last three numerically. velocity for a clamped-clamped plate; c¢=1, u=1

4 Numerical Results and Discussion
To obtain an overall understanding of the problem, we have

studied plates with every possible combination of classical sup 30

ports at the leading and trailing edges: clamped-clamped, pinnec

pinned, free-free, clamped-pinned, pinned-clamped, clamped-freig

free-clamped, pinned-free, and free-pinned.
clamped, pinned-pinned, clamped-free, and free-clamped plates
the limit of large channel height, some results have been obtaine
previously by Dowell[13] and Kornecki et al[14].

To test for the convergence of the Galerkin solution, the lowes
three eigenfrequencies at zero flow velocity and the critical veloc-
ity for first-mode divergence, of a clamped-pinned plate, were
calculated with a different number of terms in E41). The re-

For clamped,§ 10

-10

-20

sults show that both the eigenfrequencies and the critical velocityy. 3 Dimensionless complex eigenfrequencies versus flow

converge rapidly. Even with only one term, the accuracy for thelocity for a clamped-pinned plate;

Journal of Applied Mechanics
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c; however, it tends to a constant astends to infinity. The
“jump” and “plummet” on the curve forc=0.1 are due to a
change in the modes involved in flutter, which are the second and
third ones for 0.69 u/(1+ 1)< 0.84, and the first and second for
the rest. Forc=0.2, the lowest flutter velocity is always that of
coupled-mode flutter involving the first and second modes.

pinned-pinned

clamped-pinned

4.3 Clamped-Free and Pinned-Free Plates.Figure 7
shows that a clamped-free plate loses stability by single-mode
clamped-clamped flutter. Although the real part of the first-mode eigenfrequency
becomes zero at some “critical” velocity, no divergence occurs
because the two branches of the bifurcated imaginary part remain
positive. The imaginary part of the second-mode eigenfrequency
changes sign as flow velocity increases. The lowest velocity at
which it changes from positive to negative is the critical velocity
for single-mode flutter. For clamped-free plates, second-mode

02 04 OC'6 0-8 ' flutter is prevalent. For pinned-free plates, the diagrams are simi-
lar, but first-mode flutter occurs most often.
Fig. 4 Critical flow velocity of first-mode divergence versus Figure 8 shows the lowest flutter critical velocity as a function
channel-height-to-plate-length  ratio for clamped-clamped, of u/(1+ ) andc for clamped-free plates. Th&shaped jumps
clamped-pinned, and pinned-pinned plates of the critical velocity are also due to the shift of modes involved

in the flutter. U.,J/u increases with increasing/(1+ ) and

. tends to a constant astends to infinity. For pinned-free plates,
versely proportional ta/x. U, /u increases with increasing similar results have been obtained.
and then tends asymptotically to a constant &snds to infinity, It can be seen from Fig. 8 that if the fluid density is small
as seen in Fig. 4. enough, the critical velocity becomes zero! Calculations have
shown that this kind of zero-critical-velocity instability is very
ak because the imaginary part of the eigenfrequency of the
ttering mode is very small, so it disappears when damping is
ken into account, as shown in Fig. 9, in whighs the viscoelas-

4.2 Free-Free Plate. Figure 5 shows the complex eigenfre
guencies for a free-free plate. If we do not consider the rigid-bo
modes(the eigenvalue frequency corresponding to the rigid-bo
mode in translation is zero, and that in rotation is pure imaginary,
w, is positive and proportional to the flow velocifya free-free
plate loses stability by coupled-modelassical flutter. Which
modes are involved depends on the parameters. Figure 6 sho~
the lowest flutter critical velocity as a function pf/(1+ ) and 2
c. U,/ does not change monotonically with eithet(1+ u) or 20

Fig. 7 Dimensionless complex eigenfrequencies versus flow
velocity for a clamped-free plate; c¢=1, u=1

2.5 5 7.5 0 12.5 15 17.5 20
U
50
Fig. 5 Dimensionless complex eigenfrequencies versus flow
velocity for a free-free plate; c¢=1, u=1 K

40 %
30

1.0 0.5
5.0%; 0.2 | /c=0.1
0.2 0.4 0 8 1
H
1+u
Fig. 6 Critical flow velocity versus mass ratio for a free-free Fig. 8 Critical flow velocity versus mass ratio for a clamped-
plate with different channel-height-to-plate-length ratios free plate with different channel-height-to-plate-length ratios
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50 that the critical velocity is nonzero, proportional to the damping
coefficient, inversely proportional ta, and that increases with
increasingc; see also other comments in Section 4.3.

40
> 5 Energy Balance Analysis of Instability

From Eg.(23), we can expresp(x) (using again overbars for
S dimensionless termss

I 2 5 BUX) = — @2, (W) + i 20U m,(OW (%) + U2 (W (3,

(29)

o 0.01 / in which m;(x), My(X), and My(X), depend on the shapes of
w(x), w’(x), andw”(x), respectively; from(24), they are pro-

I 0.001 =0 portional tow. The perturbation pressure can be expressed as

9w 7w o*w
0-2 0t 0 0-¢ ’ POt =My(X) — +2Um,(X) - —+Umg(x) —7

axat
(30)

Fig. 9 Effect of viscoelastic damping on critical flow velocity the three terms on the right-hand side are the inertial, Coriolis and
for a clamped-free plate; c=1 centrifugal forces of the fluid on the plate, consecutively. With
Eqg. (30) as the expression fop(x,t), Eq. (1) is similar to the
equation of motion of a pipe conveying fluifiL5]), except that,
for the latter,m(x) = m,(x) =m3(x) =my=real constant.
\ \ k The rate of work done on the plate by the fluid-dynamic forces,
302 1

the only possible source of energy input, is given by

’ aw I IW(X,t)
. a>0 E——Lp(x,t) e dx. (32)

For periodic oscillation, we expres®(x,t) in real form

<

<
00 k W(X,t)=W(X)coswt +Wy(X)sin wt; (32)
. then, the perturbation pressure is
_ \ | p(X,t) =[ — w?mgwe+ 2wUmgw, + U?mw!, coswt
e 1 W, +[— w?Mgws— 2wUmgw, + U2mgw!]sin ot.
‘ / (33)
0.2 o4 08 0.8 1 Hence the work done by the fluid forces over a cycle of periodic
1+p oscillation of periodT=27/w is
Tl IW(X,t)

Fig. 10 Stability boundaries for (1) clamped-pinned, (2) AW=— o Op(X,t) ot dxdt

clamped-free, and (3) pinned-free plates

|
=— _wzj (Mg — Mgy )Wwedx
0

tic damping coefficientin this case, a factor (tiwvy) should be

added in front ok ?) in Eq. (27). This phenomenon no doubt is
related to the limitations of inviscid flow theory. A similar result
related to “aspirating” pipegoriginally thought to lose stability
at vanishingly small flow velocitywas resolved[15])—but vis- o (" , ,
cous flow theory was used all along. +U f (MaWWs— MggWWe)dX| . (34)
This same phenomenon also exists in the case of clamped- 0
pinned plates. In Fig. 10 are given the boundaries separating thef the constraints at the leading and trailing edges of the plate
zero-critical-velocity flutter region and nonzero-critical-velocityare the same, then onewf(x), w(x) is symmetric and the other
region in the plane of parameters ¢y(and u/(1+ w), for the antisymmetric with respect ta=1/2. From Egs.(23), (24), and
aforementioned three types of plates. (30), it can be concluded tha.(x), . . . ,mg(x) are symmetric
with respect tox=1/2. Hence, AW=0. Thus, in these cases, no
4.4 Pinned-Clamped, Free-Clamped, and Free-Pinned single-mode flutter(Hopf bifurcation can occur. Divergence
Plates. For pinned-clamped, free-clamped, and free-pinnggitchfork bifurcation and coupled-mode fluttdeither a Hamil-
plates, calculations have shown that the eigenfrequencies are domian Hopf bifurcation or so-called Rimussis fluttermay exist.
jugates of those of clamped-pinned, clamped-free, and pinned-fred-or other cases, generallyW does not vanish. If for some
plates, respectively, with the same parameters and at the sammles and at some velocities\W< 0, then the vibrations of these
flow velocity. For a clamped-pinned, clamped-free, or pinned-fremodes will be damped out; RW>0, the plate will gain energy
plate at any flow velocity, there exists at least one mode withfeom the fluid and single-mode flutters will occur.
positive imaginary part of eigenfrequency, therefore, a pinned-If we exchange the constraints at the leading and trailing edges
clamped, free-clamped, or free-pinned plate will flutter at vanislof the plate, or, more easily, change the direction of the flow, then
ing flow velocity. When external viscous damping or internal visw (x) andwg(x) will exchange their positions in E¢32). Chang-
coelastic damping is taken into account, calculations have showmg the sign ofU and exchanging the subscriptwith s in Eq.

|
+2wU f (MeaWWs+ MWW, ) d X
0
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(34), we get the opposite sign ilW. So, if a plate with clamped- single-mode flutterlJ ., /i generally increases with increasipg
pinned or clamped-free constraints at the leading and trailiRghd c. For coupled-mode ﬂUtteUcr\/ﬁ does not change mono-
edges is stable at very low velocities, then a pinned-clamped tghically with eitheru or c. However, for all types of instability,
free-clamped plate is unstable, even when the velocity tends‘tufgr\/ﬁ tends asymptotically to a constant agends to infinity

zero—at least acz_:ording to inviscid theory! _ (c=1~5 is a fairly good approximation faz— ).
These conclusions can also be reached via @@). If we

change the sign of the flow velocity, the sign of the imaginary
part of eigenfrequency will also change. Then, if the plate is ACknowledgments
symmetrically supported, there are only two possibilities regard- The authors gratefully acknowledge the support of NSERC of
ing the roots ofw in Eq. (27): (i) the imaginary part is zero, which Canada, FCAR of Quebec, and CSC of P.R. China.
represents neutral stability; @) a pair of conjugates exist, which
repres)ents coupled-mode fluttéor wg#0) or divergence(for References
wr=0). ) . ”
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P 9 g 9 9 P 7] Weaver, D. S., and Unny, T. E., 1972, “The Influence of a Free Surface on the
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while single-mode flutter only arises for nonsymmetrically sup- [s] Epstein, R. J., Srinivasan, R., and Dowell, E. H., 1995, “Flutter of an Infinitely
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bility. For c_:Iamped-plnned _plates, if _the mass rapoz_and the [10] Padoussis, M. P. and Li, G. X., 1993, “Pipes Conveying Fluid: A Model
channel-height-to-length ratmare relatively large, the first-mode Dynamical Problem,” J. Fluids Struct7, pp. 137—204.

divergence is also the predominant type of instability. Free-fref1] Matsuzaki, Y., 1981, “Reexamination of Stability of a Two-Dimensional Fi-
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plates lose stability by single-mode flutter, usually in their second "~ integral Equations,” Q. Appl. Math29, pp. 525-534.
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small, dlamped-pinned, clamped-free, and pinned-free plates M) kameoi A Dows, £ . and OB 3. 1975, 0n the Acrosesic
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(the critical velocity is zerp Pinned-clamped, free-clamped, and  sound Vib.,47, pp. 163-178.

free-pinned plates always lose stability by single-mode flutter dt.5] Padoussis, M. P., 1998&luid-Structure Interactions: Slender Structures and

very low flow velocity, at least according to inviscid flow theory. (16 ﬁé‘f}a'bg I'(O"gvg'n dl'zﬁf;ifg,lc I'_”"E%‘lL({f‘lggSéﬁgé 509;—F2i)7(i6n-g the Edges of a
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Aerodynamic Characteristics
v.5.crang | Of Pressure-Pad Air Bars

e-mail: ybae@okstate.edu

Mem. ASME Air-flotation ovens are widely used for noncontact support and drying of coated paper

and plastic films (generically called webs). The main components in typical air-flotation

P. M. Moretti ovens are air bars which have slot nozzles or holes through which hot air jets are ejected.

Mem. ASME Problems in air-flotation drying techniques include sideward motion of the web, web
flutter, and contact between the web and air bars. The key to analyzing these problems is
School of Mechanical and Aerospace to determine the aerodynamic forces on the web. This paper discusses the aerodynamic
Engineering, forces generated by pressure-pad-type air bars, each of which has two slot nozzles.

Oklahoma State University, Ground-effect theories, which were originally developed for the design of hovercraft, are
Stillwater, OK 74078 re-examined. The theories are compared with the measured values of the aerodynamic

forces for typical air bars. It is shown that ground effect theories can be applied to
pressure-pad-type air bars if we properly define the equivalent values of the ground effect
variables, which include thickness of the air jet, flotation height, ejection angle of the air
jet, and the effective total pressure of the air [80021-89360)02801-4

Introduction Ground Effect Theories

When web materials such as paper and plastic films are coatedrhin jet Model. The basic ground effect model is shown in
they need to be dried without contact while they are continuoustyfg. 2 and Fig. 3. For hovercraft, Fig. 2 represents the cross sec-
moving. A variety of aerodynamic methods have been developggh of a circular or elliptical three-dimensional body. Our main
for effective drying without damaging the coatings. One method jgterest, however, is in air bars, so that Fig. 2 should be under-
to use air-flotation ovens having twopper and lowgrrows of air  stood as the cross section of a two-dimensional body. This model
bars, as sketched in Fig. 1. Each air bar has two slot nozzlgssumes that the thickness of jet flow is much smaller than the
through which hot air is ejected toward the translating web. Aftotation height p/h<1), the thickness of jet flow does not
bars of this type are called pressure-pad air bars because of ¢hange along the path of the jet, the flow profile across the jet is
nearly uniform cushion pressure developed between the air haiiform, the jet speed does not change along the path of the jet,
and the web. Hot air jets are used for both drying and noncontahe path of the jet flow has a constant curvature and is tangent to
support of the web. Typically, air bars are arranged in such a wihye ground, and the pressure in the region surrounded by the two
that the web path in an oven is sinusoidal. The depth of the simgtreams of air jet is constant.
soidal curve(amplitude of vertical deformation of the webe- The validity of these assumptions and the derivation of the
pends on the width and arrangement of the air bars, bending stigfound effect equations are discussed in M&i; Jaumotte and
ness of the web, and operating conditions, such as supply Kiedrzynski[8], and Davies and Woof9]. The key concepts
pressure and web tension. For example, thick aluminum foils #wvolved in the classical thin jet model are briefly explained be-
steel plates stay nearly flat in an oven. Bezgll Fraser[2,3], low. The horizontal force balance for the air jet requires
and Krizek[4] provide good summaries of applications of air- )
flotation ovens. pbVj(1+cosf)=pch 1)

Aerodynamic forcegpressure distributionson a rigid station-
ary web were measured by Pinnamarggii for various air bars. - . > .
He studied the effects of flotation heigluistance between the air\lelocIty of the ar Jet, angp is the cushion pressupage pres-
bar surface and the rigid wglon the aerodynamic forces andsure' The eﬁeCt!ve total pressurgage pressujeof the air jet
explained the out-of-plane stability characteristics of an air-ﬂoat@tﬁter the nozzle is
web. Nisankararaf6] repeated and extended Pinnamaraju’s ex- \2
periments, and studied the effects of cross-directional tilt angle of _Pe + PYi 2
a rigid web. Even though these tests were limited to a rigid and 2 2
stationary web, the results help us understand the aerodynamic . .
characteristics of air bars and the behavior of air-floated webs.V€"® the static pressure is e_tssumed to be the average of the

In this paper, ground effect theories, which were originally de"’}mblent pressure and the cus_hlon pressure _because these two pres-
veloped in connection with the development of hovercraft in the. <> arg a_ctmkg]g on the two sides of the air jet. From Ejsand
1950s and 1960s, are re-examined and applied to pressure- byve obtain the pressure ratio
type air bars. The theories and the air bar test results are com-
pared, and it is shown that ground effect theories can be useful
tools for the analysis of the aerodynamic characteristics of air-
flotation bars. ¢

’ i ) o Unet | Air bar I Coated web Air bar
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF /\/—\—/\)\l

MECHANICAL ENGINEERS for publication in the ASME GURNAL OF APPLIED ‘o
Air

—7
- . . . S { : !
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. bar | Air bar |

wherep is the air densityp is the width of the air jetyV; is the

1, 1999; final revision, Sept. 10, 1999. Associate Technical Editor: R. C. Benson.
Discussion on the paper should be addressed to the Technical Editor, Professc T .
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, Hot air

Houston, TX 77204-4792, and will be accepted until four months after final publi-

cation of the paper itself in the ASMEOIRNAL OF APPLIED MECHANICS. Fig. 1 Cross section of air bars and the web in oven
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Fig. 5 Definition of angle y

By performing the integrations and using the geometrical relation-
shiph=b+r,(1+coséd), we obtain

P ( h/b—1 )2 .
P h/b+cosé ©)

This pressure ratio approaches 1 when the tatipapproaches 1.
When the flotation height is very small, E(@) predicts that the
cushion pressure can be negative.
Another thick jet model is obtained when we treah Eq. (8)
pc  2(1+cosd) as a constant and write the right-hand side termtas g 8]). This
a: h/b+1+cosd’ (3)  concept does not seem to be accurate, but yields the following
! cushion pressure equation which agrees well with Stanton Jones’
Note that all pressures are gage pressures. The lift force per usiperimental results cited by Mdi7]:
length of air bar is

Fig. 3 Thin jet model

p -
F=pw-+2pbV2sin g (4) o, —lmerrmaTeey (10)
i
wherew indicates the distance between the two slot nozzles. Theq pressure ratio predicted by E40) approaches 1 when the
last term in the above equation is the change of momentumzof $Station height approaches zero. Even though none of these theo-
two air jets in the vertical direction. By eliminating. andpbV;  ries accounts for the case where the flotation height is smaller than
from Eq. (4) using Eqs(1) and(3), we obtain the nozzle openingjet thicknesy, Eq. (10) seems to be a reason-
F p.(w h 2sing able choice if we want to analyze ground-effect problems in a
=y (5) wide range of flotation height. Strarfd1] provides additional
pjb pjib  bl+cose discussion of a thick jet model.
Recall that the flotation heiglitis assumed much larger than the Other Ground Effect Models
Jet th'Ck.nESSb' We can show that_, wherb(h)(1+cos6)>1, Eq. improve the ground effect models mentioned above for the case
(3) predicts a cushion pressure higher than the total pressure of ere the flotation height is small: that is, whbfb<1. Alex-

ar Jet.EAs3e)1n exéfetme ;:as_e,zwhen the flotation height approackhq.?der,s inviscid theory assumes that the total pressure of the air
zero, Eq.(3) predictspc/p;=2. jet does not change even after it touches the wall. This assumption

Thick Jet Models. Following Crewe and Eggingtofl0], if ~ results in an equation which predicts the cushion pressure always
we assume that the static pressure varies across the air jet, higder than the earlier thin jet model, which already overpredicts
force balance for an infinitesimal element shown in Fig. 4 can tiee cushion pressure whértb is small. Alexander’s equation is

Alexander[12] attempted to

written as Pc  2(1+cosd) 1
ao_pv? o R ”
ar ; B+§+COS

where the radius is a variable, and the flow velocity is assumed Another attempt was made by Bradbyr3] to improve the
to be uniform. The total pressure at radiusan be written as  earlier ground effect models. Bradbury’s analytical model takes
V2 into account the mixing phenomenon and is based on the study of
pi=p+ PYi @) reattachment of a plane jet to an adjacent surfddd]). The
! 2 resulting equation is

From Egs.(6) and(7), Pe  2(cosf+cosy) 1

P dp rotb 2dr p_j_h+1 he 12)

I (8) p T 3 cost+cosy

where y is the angle that the extended jet centerline makes with

the horizontal plane as shown in Fig. 5. Unlike the jet ejection

angled which is a geometric property of the nozzle, the angle

. difficult to determine. The equation overpredicts the cushion when
the ratioh/b is smaller than approximately 4.

(ﬁ:% Comparison of Theories. Effects of flotation height and

dr ejection angle of the air jet on the cushion pressure are plotted in
Fig. 6 and Fig. 7, respectively, for the various theories presented

above. In Fig. 6, the ejection angle of the air jet is assumed to be
Fig. 4 Thick jet model 60 deg. The differences among the different theories are small

o
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\ Eq. 3) ¢ |<_ ey
| \\ ......... Eq. (9) v
—----Eq. (10) —
) N — - -Eq.(11 h s J b
> q. (11) »
a 1 b=\ a
s RS 6 = 60°
5 i T
g F i -
@ ! Po
2 o K
g i I [
B :
; b=s=3.30mm, w= 127 mm (s/b = 1, w/b = 39.5)
b . - . L * . . . Fig. 9 Cross section of typical air bar with vent holes
0 5 10

Nondimensional flotation height, h/b

sure is low and the pressure gradient along the width of the air bar
is small even if a small amount of air escapes through the vent
holes. When the flotation height is small, on the other hand, a
large pressure gradient is developed along the width of the air bar,

Fig. 6 Effects of flotation height on cushion pressure

0.8
Eq. (3) and the cushion pressure profile can be strongly affected by the
e Eq. ) vent holes. If we assume that the flotation height is uniform and
& 07 - T~ :"_':Eg' 8(1); small, and the flow in the gap between the web and the air bar is
= T~ ’ laminar, the pressure drop in the gap can be express4d &
g Fsssmemeseee, ~. h/b = 4
g osf LT ~ 12uQL
£ - N Ap,=——— 13
E ~ \...___..-. N pl hi ( )
E ost BN \ . whereQ is the flow rate in the gap per unit length the air lbar
RO per unit width of the wep L is the distance between the nozzle
"-\' and the vent holes, arfa is the height of the gap. The air flow
0.4 * : ' : - through the vent holes can be approximated[ 4S])
0 30 60 90
Jet ejection angle, 6 (degrees) Q=NC, sz ZAppZ (14)

Fig. 7 Effects of jet ejection angle on cushion pressure ) )
where Ap, is the pressure drop across the vent holss the

number of holes in a row per unit length of air b&, is the

. i discharge coefficient, antlis the diameter of the holéFig. 8 and
whenh/b>4. It is apparent that Eq$3) and(11) overpredict the rjg o) The cushion pressure near the nozzle is the sum of the two
cushion pressure when the flotation height is small. Among thgessure losses:
two thick jet equations, Eq10) appears to be more reasonable to
use for a wide range of flotation heights because (Bppredicts Pc=Ap;+Ap;. (15)
a sudden drofgto a negative valueof cushion pressure when thegince the flow rate in the gap between the web and the air bar
flotation height approaches zero. Figure 7 shows that the effectffist pe the same as the total flow rate through one row of holes,
the ejection angle of the air jet on the cushion pressure is Wegfe value ofQ must be the same in EqéL3) and (14). If we
when the angle is small, but its effect becomes prominent asgifminateQ andAp, from Egs.(13), (14), and(15), the pressure

approaches 90 deg. drop in the gap 4p,) becomes

Air Bars With Vent Holes. Some commercial air bars have Ap; p p
vent holes through which the air in the gap between the web and o —*( \/ 1+2—°—1) (16)
the air bar can escape to the ambient. The air bar used in this Pc Pc *

study has two rows of holes as sketched in Fig. 8 and Fig. 9. Thgere
vent holes are connected to a large channel, the two ends of which ) )
are open to the ambient. For a typical air bar, the channel area is _1 37NCyd“ul
approximately 250 times larger than the area of a hole. When the P “p hi '
flotation height is large, the effects of the vent holes on the cush- ) ) )

e lift force per unit length of air bar is

ion pressure profile may be negligible because the cushion prérQ-
F=(pe—Apy)(W—2L)+(p—Ap1/2) 2L+ 2pbVZ sin 6

17

i i =pW+Apy(L—w)+2pbV: sing. (18)
w
>« ° > If we assume that the cushion pressure near the nozzle is not
o ° L affected by the vent holes, and only a small fraction of the air
&: I<—> ejected from the nozzle is vented through the holes, then the cush-
H °  Jo318mm ion pressure near the nozzle is predicted by (&6). The lift force
?2 g/ o can be rewritten in nondimensional form, by combining EB)
and Eq.(1), as
B—»] ja— _
o F pefw h 2sind L-—wAp;
b=3.30mm, w= 127 mm,B=H=12.7mm, L =572 mm b_pj_p_J b bltcosd b Pe (19)
(w/b=39.5B/b=Hb=395Lb=173)
wherep./p; is given by Eq.(10) and Ap, /p. is given by Eqg.

Fig. 8 Down view of typical air bar with vent holes (16).
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Comparison of Theories and Air Bar Experiments define equivalent values of the ground effect variables, which in-
clude thickness of the air jet, the ejection angle of the air jet,
The experimental data reviewed in this paper are from Pinnfletation height, and the total pressure of jet flow at the nozzle.
maraju [5] and Nisankarara¢6]. Two air bars, schematically First, the thickness of the air jet can be defined as the nozzle
shown in Fig. 10, were used for the measurement of the air pregening. Second, the ejection angle of the air jet and the location
sure profile on a rigid stationary web. The two air bars are diffeof flow separation on the air bar surface are uncertain for the
ent mainly in their widthgw) and nozzle opening®), and they tested air bars. As sketched in Fig. 10, the surface of each tested
are approximately 0.36 n{14 in) in length. A rigid plate, air bar has curved corners near the slot nozzles. Note that there are
12.7-mm thick piece of Plexiglas, was placed against the workingrious types of commercial air bars having geometries different
surface of the air bar. The plate was mounted on slide bearingsfsam the air bars discussed in this paper. It is believed that when
that the pressure profile could be measured while the plate whe flotation height is largéwhen the cushion pressure is small
traversed. The plate was larger than it appears in Fig. 10 so thahi air stream follows the curved surface up to a certain point and
covered the whole surface area of the air bar at all locations of ttheen separates from the air bar surface with an angle smaller than
plate. The main test variable is the distance between the rigid weéd deg. When the flotation height is small, however, the air jet
and an air bar. The blower used for air supply could deliver 174@ay separate from the air bar surface with an angle of nearly 90
Pa(seven inches of watgpf air pressure when the flow rate wasdeg. For comparison with the theories, it is assumed that the ejec-
zero, and the flow rate was approximately 0.02&min (580 tion angle of the air jet is 90 deg for all cases. Definition of the
CFM) when the blower’s inlet and outlet were open to the ambflotation height is also uncertain because the exit of the air jet is
ent. The flow valve was always fully open during the tests, and th@wver than the top surface of the air bar. It seems reasonable to
flow rate was not controlled. define the flotation height as the distance between the web and the
Typical pressure measurement results are shown in Fig. 11 andt of the jet(h) rather than the distance between the web and the
Fig. 12. Note thax=0 corresponds to the center of the air bartop surface of the air bah( ). The effective total pressure of the
The air pressure on the web is nearly uniform in a wide regicair jet is described by a nozzle coefficient, which is defined as the
surrounded by the air jets, and high peak pressures appear neardtie of the effective total pressure of the air jet after the nozzle to
slot nozzles. When the air gap between an air bar and the welitie total pressure inside the air baC=p;/p,). It is easy to
large, a drop of cushion pressure is observed adjacent to the higeasure the supply air pressure inside the air bar, but the effective
peak pressures. This pressure drop implies that the main streantotdl pressure of the air jet after the nozzle cannot be determined
jet flow induces a strong vortex in the pressurized region. by simply measuring the total pressure at the nozzle. The nozzle
Comparison of the test results with the ground effect theoriesefficient accounts for the effects of flow contraction and the
requires some care, because the geometry of the tested air baeffescts of mixing and surface friction. It is found that the mean
different from the basic geometry of the ground effect model. Isquared error between E(L0O) and the test data becomes mini-
order to compare the theories with the test results, we neednwm whenC=p;/p,=0.85. If we consider the thin jet theory,

Pressure tap connected to a manometer
I

Traversing rigid plate
—+ I = @::-
- b Dial gage
| b -j

—
h
T

Two circular air inlets connected to a blower

Air bar 1: b = 1.65 mm, s = 3.81 mm, w = 89 mm (s/b = 2.31, w/b = 53.9)
Air bar 2: b =5 =3.30 mm, w = 127 mm (s/b = 1, w/b = 39.5)

Fig. 10 Schematic of test setup
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[ —----h=28.89 mm (Wb = 5.39), p, = 1.27 kPa 600 | —--~h=8.38 mm (Wb =2.354), p, = 649 Pa
§ 1000 <
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Fig. 11 Effects of flotation height on pressure distribution for Fig. 12 Effects of flotation height on pressure distribution for
air bar 1 air bar 2
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Nondimensional flotation height, h/b

Fig. 13 Comparison of theories and experiments for cushion
pressure

1.2 50
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Nondimensional flotation height, h/b

Fig. 16 Lift force per unit length of air bar with vent holes

Eq. (3), the error becomes minimum when the nozzle coeﬁicietrend of the measurement data, but it seems to predict the upper
i 080 In Figs. 13, 14, and 15 it is assumed that the nozzrl(ﬁfmt of measured Ilft forc.e..Note thét is the .dlstance betwgen
coeﬁiciént is 0 8'5 i e plate and the exit of air jet, and the plate is in contact with the
o i . air bar surfacelf, =0) whenh/b=1 for the tested air bar. It was
The effects of vent holes on pressure profile and lift force wefg, oo in 5 pilot air-flotation oven that, when a flexible web
vn\jiaé)sgrze7dr.n-rhe@\%%o—m3egtréc) propz)e_rtlse_sooéogh?)e mtesteg/balrlt))ar ASder tension was pushed by hand toward an air bar with vent
d=0 '0032 m @/b=0.97) ' B,: H=0 0127-m andN=78.7 holés holes, the web suddenly contacted the whole surface area of the
. N : ' ) air bar. When the web was pushed away from the air bar by hand,

per meter(for each row. The discharge coefficiel@, is a func- . . : )
tion of Reynolds number, which in turn depends &p,. For it suddenly popped up, away from the air bar surface. This phe

simplicity, we will assumeC4=0.6, which is a reasonable ap-
proximation when Re=pV,nd/1>20 or Vene>0.1 m/s, where
Vyent IS the flow velocity at the holes. As shown in Fig. 16, the

nomenon could not be observed with any air bars without vent
holes. These observations agree, qualitatively, with the prediction
model and the rigid web experiments.

thick jet model far overpredicts the lift force when the flotation
height is small where the vent holes play an important role. Thsijscussion

analytical model for air bars with vent holésg. (19)) follows the

Nondimensional lift force, F/bpj

Fig. 14

Nondimensional lift force, F/bpj
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Comparison of theories and experiments for lift force
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Fig. 15 Comparison of theories and experiments for lift force

Journal of Applied Mechanics

Richardson et a[.16] measured the effects of Reynolds number
(pVjb/u) and nozzle openingo) on the cushion pressure. Their
results show that the inviscid theory overestimates the cushion
pressure up to 40 percent at small jet thicknesses, low Reynolds
numbers, and large flotation heights. The error is reduced to about
five percentstill the theory overestimatgat large jet thicknesses,
high Reynolds numbers, and small flotation heights. The nozzle
sizes for our air bar experiments were 1.65 mm and 3.30 mm
(h/b=1.2-5.4 anch, /b=0.15-3.0 while Richardson’s nozzle
sizes were 2.54 mm and 5.08 mth/b=0.3-6.0 andh, /b
=undefinegl. The Reynolds number for our air bar experiments
ranged approximately from 4000 to 6000, which is close to the
lower limit of Richardson’s test range. The ranges of the air bar
test parameters fall on the side where Richardson observed the
biggest differences between the theoretical prediction and mea-
surement of cushion pressure. Crewe and Eggingidy also
report that their measured cushion pressure is lower than the pre-
dicted, and that the error increases as the air nozzle thickness is
reduced. They attribute the error to a “scale effect” related to the
development of boundary layers inside the nozzle. A good corre-
lation was obtained when they corrected the total pressure of the
air jet at the nozzle apj’ =p;(1—Ab/b), whereb is the nozzle
thickness and\b=1.27 mm. For our air bar experiments, where
the two air bars have much different nozzle openings
(b=1.65mm and 3.30 mjn only the nozzle -coefficient
(C=p,/p,) needed to be introduced as correction factor.

Hope-Gill [17] analyzed the effects of high-speed jet flow and
found that the coefficient of cushion pressure decreases as the
Mach number increases. For example, when the flotation height to
jet thickness ratid/b is 2 and 4, the coefficient of cushion pres-
sure at sonic speed of jet flow is reduced by two percent and four
percent respectively, compared to the values at low subsonic
cases. For our air bar experiments, the flow speed was lower than
42 m/s M =0.12). In most cases, the air speed at the nozzle of an
air bar is less than 100 m/9.=0.29). Therefore, the effect of
Mach number is negligible for most air-flotation applications.
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Closing Remarks w = width of air bar; distance between two slot nozzles

Ground effect theories are proved to be useful tools for analyz-y - alr;grlg between extended jet centerline and horizontal
ing the aerodynamic characteristics of pressure-pad air bars. The 3 namic Viscosity of air
aerodynamic characteristics of pressure-pad air bars are deteff: dynamic Iy
mined by four factors: the ejection angle of the air jet, thickness of Jet ejection angle

the air jet, width of the air bar, and the effective total pressure off = air density
the air jet after the nozzle. By properly defining the equivalerﬁ ferences
values of these variables we can predict the aerodynamic fordeg

on the web floated by an air bar. The effect of the vent holes Or{l] Bezella, G. L., 1976, “Application of Floater Dryers to the Paper Industry,”

pressure-pad air bars is analyzed, and the proposed simple moqgi

is found to agree reasonably well with rigid-web test results.
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The Tip Region of a Fluid-Driven
Fracture in an Elastic Medium

The focus of this paper is on constructing the solution for a semi-infinite hydraulic crack
for arbitrary toughness, which accounts for the presence of a lag of a priori unknown

D. Garagash length between the fluid front and the crack tip. First, we formulate the governing equa-
tions for a semi-infinite fluid-driven fracture propagating steadily in an impermeable
E. Detournay‘ linear elastic medium. Then, since the pressure in the lag zone is known, we suggest a
e-mail: detou001@tc.umn.edu new inversion of the integral equation from elasticity theory to express the opening in
terms of the pressure. We then calculate explicitly the contribution to the opening from
Department of Civil Engineering, the loading in the lag zone, and reformulate the problem over the fluid-filled portion of the
University of Minnesota, crack. The asymptotic forms of the solution near and away from the tip are then dis-
500 Pillsbury Drive SE, cussed. It is shown that the solution is not only consistent with the square root singularity
Minneapolis, MN 55455 of linear elastic fracture mechanics, but that its asymptotic behavior at infinity is actually

given by the singular solution of a semi-infinite hydraulic fracture constructed on the
assumption that the fluid flows to the tip of the fracture and that the solid has zero
toughness. Further, the asymptotic solution for large dimensionless toughness is derived,
including the explicit dependence of the solution on the toughness. The intermediate part
of the solution (in the region where the solution evolves from the near tip to the far from
the tip asymptote) of the problem in the general case is obtained numerically and relevant
results are discussed, including the universal relation between the fluid lag and the
toughness[S0021-8936)0)02401-4

Introduction Interest in the tip region stems not only from a basic quest to
find the correct structure of the soluti¢in particular to determine

j’he .problem .Of a quiq-driven fraqture propag‘ating.in rOc'fhe unknown lag between the fluid front and the crack, tijut
arises in hydraulic fracturing, a technique used widely in the o IIso from the recognition that the strong fluid-solid COl:Jpling is

and gas industry to enhance the recovery of hydrocarbons fr inly confined to a small region near the tip of the advancing

gngerg.rout?]d res%r]vows,tas \(/jvgll ?I‘Sl mt the for;na?on of 'ntr.US't\ﬁacture(small compared to the overall fracture dimengjavhere

I't);\ es r']n E ear crusf fant In the transport of magma in rngid variation of the fluid pressure is taking place. More impor-

ithosphere by means of fractures. = tantly, however, the tip solution holds the key for understanding
The conditions under which fluid-driven fractures propagate i, propagation regime of a fluid-driven fracture. Two limiting

rock vary widely and are usually not well defined. In that respe - ist[21-23)" in the Vi .y . - h
mathematical modeling of the propagation of such fractures bq[{églmes exist] J): in the viscosity-dominated regime, the

. ok . ) ughness of the solid is “small” enough that the solution of a
comes an important tool for predicting the evolution of fluid pres5, jraulic fracture can be approximated by the zero toughness so-
sure, fracture opening, and fracture geometry and for understa

; ) ion ([8,10)); while in the toughness-dominated regime the fluid
ing the dependence of the process on rock propettisture o, e assumed to be inviscid as in the solution of Huang et al.

toughness and elastic constanta situ stresses, fracturing fluid ([24)).
properties(essentially viscosityand boundary conditions. For a hydraulic fracture propagating in a zero toughness solid
Mathematlcall quellng of fluid-driven fractures has attracte(km:o, viscosity-dominated solutignit was recently recognized
numerous contributions since the 1938ee, e.9.l1-11)). These 4t the fluid-solid coupling in the near-tip region of the fracture
modgls require simultaneous cons!der_atlon of fl_wd and solid MEetually corresponds to an exact matching singularity between the
chanics: on the one hand, the lubrication equation to characteriggrication and elasticity equations under the assumptions that the
the flow of fluid in the fractureand, in the case of a permeableyyig flows up to the tip of the fracture and that the solid has zero
medium, a time-dependent equation that governs the eXChang%‘Efghness([Zg,lS). For a Newtonian fluid, this matching singu-
fluid between the fracture and the roclon the other hand, the larity is characterized by a crack openimg/arying asx?3 (where
elasticity equations to describe the deformation and propagati)cgriwS distance from the tip and not as<¥? as predicted by linear

of the fracture. Such models are notoriously difficult to deVEIO.BIastic fracture mechanics for the case of zero toughness, and the

because of the strong nonlinear coupling between the lubricati N pressure as—x~ Y3 This singularity is thus associated with

%egative infinite fluid pressure at the tip of the fracture. It should
8 noted that the singular asymptotes of the fluid pressure and
Facture opening near the tip, provide the exact solution for a
Y8mi-infinitefluid-driven fracture propagating steadily in imper-
meable elastic solid of zero toughndgs5]). The new tip singu-

- larity was used by Carbonell and Detourrfd@] and by Savitski
gg&gﬁ:‘;;gi;g%‘)’;&f ;’;‘ézfn:ﬁ T:adi\(/iirseizie:ﬁAMEmAN SocETY OF and Detournay11] to construct self-similar solutions for a finite
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED hydraulic fracmr? propag_atlng In a zero t_O_Uthess E|a_5t'c solid

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug.under plane-strain and axisymmetric conditions, respectively.

14, 1998; final revision, June 22, 1999. Associate Technical Editor: W. J. Drugan. For a hydraulic fracture propagating in a solid with toughness
Discussion on the paper should be addressed to the Technical Editor, Profeggor— g it can readily be shown that a lagis required between
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstor) Ic N R
Houston, TX 77204-4792, and will be accepted until four months after final publfn€ fluid front and the crack tip to ensure coherence of the math-
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. ematical solution([22]). Indeed, under the condition af=0 (no

response of the fracture. Furthermore, constructing the solutiB
for the near-tip region represents in itself a formidable challeng
which has motivated a series of dedicated research effo
([9,12-20).
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rive the explicit dependence of this asymptotic solution ©on
lo-o Finally, relevant results are presented and discussed, including the
universal relationship between the scaled fluid lagand the
toughnessc.

Governing Equations

The flow of a viscous incompressible fluid in the crack is de-
scribed by the equations of lubrication thedf25]); i.e., the con-

I L 1 i tinuity equation
ow  dq 0 L
—_— + —_—
. o o ) . gt X (1)
Fig. 1 Semi-infinite fluid driven crack with the lag zone adja-
cent to the tip and Poiseuille law
w® ap ,
9=~ 150 X @

lag), combination of the lubrication equation with the linear elas-
tic fracture mechanics asymptotic fracture openimg x*2 im-  Wherep is the fluid pressurew the crack opening, ang the fluid
plies that the fluid pressure has a logarithmic singularjty, flow rate per unit width of the crack. These field quantities are
~Inx, which is mathematically inconsistent with the assumetiinction of both the spatial coordinak¥e(with the fixed reference
eigensolution. Hence, the presence of the lag removes the singtxis chosen to be parallel to the fracfyrand the timet.
larity in the fluid pressure, and at the same time enables the clasThe other equation relating the net loading on the crack defined
sical square root stress singularity of linear elastic fracture mas p—o, and the crack-opening is given by elasticity theory
chanics to take place. It could also be argued that a lag al$bg.,[26])
necessarily forms even i,.= 0, since the fluid cannot sustain an E' (%ipd

. . - ! ip Jw(s,t) ds
arbitrary large negative pressuf&uch an argument is obviously p(x,t)fgoz_J'
akin to the question of the existence of a process zone or a plastic Am
zone to ensure finiteness of the stress at the crackAlghough r‘

©)

., ds X-s

. .where the integral is taken in the sense of a Cauchy principal
the assumption of zero lag does not lead to any mathematlglg ue. In(3), X, =Vt denotes the tip position
. y tipf .

Inconsistency f.OK'F:O (contrary to the CaS&'°.>.O)’ alag must After performing the transformation from a fixed to moving
necessarily exist if the supplementary condition of a minimum

h L C . with the crack-tip coordinate systexs X;;,— X=Vt— X, making
fluid pressurghere taken to be zeras introduced. In which case, - tip. . .
the solution forK,,>0 can be expected to be continued in th use of the condition of steady propagation and upon integrating

limit K,.=0, but this then raises the question of the meaning g?e continuity Eq(1), the lubrication equations reduce ({d5)),

the zero toughness singular solution. ,, . dp
In this paper, we construct the solution of the near-tip region for WAX) g =120V for xe ] [ (4)
the case of arbitrary toughnegscluding the limitK,.=0), by
analyzing the problem of a semi-infinite hydraulic crack propagal? the lag region, the condition omis simply
ing at constant velocity/ in an impermeable linear elastic me- _
dium (see Fig. 1 The elastic solid is characterized by the plane- p=0for xe[OA]. ®)
strain modulu€E’ =E/(1— v?), whereE is the Young’s modulus Also the elasticity Eq(3) transforms as
andv the Poisson’s ratio, and the material toughr€gs and the E' (*dw(s) ds
Newtonian fluid(assumed to be incompressibley the viscosity p(x)fgo:_f
. There is a far-field confining stress, acting perpendicular to 4
the fracture. To be complete, the system of Eq4)—(6) has to be supple-
We assume that a fluid lag exists adjacent to the crack tip. Sin Snted by the crit;arion for crack propagation
the crack propagation is stationary, the fluid front propagates wit y propag
the same velocity as the crack tp The length\ of the tip cavity K =K (7)
is thus constant, but is unknown and is part of the solution. Thish

tip cavity is filled by evaporated fracturing fluid under a constarlt ergK, is the stress intensity factor of Fhe crack ‘fmg is the .
pressure which is assumed, however, to be negligibly small Comgterlal toughness. Noting the asymptotic expression for opening

> : w close to the crack tiglinear elastic fracture mechanics singular
pared to the far-field stress, and is therefore set equal to Zero'regiorj in terms ofK, (e.g.,[26]) and using(7) we write

But for the presence of the unknown lagand the pressure

6)

o ds x-s

boundary conditiop=0, the problem considered here is identical 4K [ 2x\ 12
to the one treated by Desroches et[&b] for the zero toughness w= = (?) +0(x*?). (8)
case.

The paper is organized as follows. First, we formulate the gottenceforth, we will usé8), which also prescribes the asymptotic
erning equations and derive a dimensionless form of these eqbahavior of w, rather than(7) for the condition of crack
tions which only depends on one numberhaving the meaning propagation.
of a dimensionless toughness. The asymptotic forms of the solu-
tion near anq away from the tip.are the.n d[scussed. I.t is shovgz:a“ng and Dimensionless Formulation
that the solution is not only consistent with linear elastic fracture
mechanics at the tip, but that its asymptotic behavior at infinity is The problem depends on five dimensional parametery,
actually given by the zero toughness singular solution of a seni,, E’, andK|. . First, we define two lengthscalés, andL,,
infinite hydraulic fracture obtained by Desroches ef#h]. The and a small parameter
intermediate part of the solutiaim the region where the solution 12uVE'2 8 /K. \2
evolves from the near tip to the far from the tip asymptatethe = L ( 'C) = 2o ©)
problem is obtained numerically. We also formulate the ’ E'
asymptotic solution for large dimensionless toughnesand de-

) 3 ’ K

(o T\ Oy
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The lengthscalé. , is associated with viscous dissipatidd5]), wherex, andx, are the contributions of the net-loading in the lag
while L, characterizes the dissipation due to fracturing of theone and the net-loading in the rest of the crack to the dimension-
solid. Next, we introduce the dimensionless crack opefilnghe less stress intensity factor, respectively,

net pressurdl and the moving coordinaté

ka=lim 2820, (8)  k,=lim 26720/ (&). (19)
Q= =P X 10 . o
el o, &= L, (10) According to (18) and definitions(19), these contributions are
The system4)—(6) and (8) then takes the form 2810, x5 = 1, =0. Therefore,
C=«k. 20
QAHI(H)=1 for fe]A [ (11) . e 9
Integration of(17) over ¢ with the condition of zero opening at the
Mmé)=-1 for £€[0,A] (12) tip and(20) yields
(e)= 1 JmQ/( ) dz 13 Q&)=+ 0\ (6 + Q&) (21)
= ax o Koy (13) where
Q( &)= K§1/2+ O(§3/2) (14) 4 gl/2+ A2
QA(f):; 2\/A§+(§—A)|n§1/TA1/z ,
where(12) specifies the pressure in the lag region. In the abave, (22)
and « denote the dimensionless coordinate of the fluid front and 4 (=
the dimensionless toughness, respectively, defined as Q6= fA K& m(n)dy
N L 1/2 . ] )
A=—, Kzz(_K) ) (15) with the kernelK(¢,7) in (22) given by
Lﬂ LM §1I2+ 771/2 f 1/2
Thus, (11)—(14) completely defines the crack-openifilf£ «) K(&7)=In T 7—7) : (23)

and the net pressurH(&;«) for the semi-infinite fracturd0<¢
<), as well as the position of the fluid front(«). Note that, the It follows from the above considerations that the solution is
normalized system of equations and boundary conditidi3— now reduced to finding the lag(x), the net pressurl(& ) and
(14) depends on one number(and not on two numbers, accord-the crack-opening Q(&«) along the semi-infinite interval

ing to dimensional analysis considerations gnly £e[A . The solution must satisf{11) and (21)—(23) with the
boundary conditions
IM(A)=-1, TI(«)=0. (24)
Elastic Expression for the Crack Opening It is worth noting that the paradoxical property of this solution,

Equation(13) expresses the net loadihf)(£) as a convolution namely that the crack-openirtg is positive while the net pressure
integral of the dislocation densif)’ (£) with the singular Cauchy 11 is everywhere negative, is a direct consequence of the semi-
kernel. The Cauchy convolution integral on the semi-infinite ininfinite length of the crack. The classical elastic eigensolubon
terval £€[0, has the inverse given by ~ &2 corresponding tal1=0 for a semi-infinite crack is of a

similar nature.
, C 4 (=¢\*"I(n)
wo- g g [ 5] ey @

whereC is an arbitrary constant and the integral 1) is taken in

the sense of a Cauchy principal value. Details of the derivation of Near-Tip Asymptote. The near-tip asymptote of the crack-

the inversg16) are given in Appendix A. Note that this inversionopeningQ (¢ «) is given by(14) for the case of nonzero toughness.

formula is different from the classical form used for semi-infinitéOne can actually assign a region adjacent to the tip of the crack,

crack in linear elastic fracture mechani@sg., [26]) which re- &e[0.,(k;€)], where(14) holds to a certain specified degree of

quiresII(&) to vanish at infinity ag ™~ with &>1/2 in order for it accuracye; in other words|Q/x¢Y?—1|<e for £€[0,£,(k;€)].

to converge, whereas the inversion formylb) has the more This region is said to be dominated by the linear elastic fracture

relaxed requirement>0 for I1(¢). mechanicstY? behavior. The upper limig, of this region is ex-
Since, the net loading is known along the lag z¢h®, we can pected to be an increasing function of the dimensionless tough-

split the integral in(16) in two integrals on the interval®,A) and nessk. Accordingly, the linear elastic fracture mechanics region

Near-Tip and Far-Field Asymptotic Behavior

(A,), respectively, should lie inside the lag entirely for small enough values of the
c toughness, while this region should extend beyond the fluid lag
ey — ’ , for large enough toughness. In the latter cdséx) > A(«), and,
Q = +Q +0Q 17
(& 242 A+ () (7 consequently, from{14) and the lubrication Eq(11), we derive

the following logarithmic distribution for the fluid pressure:

Q,(é.)_4|n §1IZ+A1/2 Q,(g)_4Jw(§)l/2H(7])d .
W TR LG T ne=nggo=-10 ot felAw.g0l @)
(18)

where(), and(, are the contributions of the net loading in thel "€ aSymptotic expressiof25) is strictly valid only for large

lag and in the rest of the crack to the crack-openihgrespec- enough vglues of toughnessand small enough yalues ofleuid lag
tively. The unknown constar€ is peculiar to the semi-infinite A+ 1t can indeed be shown th&25) holds provided thak“/aA
crack and is part of the solution of the problem. However, it i& 1, Wherea is the coefficient of the next order term {@4), i.e.,
completely defined by the near-tip crack-opening asymiote 2=« &"?+2a&£%% As we will see further, the fluid lag decreases
Indeed, with the help of14) the dimensionless toughness can béxponentially with«?; thus the ratio\/«? is negligibly small for

expressed as k~1, causing the linear elastic fracture mechanics region to ex-
tend beyond the fluid lag and therefore ensuring the validity of
k=C—Ky— K (25).

Journal of Applied Mechanics MARCH 2000, Vol. 67 / 185



Far-Field Asymptote. In thezero toughnessingular solution 10°
of a semi-infinitecrack ([15]), the fluid is assumed to flow up to
the crack tip; hence, the lubrication E(.1) is valid along the
whole crack lengthée ]0,¢[, and no boundary condition is im-
posed on the net-pressure at the Eig0). Since the opening of the 3
crack goes to zero at the tip(0)=0, validity of (11) near the tip
leads to a singularity in the fluid pressure there. It can be show@om
that the condition of exact matching singularity between the lubri-"™
cation (11) and elasticity(13) equations uniquely prescribes the
form of this singularity as well as the whole self-similar solution

([15])

Lol o ol vood ool el v ol

1
0.(§)= m(%f)m. IL.(&)=—(36¢) "™ (26) 107

(W)

ol vl

The solution(26) has a weaker singularity than the ofi&) pre-
dicted by linear elastic fracture mechanics. Consistency26f LA B A R AR e

requires, therefore, the toughndég to be zero(x=0). It is im- 0.1 1 10 100
portant to note, that26) cannot be the solution of the system K

(11)—(14) as the fluid lag goes to zera—0. Indeed, the net
pressurell is singular at the tip according t®26), whereas the . . )
Soluion of (11)-(14) i finte at the tip i view of boundary Somledty conespondig asymplotes and g L versus
condition(24). However, as proven in Appendix B26) gives the  the |arge « asymptotes of £,(k), &.(x).)

exact asymptotic behavior of the solution (4fl)—(14) at infinity

H(&x)=11.(8), Q(&x)=Qx(8), asi—o. (27)

It is important to note that the asymptotic behavior at infinity i
independent ofk; the distance from the tipé.., at which this
asymptotic solution is applicable within a given degree of acc
racy e is, however, expected to be a function«ofin other words,
[Q1Q,,—1|<e€ for e[ &(k;€),%.

Fig. 2 Bounds &, and &, of the regions where solution is

the lag, the far-field asymptote is valid over the largest portion of
the crack, almost up to the fluid froftompared to other values of
Yre lag; in other words£..(A) has a minimum af=1/36, as can
be seen in Fig. 2.

An examination of the curveg,(«) and A(x) in Fig. 2 shows
] that they intersect at about=2.55. Thus fork smaller than this
Solution value, the linear elastic fracture mechanics region lies inside the
lag entirely (within an accuracye=0.01); this value of x also
marks the onset of the applicability of the near-tip asymptotic
expressior(25) for the fluid pressure.

Numerical Solution for Arbitrary . The unknown solution
for an arbitrary nonzero toughnegsbehaves according to linear
elastic fracture mechanics in the near-tip regfen 0,¢,(«)] (see
(14), (12) and 25), and asymptotically as the zero toughness sin- Asymptotic Solution for Large . In order to capture the
gular solution (26) at large enough distance from the ti§, asymptotic behavior of the solution for large and motivated by
e[ &.(x),=[. In the transition zon& e[ £,(«),€.(k) ], the inter- the numerical results shown in Fig. 2, we introduce the rescaled

mediate solution has to be obtained numerically. field coordinate
The system of equations to be solved on the semi-infinite inter- ~_ .-
val £ée]A o[ is the lubrication Eq(11), the integral Eqs(21)— =P (28)

(23), the boundary condition&4), and the asymptotic expressionand look for a largex asymptotic solution of the systeril),
for II at infinity (27). Also recall that for large enough values of(21)—(23) with (25), (27) of the form

toughness the near fluid lag asymptd®5) is applicable. The -~ ~~
solution (which include the lag\) is a function of only one di- (& k)= PIII(E), Q(&k)=rKPoQ(E). (29)

mensionless parametet. :
) N .. The power-law exponeni8;, By;, B are determined as follows.
'I_'he n_umerlcal algorlthm used to calculate the _solutlon IS d%’ubstitution of(28) and(29) in the lubrication Eq(11), and in the
rh'ear—tip (25 and the far-field(27) asymptotic expressions for

cal solution, the lag length is prescribed rather tham and that n[Pressure yields
y

« is obtained as part of the solution which then depends o

on A. _ dll

Although results will be discussed in detail in a later section, QZTZ kPe2Pa=Pu (30)
we report here the calculated dependence on the toughnets &
the boundst, and ¢.. of the regions dominated, respectively, by _ _ KPe

the near-tip and the far-field asymptotes. The variatiogoind  TI(&)=« Aull (& k)= P2 — K2+In—+|n2), £0
. ; > A

&, with « (computed for a relative errar=0.01), as well as the 31
variation of A with « is shown in Fig. 2(The dashed lines cor- (31)
respond to the larga asymptotes which are discussed below. TI(E) =k ANTL (&) =k PuBBII(§), €0, (32)
According to Fig. 2, the bound&,(x) and&..(«x) are increasing . -

functions ofk for « large enough. This result is expected since thia order for()(¢) andII(£) to be independent of, necessarily
region dominated by the linear elastic fracture mechanics tip sin-

gularity extends with the strength of this singularity, namely 2BotBn=Be=0. fn=-2 (33)
whereas the region where the solution is given by far-field asymp- KB
tote is pushed further away to infinity. The peculiar evolution of Brnt+BJ/3=0 — k>+1In e =const.

£, andé,, in the range\ e[107 2,10 2] (nonmonotonic behavipr
is linked to the fact that the asymptotic solution at infirlify,(¢) It follows therefore that the large asymptotic representatiq@9)
fulfills the pressure at the fluid interfadé=—1 exactly até=A  with (28) of I1 and{} exists for the power-law exponengz=6,
=1/36. Therefore, we can expect that for this particular value @ =—2, Bo=4, i.e.,
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(& x)=r2T0(E), Q&E)=kQE), E=k%, (34)

and provided that the asymptotic form of the relatidba A(x) is
given by

_ .2
A=A, ke~

with A, is a yet undetermined constant.

Note that it has been assumed that the near-tip asymptotic
pression for the pressur@5) holds, in deriving(34) and (35).
This assumption is supported by the asymptotic f¢8%) of the
relation A(k) which shows that the fluid lag indeed decreases wi
increasing toughness it will be further justified below.

The unknown functiongI(¢), Q(~§) and the constanA , are
the solution of the following system of equations:

U1 Fellynl (36)
dé
0(H=8"7+0,(9), @7)
0.3 %{ [ k@i | ”K(z;;nﬁ(;,)d;,]
where O
ﬁ=ﬁo<”§>—|nA~i* and Q(§)=£" Ec[0l)]  (38)
M()=11.(8) and U(§=0.(8), E-=.  (39)

In the above equationis is an arbitrary number smaller than or

equal to¢, (to be prescribed in the numerical solution (86)—

(39), that provides a “safe” bound to the near-tip region wher

the asymptotic behavior is given K$8).

Results

Fluid Lag and Toughness. Figure 3 shows the variation in
semi-logarithmic scale of the fluid lag lengthwith the toughness
«x computed numerically, as well as the largeasymptote(35),
with A, given by(40). The fluid lag can be seen to be a decreas-
ing function of toughness, attaining a maximum valde
~(0.3574 atk=0. This value ofA, is actually very close to the
@&lue computedin a different scalingby Lister[9], using a per-
turbation technique, for the problem of a buoyancy-driven hydrau-
lic fracture. Note that forA>A,, <0 and a(physically inad-

issible overlapping of the crack faces occurs in the region
adjacent to the tip. As the toughnessncreases the lag reaches
the large x asymptote(shown in Fig. 3 as a dashed linand
decays exponentially to zero. The computed fluid lag lengik
given by the asymptoté35) for k=4.2 with one percent or less
error.

It is of interest to compute the maximum dimension of the lag,
No=A,L,, for some typical values of the physical parameters.
Consider the following set: E’'=3.-10MPa, pu
=10"7 MPa s (100 cp), 0,=10MPa, andV=1 m/s. Then, the
characteristic lengtt. ,=1.08 m and\,=0.39 m. The fluid lag
reduces to\=0.27 m for a toughnesk . =1 MPam'? accord-
ing to Fig. 3(A=0.25 for k=0.31).

Recently published results of laboratory scale hydraulic fractur-
ing experiments carried out at the Delft University of Technology
([27]) also provide an opportunity to test the theoretical prediction
of the fluid lag size. In an experiment involving the propagation of
a penny-shaped hydraulic fracture in a cement block, the position
of both the fracture tip and the fluid front position were measured
continuously by ultrasonic diffraction. For example, these mea-
surements give a fracture radiRs=0.1 m, and a fluid lag length
%%10’3 m at a particular time&, and a fracture propagation ve-
ocity V~4.10%m/s (estimated from the evolution dR with

The scaled contribution from the loading on the lag to the opeime t). Given V and the following set of parameter§’

ing is
S 3 16 ,
QD= Q)= — k(50 P=rPe ",

for ~gsl and k>1.

Hence,ﬁA(f) can be neglected in the expression fb(rg), (see
(37)). The exponential decay of the lagwith « (34) also allows

us to shift the lower bound of the first integralfn(é) (see(37))
to zero, since the convolution integral ‘Elo overEe[O,/N\], A
:A*e‘KZ, is negligible.

The system of Eq9:36)—(39) is solved numerically fonﬁ(~§),

ﬁ(E) and A, within the framework of the algorithm devised for

the general case of arbitramy, 0<k<o (see Appendix € In
particular, it is found that

A,=4.36103 (40)

The numerical solution also provides the constanindependent
bounds¢, and¢.., £,<é&., for which the asymptotic behaviors,

(38) and(39), are reached bQ)(¢) to a certain degree of accuracy

£,~6.58107, £,~1.37, (41)

Consequently, the asymptotic formulas for the bounds in the ori
nal scaling,£,(«) and&..(«), are

oK) =€k’ En(K)=Ei®, (42)

Comparison between the bounés and &, computed for the
general case and the asymptotic expressi@® with (41) is
shown in Fig. 2. It can be seen that the asymptotic behavior
these two bounds is virtually reached for4 (the relative error is
of order one percent or less fa=4).

for e=0.01.

k>1.

Journal of Applied Mechanics

=1.92 10" MPa, K,;=0.5 MPam*?, x=5-10"*MPas ando,

=8 MPa, the predicted fluid lag i5~0.8-10"3m which is in
relatively good agreement with the experimental value. We should
emphasize that the semi-infinite crack model is applicable to the
near-tip region of a finite fracture provided thiaf <R (which
also ensures that the plane strain condition is met dtiseequal

to the local radius of curvature for a penny-shape cradkre the
characteristic length. ,~0.02m is only one order of magnitude
smaller than the radius of the fractuRelt appears, however, that

gi-

ﬁb. 3 Dimensionless lag length A versus dimensionless
toughness « (solid line ), together with the large « asymptote
(dashed line )
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there is a reasonable agreement between the predicted and expe

mental values oh provided that the ratid. , /R is less than ten
percent([28]).

Crack Opening and Fluid Pressure. Figures 4 and 5 give
the profiles of the net-loading in linear and semi-logarithmic
scales, respectively, for various values«oft can be seen that the
pressure increases rapidly from its valde=—1 at the fluid front
&=A, and that it tends towards the far-field asymptotelicated
by dashed lingfor large & The value of the fluid lag\ corre-
sponding to each pressure profile on Fig. 5 is given by the inter-
section of the curve with thé&axis.

Figures 6 and 7 show in log-log and linear scale the crack
opening() along the crack for various values ®f(and thus ofA,
see Table L The dashed line corresponds to the asymptotic solu-
tion at infinity, Q..(&¢). Figure 7 shows the shape of the crack in
the near-tip region for the dimensionless toughnesgarying
from 0 to 4.11. It can be seen that for zero or near zero toughnes:
the crack has a “sharp” tip @~ ¢%?) as opposed to nonzero

Fig. 6 The dimensionless crack opening
log-log scale for dimensionless toughness varying from

vl el oaonel ool o cooead vl vl

- - 1
10 10 10 10 1 10

UBLLLLLL R RLLL R S L L LD R

10

3
10

Q along the crack in

k=0

0 (A=0.3574) to k=4.1 (A=1079), (see Table 1). The dashed line
4 corresponds to the asymptotic solution at infinity, Q.(§).
-0.2
yod k=0
¥ k=2.08 >
0.4 k=3.33 ]
k=411 -
Wl i 4
—0.6 8
1 37 k=411
-0.8 -
_1 T I T | T | T | T |
0 4 8 12 16 20
&
Fig. 4 Dimensionless net-loading II along the crack for =0,
2.08, 3.33, 4.11. The dashed line corresponds to  I1.(£).
0 —_
Fig. 7 The opening € along the crack in near tip region for
0.2 — varying from k=0 (A=0.3574) to k=4.1 (A=107°), (see Table
i 1). The dashed line corresponds to Q. (£).
0.4 —
I1 1 toughness when the crack tip is “blunt{~ £Y?). Figure 6 pro-
vides transparent evidence that the solutiopnterms of()) be-
-0.6 — i . . .
haves ast (or asQ,(€), classical linear elastic fracture me-
. chanics type, but ag®? for k=0) in the region immediately
05 adjacent to the tip and &%® (or asQ)..(£)) further away from the
e tip. There is a transition zone between these two types of behav-
] ior, which can be identified age[&,(«),&..(«)], where&, and
&, are the boundéntroduced earlierof the regions dominated by
-1 the corresponding asymptote.
10

Fig. 5 Dimensionless fluid pressure IT along the crack for
x=0, 2.08, 3.33, 4.11 in semi-log scale. Corresponding values of
fluid lag A are given by the intersection of a curve with the
&-axis. The dashed line corresponds to  I1.,(£).
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Table 1 Table of corresponding values of the pair

(r,A)

K 0 0.05 | 0.145 | 0.49 | 0.99 | 2.084 | 3.327

4.11

A 1 0.3574 | 0.3445 | 0.306 | 0.203 | 0.1 | 0.01 | 1E-4

1E-6

Transactions of the ASME



~

Conclusions

In this paper, we have constructed the solution for a semi-
infinite fluid-driven fracture steadily propagating in an imperme-
able elastic solid. The particularity of this solution is that it ac-
counts for the existence of a fluid lag, of a priori unknown length.
The existence of this lagvhere the pressure is essentially 2ero
allows the construction of a solution for arbitrary material tough-
ness which has a near crack-tip behavior consistent with linear
elastic fracture mechanics. Indeed, the assumption that the fluid
reaches the tip of the fracture implies a singularity in the fluid
pressure and a crack-tip behavior which is incompatible with lin-
ear elastic fracture mechanics. The singular solution of a semi-
infinite fracture built on the assumption of zero 1dd5]) was
shown, however, to correspond to the asymptotic behavior at in-
finity. It was demonstrated that the solution depends only on the
dimensionless toughness which is an aggregate of all the pa-

0 rameters of the problem. A large asymptotic solution whose
R PR L D AR TP B I dependance o is explicit was also derived; this asymptotic
10 10 ~ 10 1 solution was shown to be applicable fer-4, with an error less
' 3 than one percent. An important outcome of this solution is the
- universal relation between the fluid lag and the toughness.
Fig. 8 Scaled opening ( along the crack in log-log scales. According to this relation, the lag is a decreasing function of the
Dashed lines correspond to the solution asymptotes and black toughness; it is maximum at zero toughness and vanishes expo-
dotsto £, and £... nentially for largex.
The characteristic length of the near tip proceskgs, is typi-
cally several orders of magnitude smaller than the length of hy-

The solution for the pressuiié and the opening) for k=4.11 draulic fractures (16 10°m). This difference in scales suggests
(A=10"°% (see Figs. 4, 5 and 7,)6matches the large« that this solution of a semi-infinite fracture can actually be used to
asymptotic solutior(34) with a maximum error of order 0.1 per- describe the near-tip asymptotic solution of a finite hydraulic frac-
cent and 1 percervhich is about the accuracy of the numericafure. A consistent solution of a finite two-dimensional fluid-driven
method itself for pressure and opening, respectively. Thus, thacture propagating in an impermeable solid of nonzero tough-
solution of the semi-infinite fluid-driven crack is given by its largd!€SS can actually be constructed in the spirit of a singular pertur-
profile in the semi-logarithmic scalésee Fig. 5 confirms the the “inner” solution and the zero-toughness self-similar solution
logarithmic distribution(25) for the range of toughness=3, ac- for a finite crack([10]) as the “outer” solution.
cording to Fig. 3.

Finally, the largex asymptotic solution for the fluid pressureacknowledgments

and the crack opening, i.e., the scaled opedgg) and pressure One of the author¢éD. G.) would like to acknowledge the par-

T1(¢), is shown in Figs. 8 and Qwith the dots indicating the tja| support of this research by the Graduate School of the Uni-
position of the boundg, andé&.. corresponding to a relative error versity of Minnesota in the form of a Doctoral Research Fellow-
€=0.01). ship (1997-1998
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Appendix A

Inversion Formulae on a Semi-Infinite Interval

1 Introduction. This Appendix is concerned with the inver-
sion of

dn
§—n
which is usually given bysee, e.g.[26])

L4 H 71) Y211( )
V@=-2 13 =97 (A2)
Here we derive an alternative inversion formula as there are situ-
ations regarding the behavior of the functidié) and Q'(¢) at
infinity, for which (A1) exists but not its inverséA2).
Consider the condition of existence of an integral on the semi-
infinite interval <[00 in regards to the behavior of its inte-
-12 LU BN B R LA LLL B RALL B AL MR R AL R grand at |nf|n|ty’ the integral obviously exists if the integrand
107 w0t~ 1072 | behaves ag 1~ for large ¢ and if a>0. Consequently, the in-
I3 tegral in(Al) exists if Q' (&)~ & * asé— and if a>0. Similarly
the integral in(A2) converges provided tha&>1/2 if I1(§)
Fig. 9 Scaled pressure II along the crack in semi-logarithmic ~ &% as &—w. It then follows that there are situations whEn
scales. Dashed lines correspond to the solution asymptotes can be evaluated usin@\1l) but when the invers¢A2) does not
and black dots to &, and £&.. . exist. Indeed, consider the case whélg¢) behaves ag ¢ at

l o0
H(§)=EL Q' () (A1)
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infinity, with « in the open interval0, 1/4. It can then be shown that contribution and the tern@/2¢42 of (A5) with C computed
that the correspondind(¢) according to, i.e.(Al) behaves also at o (A3) is identical to the ternCo/2¢Y2 of (A6) with C, com-
infinity as ¢ ¢ wi_th the same exponernt (see Appe_ndix B for a puted from(A7).)

proof of the particular case=1/3). Obviously, the invers¢A2) Although we have focused on a net loadifig¢) behaving at
does not exist. As an example, consider the particular fumti%inity as £ @ with a>1/2, the general inversion formulds)
Q,=¢ % 0<a<1/2. Then, according tAl), the corresponding together with(A3), and in particulatA6) with (A7), applies when-
pressurdl,,= ¢ /(4 tan 7a). Note that)},,= ¢ “?is an eigen- ever (A2) exists. As an example consider the classical problem
solution for the plane problem of a semi-infinite crack and thatherell=1, 0<&<1 and zero elsewhere. ThéA2) gives

I4,=0.

1/2|
The inversion formulgA2) is thus not applicable to the prob- Q'(&)= _ iln 1+¢ A8
lem considered in this paper, since the expected behavidi fr (& w2 71— (A8)
infinity is characterized byx=1/3. In this Appendix, we derive .
inversion formulae applicable to that problem. First, we show thgpd(AG) yields
there is a family of inversion formulae that are equivalent to the ) C 4 |1+¢&7
conventional inversion formula, whenever the latter exists. Next, Q'(&)= 2872 ;In 1_ ¢ (A9)

we prove that the new formulae are also applicable whg&) ) . ) )
behaving at infinity as~* with >0, although the conventional With C=16/m according to(A7). The two inversion formulaéA2)
formula (A2) exists only fora>1/2. and (A6) give therefore identical results.

2 Alternative Inversion Formulae.To construct an inversion 3 General Case ofll(§)~{™“ at Large & with O<a
with relaxed requirements of(¢) at infinity, we start by simul- <1/2. The inversion formuldA5) was derived from the conven-
taneously adding to and substracting from the right-hand side ttnal (A2) and, therefore, at this stage is proven to be the valid
(A2) the termC/2£Y2, whereC is for the time being an arbitrary inverse of(Al) under the same conditions imposed on the loading

constant which we choose to express as at infinity as for the conventional one. Actually, as proven next,
(A5) or (A6) gives the inverse ofAl) for any I1(¢) behaving at
8 (= pYl(7) infinity as £~ “ with &>0. However, in that case& becomes an
C= p fo Wdﬂ- (A3) arbitrary constant which cannot be determined(Bg) or (A7)

anymore since the integral in these equations does not exist.

The functionf(#) in (A3) is presently restricted to behave in such Consider first the particular loading ,(£) = — £ “/(4 tanma)
a way that the constai@ is bounded. The inversion formu(@2) for £<[0[. The corresponding dislocation density integral

then becomes Q) (&) is given by(A5)
N A M e U AR (LN () Qoo So2ostmaDEE AL
Q (5)7?2—;] (E) =t d7. (Ad) (8 2617 £ (A10)

Note that(A10) provides a{/ (&) obtained by integration of
IT,(¢) according to(A5) as long asa>—1/2. However, the pair
IT,(7) and Q| (&) satisfy (A1) identically only for a>0, which,

as noted earlier, is the condition of existence of the integral in
(Al1). Therefore,(A5) is the exact inverse afAl) for the consid-
ered type of loading withhv>0. Recall also that the tersi™?
does not contribute tbl in (Al), as it is an eigensolution.

In order to relax the requirements on the behaviorT§) at
infinity to ensure convergence of the integtebmpared to those
for (A2)), the aggregateé— n+f(7)]/f(7) in (A4) must vanish
at infinity as some negative power gf This can be achieved if
and only if f()=»+D, whereD is an arbitrary constant. In-
deed, for this case, the inversiéh4) takes the form

Q'e= 4 (*(n 12 £4D Md 25) In the problem of interest, the loadir(7) can be expressed as
O 2 7 |, &) ol e )
()= 2 AL, () +T1(7) (ALL)
=

and the integral inA5) exists if I1(¢) behaves at infinity ag™
with >0 (at_:tually w_itha>—1{2, but as discussed_ below the casgpere 0< a;<1/2 andIl, ()~ # with f>1/2 at infinity. Ap-
—1/2<g§0 is qf no interest smcéAl) dqes not exist the.n Note plying (A5) to the loadingi1(7) specified by(AL1), we obtain the
that this inversion formula wittb=1/2 is quoted by Srivastava corresponding’ (&)

and Buschmai29].

AlthoughD can be chosen arbitrarily, we will use the particular !

value D =0. Hence(A5) becomes 9'(§)=i21 A, () +Q[(n) (A12)
rrey— 0 _i - é Y2 () where )/ (7) is the result of(A5) applied toll,(#). Since each

O'(O)=5ap ——dy (A6) ; . -

287w n/ &7 pair (I, (7),Q,.(€) and (1,(7),Q/(7)) satisfy (A1) identi-

with cally and due to linearity ofAl), I1(n) andQ’(¢) given by(A11)
and (A12), respectively, satisfyAl) identically. Therefore, for-

8 (*II(7) mula (A5) gives the exact inverse ¢Al) for any loadingll(7)

Co=—| —qzdn. (A7) behaving at infinity as;™ “ with o>0.
mJo 7 Note finally that the inversioiA6) corresponding td =0 is

Obviously C is bounded if[I(£) behaves at infinity ag—* with  US€0 " IS Paper.

a>1/2. Actually, the constan€, is the scaled stress intensityAppendiX B

factor and it can readily be recognized thiAf) is the classical

expression for the stress intensity factor as an integral of the nefAsymptotic Behavior at Infinity. In this Appendix, we
loading over the semi-infinite cracte.g.,[26]). It can also be prove that the zero toughness singular soluti@6) gives the
proven that there is no contribution to the tegmn'? of O'(¢&) asymptotic behavior of the solution 6£1)—(14) at infinity, see
from the integral in(A6). (There is a contribution to that term (27). To prove (27), we start by assuming that the asymptotic
from the integral in(A5) if D#0; however, the combination of behavior ofII at infinity is indeed given by26)
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(&) =T.(§)+0(& 39, a>0, asé&—o., (Bl) Wwhereb=2%33716 Combining(B2), (B4), and (B8) with (B9)

ields
We can choosé€,.(k) << such that the asymptotic formu(81) y

is valid for any prescribed degree of accuracy far[ &.. ,[ or, Q) (&)=b& B+0(& 1), (B10)
in other words, the terms of ord@(£~3"%) in (B1) are negli-
gible and can be dropped.

It follows from (18) that the contributior)} (¢) from the lag
loading to the derivative of the openidy (¢) is of order¢ 2 as
&—. Let us find the asymptotic behavior at infinity for the con-
tribution 0/ (£) from the loading on the rest of the crack®j(¢).
First, we split the integral in the expressi@®8) for /(&) in two
integrals1,(¢) and I,(&¢) over the intervalsée[A,¢.] and ¢

Upon integrating (B10), using (21), and noting thatQ (&)
=0(&Y?), see(22), we obtain the asymptotic expansion of the
opening of the crack ag—»

Q&)= §b§2’3+ O(&Y?)  as ¢—o. (B11)

Noting that &%%2=0..(¢) (see(26)), we conclude that the
asymptotic behavior of the solutidii(&;«x) andQ(&;«) at infinity,

€[ [, respectively: (27), is consistent with the elasticity EqR1)—(23). Furthermore,
Q(§)=11(8)+12(8) (82) this asymptoté27) satisfies the lubrication E¢11) automatically.
Therefore, if there exists a unique solution for any prescribed
where «=0, then the asymptotic behavior of this solution at infinity is
4 (& & 1/21—[( 7]) giVen by(26)
|1(§)=——f (—) dn
mJx\n) &7 (83)
4 (= £\ 211(p) Appendix C
'2(5):_; ; 7 =g 7 Numerical Scheme. This Appendix outlines the numerical

scheme used to solve the systéid), (21)—(23) on the semi-
Consider first the asymptotic behaviorlgf ¢) asé—o. Behav- infinite intervalée[ A, with the boundary conditiof24) and the
ior at infinity of the integral 1(£) is constrained by the following asymptotic behaviof27). As shown next, this numerical algo-
two inequalities: rithm yields a system of nonlinear algebraic equations in terms of
- - _ _ the fluid pressure at nodes inside the fluid-filled part of the crack
Miné 2+ O(& ™1 <11(§)<Mmaé "*+0(£71)  as =% andin terms of the toughness given the lagA. (Although the
(B4) length of the lag\ is technically an unknown of the problem to be
wheremy,;, andm,, are finite non-negative numbers defined asolved as a function ok, the lagA—i.e., the geometry of the
problem—is prescribed in the numerical solution and the corre-
spondingx solved numerically.
Actually, we seek to determine numerically the transition be-
. . . tween the near-tipl4) and the far-field asymptoi@7), which are
Indeed, the net-loadindI(z) is bounQed on th.e. intervaly reached to a certain prescribed degree of accuracy €4i0,&,]
e[A&,], ITe[—1]I(£.)]. Consider first the minimum value and éc[&, [, respectively. Let us introduce,, A<L,<¢
for I1 on the interval under consideratiofl(A)=—1. Since ¢ (Ly=A ifmgl s’A) and L. L.>&. and prescoribe thai](gs)
>¢,. andI1<0, |, is positive and an upper bound fof is ob- :10]0(5) for%e[/(,Lo] (ifﬂ§’0>7\, ootcherwiseL(,:A) andT1(2)
tained by substituting the functidii(z) by I1(A) =11.(&) for ée[L..,[. Note that if£,>A (which corresponds

3 112 _ to the case of large toughnessand small lag we take into ac-
|1(§)gi Jg (é) ! dp= im % Ve VA . count the asymptotic behavior of the net-loadlignear the inter-
mJy\n) §=7 ™ \/E— \/g \/§+ \/K face between the tip cavity and the rest of the crgekA, and at
(B6) infinity; whereas ifé,<A (corresponding to moderate and small
toughneskthe near interface asymptdik,(¢) is not valid and we
only take into account the far-field asymptdtey imposingL,
11(8)<Mpad Y2+ 0(£71Y)  as g0, (B7) =A). The constantd, and L., have the meaning of “safe”
o o . . guesses for the bounds and £, and must be chosen in such a
Thus, (B7) proves the right inequality itB4), which provides an oy that the resulting solution in terms Hfbe equal td1,(¢) (if
upper bound forl;(¢). The other |neql_JaI|ty, .Wh'Ch gives the L,>A) (be equal toll.(&)) on several intervals immediately
Iowe_r bqund forl(&), can be_proved in a similar fashion bysucceeding(preceding the interval ée[A,Ly](£€[L..,%[). In
considering the upper net-loading bouldg..). , other words, the intervalsA,L,] and[L., %[ have to lie within
Consider next the asymptotic behavior of the intedidk). 6 region dominated by the corresponding asymptotes to provide

Since £.. is chosen sufficiently large, such that the asymptotig gmqoth transition befween the intermediate numerical solution
expressior(B1) for [1(¢) is valid on the intervak e [£.,¢[ toany 444 the asymptotes.

chosen degree of accuracy, the first term of the asymptotic expanye start by dividing the interv L. L.1inton—1 inter-
sion forl,(&) asé— is determined by substituting.. to ITin /o & 7§i+1)¥ i=1, g n—1, whae‘frigli,l_ow,] ¢,=L.. and pre-

8
mmax:;( \/g—xf \/K) Mpin= — I1( &) Mpmax- (B5)

Hence,

the integrand of , defined in(B3) scribe the variation of pressufé over each boundary element to
1o(&)=i,(&,0)—i(& &) (B8) be a linear function ofl..(¢), i.e.,
with H(&)=all.(§)+bi, &£el&i &ival, =1, .. ,nili(Cl)
re 1/2
(&)=~ if &) () da. Using (22), one can deduce the expression o corresponding
m)o\ml &—7 to the net-loading representatio@l)
n-1

Evaluating the integrai,(&,{) analytically and then calculating :§ e
the first term of the asymptotic expansion of the resulting expres-2,(¢§)=[Fo(&,7)1]_ '+ > [ajF (& 7)+hF (¢, 7/)]2:%”
sion leads to =1

i2(£,0)=be B+ 0(E712), i,(£,E.)=0(£7 1) (BY) HIFL(&m]=, (C2)
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where the function§,(¢,7), F..(&, 7), andF(&,7) are defined Taking into account the boundary conditiof34), (C5) consti-
as tutes a system afi—1 nonlinear algebraic equations in terms of
4 (7 then—1 unknownslI,, ... II,,_; and k. This nonlinear system
F(§,77)E—J K(&7)dn of equations is solved using the Newton iteration procedure,
T which is built in theMathematicacomputational software.
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It is shown that the original continuum damage mechanics model of Kachanov is better
suited for creep life analysis of creep-brittle solids and structures than continuum damage
mechanics models that take into account damage-induced softening.
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1 Introduction w=9(v,0). 2

Continuum Damage Mechanics was introduced in 1958 by th&, ~tions(1) and (2) require the initial conditions
late Prof. Lazar M. Kachanov. The premise of continuum damarg';:eé:1 s) (2) req

mechanics is that by modeling the kinetics of damage accumula- e=¢y and w=wy at t=0 (3)
tion one can predict the duration of the tertiary creep stage agﬂd the termination condition

thus estimate the creep life. The seminal idea of Kachanov has

influenced many researchers, among others, Rabdthip\Hay- w=w; at t=t;. 4)

hurst and Leckie with co-workef§2]), and Chaboche and Lemal-In (3) and(4), €,, wo, ande; are prescribed data. The termina-

|t(r:2 W'it: C(;'r\]N Orﬁ;rts);(r[égl]lg P;ﬁfenﬂ]ﬁniont?hu;n%,ﬁgw O?g; CrQFChSQg-'on condition(4) is an implicit equation for the time to fracture

X . . o r the creep lif¢ t; of the bar.
Er[wlllcg%mechamcal models concermed with distributed dama %Usually the continuum damage mechanics constitutive func-
’ . 1

In this paper, we revisit one of the original themes of Con_ions in (1) and(2) are calibrated using either uniaxial creep data

tinuum damage mechanics—creep life analysis of creep-britf?éig)r:?;'r::crzleeq;;gor:ﬁetrzagrr:%\?:i% SilrJi((::gl iatl"’}ét:;%rs'?ﬁ;?eggael
(polycrystalling solids and structures. Our approach is based %j; p ' P 9

heuristic arguments rather than rigorous mathematical proofs, &ﬁr;sv\gdeé)\llvgf_?swlrlggzoennsgr:?egg?vge(é?]rweugg)é-o;]rg:rflrsi:]i_equa'
it allows us to cover essentially the entire spectrum of continuu P P ) ym
méjm) creep rate and stregsr Norton's law

damage mechanics models. The principal result of this paper i
that, as far as creep life analysis of creep-brittle solids and struc- c.=Bo". (5)

tures is concerned, the original model of Kachaf@lappears to o s ] )

be more useful than more complicated models that take into ade second equation is a power-law relationship between the sec-
count damage-induced softening. ondary creep rate and time to fractm Monkman-Grant's for-

The paper is organized as follows. In Section 2, we summarifu!a
the fundamentals of continuum damage mechanics. In Section 3, e
we compare engineering and continuum damage mechanics mod- &t=C. ®)
els for creep life predictions. Based on those comparisons, Wwe(5) and(6) B, n, » andC are material constants. Equatiofis
argue that Kachanov's model is better suited for practical cregpd(6) can be combined as
life analysis of creep-brittle solids and structures than continuum m
damage mechanics models that take into account damage induced o";=D, @)
softening. In Section 4, we briefly discuss several issues relatedyRere
the principal result.

m=nv and D=B""C.
2 Continuum Damage Mechanics This paper is concerned with creep life analysis of creep-brittle

. . . . . solids and structureq7]) for which, under isothermal uniaxial
In this section, we briefly summarize continuum damage MBteep conditions, the ratio

chanics fundamentals. We do not distinguish between microme-

chanical versus phenomenological models and scalar versus ten- €

sor damage variables, since those distinctions are neither useful :gg’-
nor necessary for our purposes. s

21 C itutive E . Conti d hani Here¢; is the strain at fracture. Such solids fail by accumulation
2.1 Constitutive Equations. Continuum damage mechaniCSyt intergranular damage associated with relatively small creep
is based on evolution equations for the creep steaand damage

iabl isoth | f lindrical bar induced b strains. In contrast, creep-ductile solids, for which the ratio can
variable. For isothermal creep of a cylindrical bar induced by @y ceed ten, fail as a result of intragranular damage associated with
uniaxial stressr, the evolution equations are

relatively large creep strains.

e=f(w,0) 1) 2.2 Boundary Value Problems. To formulate boundary
and value problems based di)—(4), one has to generalize the con-
stitutive equations to three dimensions. Usually this is done by
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF replaqlng'a in (1) .and (2) Wlth stress invariants that .are Ime.ar .
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLiED ~ COMbinations of either the Mises stress and the maximum princi-
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Janpal stresg[2]) or the principal stressg$8]).
28, 1999; final revision, June 8, 1999. Associate Technical Editor: J. W. Ju. Discus-|n a typ|ca| continuum damage mechanics boundary value
sion on the paper should be addressed to the Technical Editor, Professor Lewi ; ; ;
Wheeler, Department of Mechanical Engineering, University of Houston, Houst FObIem’ one can Identlfy the latent .and propagatlon_st(a[@é)_s
TX 77204-4792, and will be accepted until four months after final publication of thé N€ latent stage lasts frots=0 to the timet, , when the first point
paper itself in the ASME GURNAL OF APPLIED MECHANICS. reaches the state= w¢, and the propagation stage consumes the
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remainder of the creep life. For example, in a circular cylindricdalirbine rotor(see alsd13]). We refer to this model as the engi-
bar subject to torsion, the “fracture”of the outer layer signifiemeering model and denote its attributes by the superseriphe
the end of the latent stage, and the remaining creep life involvescond model is due to Kachanf®] and the third model is a
propagation of the fracture front toward the center. This and singeneric continuum damage mechanics model with softening; their
lar problems have been considered by Kachaédv attributes are denoted by the superscripends, respectively.
Although formally one can use continuum damage mechanicsThe objective in this section is twofold. First, we establish that,
equations for predicting the duration of the propagation stages far as creep life analysis is concerned, the engineering and
there are conceptual and practical difficulties with such predi&achanov’'s models are equivalent. Second, we show that, for
tions. From the conceptual perspective, we recall that continuwreep-brittle solids and structures, Kachanov’s model is more con-
damage mechanics, as a continuum theory, is valid only at scadesvative than continuum damage mechanics models with soften-
that are significantly larger than the microcrack size and therefdrey, and therefore should be preferred for creep life analysis. Fur-
the field variations can be significant only over those, but nthermore, we argue that continuum damage mechanics models
smaller scales. Most likely, this provision is violated near theith softening are of little use for creep life analysis of creep-
fracture propagation front, where large damage and stress grdtittle solids and structures in cases when Kachanov’'s model is
ents are expected across the front. From the practical perspecttee, conservative.
we recall that creep life predictions involve large margins of error

([20]), and therefore one should not extend the predicted creep life l Eng(ijneleri#g Versu?fKa}chanov‘s I\/(;ode'ls. Ir;etrg.s engf-
by adding to it the duration of the propagation stage. In the r@€€rng model, the creep life is computed using Robinson’s cu-
Hlatlve damage rule rather than an evolution equation for the

mainder of this paper we disregard the propagation stage dhl X . . -
equate the creep life with the duration of the latent stage. S{ngsa.ge variable[14]). This model is based on the following

» Compute the stress field using the standard power-law creep
constitutive equations.

2.3 Kachanov's Model. Kachanov’'s model is recovered
from (1)—(4) once we put

f(w,0)=Bo", (8)  + Determine the maximum Mises stres$,.
1 m » Compute the creep life as
(o
9(,0)= 5rmF 1) l—w) ’ ©) tf=D(oma) ™ (14)
and » For complex loading histories, one may choose several criti-
cal points and use
(.00:0, 60:0, wi= 1. (10)

1 —

2.4 Models With Softening. The majority of continuum D= fof[ﬂemak( m]"dr (15)

damage mechanics models include the softening effect of damage.
In the phenomenological context, such models were introduced ipgtead of(14).
Rabotnov[1] and advanced by Hayhurst and Leckie with co-
workers([2]), Lemaitre with co-worker$[3]), and others; related .
micromechanical models, applicable to structural creep life anaw|j
Fisjwefe developed by Ashby and Dydaf} and Dib and Rodin  « The engineering model does not include the propagation
11]. stage.
The softening effect is included by choosifgw,o) such that  « The engineering and Kachanov’'s models predict the same
creep life as long as Kachanov's model is extended to three di-
(11) mensions by replacing with o. This statement holds for general
dw stress historie§[14]).
On the one hand, this is a sensible improvement of Kachanov's® The conceptual difference between the engineering and
model as it captures the strain rate increase during tertiary cregchanov’s models is that the former relies on real time while the
on the other hand, as will be shown in the next section, it apped@éfer usesw as intrinsic material time. The advantage of the en-
to be a poor choice for practical creep life analysis of creep-britt@neering model is in its simplicity. The advantage of Kachanov's
solids and structures. model is that it allows one to correlate the creep life and micro-
For our purposes, it is not necessary to specify explicit expresfructural observations of damagéo]).
sions forf(w,o) andg(w,o). Instead, we prescribf w,o) and 3.2 Kachanov's Model Versus Models With Softening.
g(w,o) implicitly, in terms of inequalities they must satisfy. The objective in this section is to demonstrate that the creep life
Namely, we assume that predicted with Kachanov'sor engineeringmodel is longer than
the creep life predicted with models with softening. | cannot prove
f(@,0)>0 and g(v,0)>0, (12) this statement rigorously. Therefore, first, we consider an example

The following observations about the engineering model are
portant:

f(w,
Moo o

and problem that demonstrates how damage-induced softening pro-
longs the creep life, and then we argue that this property of dam-

M> 0, and M>O. (13) age induced softening holds in general.
do Jdo Consider a symmetric truss made of three vertical bars that are

or damage healing, and the second pair of inequalities implies th3¢ outside bargFig. 1). The upper ends of the bars are fixed
the strain and damage rates increase with stress. As far as | kni{jereas the lower ends are attached to a rigid plate that can move

these conditions are satisfied by all continuum damage mecharfg&lically only. The plate is loaded by a constant foReapplied
models. at its center. We consider two types of constitutive equations—the

first type represents Kachanov’'s model and the second type rep-
resents models with softening.
3 Creep Life Analysis For Kachanov’'s model, the constitutive equations are chosen as

The first pair of inequalities implies that there is no reverse creﬁntical except that the inside bar is longer by a factoe dhian

In this section, we consider three models for creep life analysis. K=Bok (16)
The first model represents engineering modEl§)), and in par-
ticular it was used by De Wittg12] for creep life analysis of a and
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Fig. 1 Three-bar truss: The bars are identical except that the

inside bar is longer than the outside bars by a factor of @
. 1 o 17
“730 T- ok (17

For the model with softening, the constitutive equations are ch

sen as
. S
E=Bi——s (18)
and
- 1 o
=D I (19)

For both models, we use,=0, wy=0, andw;=1.

ts
f
-R:l-i-
tf

Also, it is instructive to obtain this inequality froif25)

a—1

. D1 [ [ R
ti=—x=—x oi(r)dr= hy(m)dr<t?.
01 01Jo 0

Note that, ife=1, the truss becomes essentially statically deter-
minate and therefore the stress redistribution does not take place.
In this caseh;(t)=h,(t)=1 andt$=t¥.

The example problem demonstrates that the softening mecha-
nism operates so that the stress is redistributed away from high-
stress regions to low-stress regions, and therefore the stress distri-
bution becomes less nonuniform. Obviously this property is not
restricted to the example problem. Furthermore, this property is
shared by all softening mechanisms, as long as instabi(itiesur
case the propagation stagere absent. For example, power-law
creep can be regarded as a softening mechanism that reduces
stress concentrations induced by elastic deformafjdd]). In
gome sense, damage-induced softening endows the structure with
adaptivity that adjusts its properties so that the stress is redistrib-
uted from high-stress/high-damage regions to low-stress/low-
damage regions. As a result, the stress histories at the critical
point(s) become less severe and the time to fracture increases.

| cannot establish rigorously the necessary and sufficient con-
ditions onf(w,o) andg(w,o) associated with the inequality
>t'§. Conditions formulated ir12) and (13) may be sufficient
since they require that creep strain and damage accumulate irre-
versibly (12) and the accumulation processes are most active in
high-stress regions.

The equilibrium and comparability equations for the given truss Considering the fact that creep life analysis involves large error

are
201A+0,A=P (20)

and

(21)

€E1= €.

margins, the engineer should prefer conservative estimates,for
provided that those estimates are not too conservative. In this
regard, continuum damage mechanics models with softening
could be useful if Kachanov’s model is too conservative. This
could happen if creep deformation induced by damage is signifi-
cant. But, if this is the case, the structure under consideration is

Here the subscript 1 refers to the outside bars, the subscripErgep-ductile and one should consider models that emphasize in-
refers to the inside bar, anl denotes the cross-sectional area difagranular damage and relatively large creep strains. A good ex-

the bars.
For Kachanov’'s model, botlr; and o, do not change with

ample of such models is given by Dyson and GibbpiH.
In conclusion of this section, it is proper to point out that in

time (recall that the propagation stage is not considered in otiiree dimensions the validity of=t{ can be challenged by argu-

analysig, and their values are determined or26) and(21) are
combined with(16):

(22)

Note thato= o and therefore the creep life is computed as

D

th=
= k-
o1

(23)

For the model with softening, the expressionsdgrando, are
rather cumbersome but the important point is that they can
represented in the form

ait)=athy(t) and o3(t)=ashs(t), (24)
where the function&(t) andh,(t) satisfy the inequality
hy(t)<h;(t)<1. (25)

ing that the softening mechanism may affect one combination of
the stress components whereas damage accumulation may be con-
trolled by a different combination. For example, in phenomeno-
logical continuum damage mechanics theot[@3) the strain rate

is proportional to the deviatoric stresses and Mises stress, whereas
the damage rate depends on the Mises stress and the maximum
principal stress. | believe that this situation is highly unlikely but

I cannot rule it out. Alsot$=t§ may not hold for composite struc-
tures because stress redistribution in one phase may adversely
affect other phases.

be
4 Concluding Remarks

* The continuum damage mechanics models that take the soft-
ening effect of damage into account, and proposed as generaliza-
tions of the original model of Kachand®é] appear to be of little
use for practical creep life analysis of creep-brittle solids and

This inequality implies that, on the one hand, the outside bars afguctures.
exposed to a more severe stress history than the inside bar, and, 3hThe conclusion that the importance of continuum damage

the other hand, the stress(t)<c¢%. The inequalityos(t)<o¥

mechanics models with softening may have been overestimated in

stems from the fact that damage accumulation and consequettilg academic circles is indirectly supported by Viswanafl i,

softening is more active in the outsi@®ore stressedars than in  who compiled a comprehensive collection of models used in prac-
the inside(less stressgdar, and therefore, with time, the stress igical creep life analysis. There continuum damage mechanics ap-
redistributed from the outside bars to the inside bar. This strgssars to be less prominent than various empirical equations, and it
redistribution leads to the longer creep life: is used along the lines of Kachanov’'s model.
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S. E. Bechtel The Stl‘et(:hlng and S"pplng Of
“= 1 Belts and Fibers on Pulleys

S. Vohra
Department of Mechanical Enineeri We derive the equations of motion for an extensible belt on a pulley in which all effects of
epartmen OTheeE)he;glg?atengmssg?t% inertia, including (for the first time) acceleration due to stretching, are retained in the

momentum balance. These equations are also valid for fibers and films on rollers under-
going cold draw. We apply our equations to the problem of torque transmission by a belt
between two pulleys, and compare the resulting solution to solutions in which centrifugal
K. 1. Jacob accel_eration is included _but etretcning accelerati_on is neglected (th_e common engineering
. practice), and the solution in which both centrifugal and stretching accelerations are
neglected. We find that ignoring both centrifugal and stretching accelerations results in
an overprediction of the maximum moment that can be transmitted, and, for a given
transmitted moment, underprediction of the slip angles on the driving and driven pulleys
and overprediction of belt strain rates and normal and frictional forces from the pulley on
C. D. Carlson the b.elt in the slip zones. The common engineering pract.ice of including_the effects of
Mitsubishi.Pon(;ster Film. LLC centrifugal accelera_tlo_n but neglec_tlng stretching acceleration also re_sults in errors, fo_r
2001 Hood Road Boxy1400y exam_ple underpredicting the maximum moment that can be transmltt_ed_, overpredicting
Greer’ SC 29652’ the S|Ip _angles, and underpredicting belt strain rates and normal and frlctlo_nal forces on
’ the driving pulley. The percentage error increases as the ratios of belt stiffness to cen-
trifugal acceleration or initial belt tension decreadé&s0021-89360)01401-X|

Columbus, OH 43210

School of Textile and Fiber Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

1 Introduction reduce to a single differential equation for the evolution of belt
mtgnsion with arclength, decoupled from belt stretch. When the
§_tretching acceleration term is included, the two momentum pro-
tions become coupled differential equations for the evolution of

The stretching and sliding of belts on pulleys or fibers and fil
on rollers have significant industrial implications. Torque tran

mission between pulleys is affected by the stretching and slippi h bel . 4 bel h. and | h h ical
of the belt. In a fiber manufacturing process, polymeric fibers afPth Pelt tension and belt stretch, and to close the mathematica

drawn between feed and take-up rollers in order to improve th&foblem statement one must adjoin a constitutive equation relating
mechanical properties. In a cold draw procéss, where no ex- belt tension to belt stretch. For definiteness, in Section 3 we char-

ternal heat is suppligche draw occurs on the rollers, accompa@cterize the belt as linearly elastic. _
nied by stretching and sliding of fibers. Similar behavior is also N Section 5 we obtain and compare four solutions for the prob-
true for films. Although we address the problem of belts on pulem of torque transmission of a belt between two pullégier
leys and adopt this nomenclature, the formulation is equally afst presenting the governing equations for a belt in a free span in
plicable to the drawing of fibers and films. ection 4. The pulley radii, transmitted moment, angular velocity
Any examination of a be|t_pu||ey System which takes into ad)f the driving puIIey, initial tension in the belt, stiffness of the
count the compliance or elasticity of the belt, for prediction of thBelt, and coefficient of friction between the belt and the pulleys
slip angles on the pulleys, analysis of creep, etc., must, to Bee considered to be specified, and the problem is solved for the
consistent, include the effects of changing belt stretch in the maagular velocity of the driven pulley, the angles over which the
mentum equations. These analyses recognize that the belt ten$ielt is slipping on the driving and driven pulleys, the belt tension
is not uniform; there is a tight side and a slack side. The elastéd speed at all locations along the belt, and the normal and
characterization of the belt indicates that this change of tensionfiictional forces per length from the pulleys on the belt at all
accompanied by a change of strain, so there must be a chandimgations of contact, as well as the maximum moment that can be
stretch in the belt. This rate of change of stretch is an acceleratimansmitted by the belt-pulley system. The first solution is our new
that results in a change of momentum. solution, which accounts for both stretching acceleration and cen-
In Section 2 we derive the momentum equation for a movingrifugal acceleration in the momentum equations. The next two
stretching belt on a pulley. We find that in the normal projectiogolutions include centrifugal acceleration but neglect stretching
of the momentum equation there is a centrifugal acceleration tegmceleratior(the common engineering practjcdhe fourth solu-
(Gu in Eq. (3)p), and in the tangential projection there is a changgon, recalled from the literaturd1]) neglects both centrifugal
of stretch term Gdv in Eq. (3)1). A review of the literature has acceleration and stretching acceleration.
revealed that some studies of stretching belts neglect both of thesgeyond having a consistent mathematical formulation, there is
inertial terms in the momentum equations, and others incorporgfgyantitative advantage to our solution. We find that the solution
only the centrifugal acceleration term in the normal projectiofy the literature which neglects both centrifugal and stretching
This paper is the first to include stretching acceleration in thgcelerations underpredicts the slip angles on the driving and
tangential projection. , __ driven pulleys, overpredicts the normal and frictional forces on
Without stretching acceleration, the two momentum projectionfie peit from the pulleys, overpredicts the strain rate of the belt in
the slip zones, and overpredicts the maximum moment that can be
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the belt decreases and the speeds increase. It is essential to uskelémee, at any point on the belt there must be a tension greater

new equations in applications such as the drawing process in than or equal to the mass flow rate of the belt times its speed. If

manufacturing of polymer fibers and films, in which the stiffnot, the pulley would have to pull on the belt to keep it in contact

nesses are small and the speeds are great. and accelerating in a circular path. This the pulley cannot do, and
the insufficiently tensioned belt will fly off the pulley.

2 Equations of Mass and Momentum for Belts on  Comparison With Belt Equations in the Literature. The
Pulleys mass and momentum equations for a deformable belt on a pulley
are Eqgs.(1) and (3). A review of the literature revealed that all
Ystudies employ the same mass Ef), but all use momentum
equations which are simplified forms of the momentum &.

For instance, Amijim43,4], Rothbar{5], and Fazekaks] employ

Following Carlson2], consider an extensible belt on a pulle
with radiusr and angular velocityw. Without loss of generality
we assign the direction of increasing arclengthf the belt, posi-
tive belt speed), and positive pulley rotatiom to be the same.
We adopt an Eulerian formulation with the pomfixed in space T-Guv
and assume the motion is steady so that the conditions at location dT-fds=0, n= r ®)

s are independent of time. The mass per volume and cross- ) . .
sectional area of the belt apeandA, respectively. For this steady Where, comparing Eqg5) with Egs.(3), we see that the centrifu-

motion, conservation of mass requires that the mass flonGage 92l termGu is included in the normal projectiotb),, but the
constant, inertia termGdv is absent from the tangential projectid8);.

Equations(5) are an exact special case of E(3. if and only if
G=pA(s)v(s)=constant. (1) the stretch in the belt is uniformd( =0). Johnsor{1], Firbank

Figure 1 shows a free-body diagram of a space-fixed portion bfl- @nd all statics textbooks employ
the belt of lengttdsat locations, subtending an angl@). The belt T
is in general extensible, so that the speed of the belt entering this dT—fds=0, n=—, (6)
domain atsis v and the speed exiting it at+dsisv+dv. The r
tension in the belt adis T and ats+dsis T+dT. f andn are the where the inertia terms are absent from both projections. Equa-
projections of the force per unit length from the pulley on the betions (6) are an exact reduction of Eq®) if and only if the belt
in the tangential and normal directions, respectively, as indicatgdmotionless ¢ =0, dv=0).
in Fig. 1. We assign positiveto be in the direction of decreasing
sand positiven to be radially outwardf can be positive, negative, 3 The Constitutive Model: A Linearly Elastic Belt
or zero, depending on the velocity or impending velocity of the . .
belt relative to the pulley. We ignore aerodynamic forces. Conser-Unlike the momentum formulation&) and (6), our formula-

vation of momentum projected in the tangential and normal direBon (3) couples the evolutiodT of belt tension explicitly to the
tion are evolutiondv of belt stretch. Hence belt tension along the pulley

surface cannot be computed from momentum considerations

de de de alone; one must complement Ed8) with a constitutive model
_TC°5(7 +(T+dT)COS(7) —frd6=Gdv CO{?)’ relating the belt stretch to belt tension. Many such models are
» » possible, depending on the application. Here we assume the belt is
. . linearly elastic.
—Tsm(7) —(T+dT)sm(7 +nds The axial straire at a points of the belt is
de de dl(s)
= in — | — inl — eg(s)= -1, 7
Gu sm( 2) G(v+dv)sm( 5 ) ) (s) i (7)
Using|dd|<1 so that cos{#/2)~1 and sind6/2)~d6/2, Eqs.(2) With dI(s) the length of an infinitesimal section of the belt at
reduce to location s and dl ¢ the length of that section in some reference
state. We consider a belt for which the tension at a point on the
dT—fds=Gdp. n= T-Gv @) belt erend_s only on the belt's a_xial straimt that _poi_nt(i.e., the
! r belt is elasti¢, and further that this dependence is linear. Hence
where we have taken products of infinitesimal quantities to be T(S) =T+ ke(s), (8)

negligible. here k is the elastic modulusgunits of forceg and T i
) . . ref IS the
As is noted in Amijima3], when adhesive forces are neglecte ension in the reference stat@he linearly elastic assumption is

the normal fqrce per unit Igngﬂnfrom .the pulley on the belt MUSt ¢ the sake of definiteness; we could alternatively introduce a
be compressivénonnegative according to our sign convenjjon nonlinear elastic characterization, as in Amijifigad]).

which in combination with Eq(3), demands At any points along the belt, the straia(s) is related to the
T—-Guv=0. (4) belt speed(s) at that point and the speegs of the belt in the
reference state by
V(8)=vrer (L+&(3)). )

The relation(9) between strain and speed in the belt implies that
the tension may also be expressed as a function of belt speed, so
that the constitutive assumption E&) becomes

v(s) —1). (10)

Uref

T(S)=Tet kK

4 Equation of Momentum for Belts in Free Spans

In the next section we solve the torque transmission problem.
Since the problem involves free spans of the belt, we first give the
Fig. 1 Free-body diagram of a section of belt on a pulley equations governing the belt behavior of such a span. Mass con-
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T e : T+dT the elastic constitutive equation demands that the stretch of the
: belt is changing, but this changing stretch is absent from &jjs.
Tt | N — : vide resulting in an artificially decoupled and, as we shall see, ambigu-
| | ous problem statement,
i ds i « for relatively stiff belts(in a sense we will make explicit
laten solutions(i) and (ii) coincide, with solutior(iii) noticeably
Fig. 2 Control volume for a belt in a freespan different, supporting in such applications the common engineering
wisdom that that the effect of centrifugal acceleration is signifi-
cant and the effect stretching acceleration is insignificant, but
servation in a free span is given by Ed). Figure 2 shows a  * for compliant belts, and fibers undergoing draw, solution
free-body diagram of a differential belt element of lendgratsin  is significantly different from solutiorii), indicating that the ef-
the freespan. Conservation of momentum gives fect of stretching in these applications is important.

(T+dT)—=T=G(v+dv)—Gu, (12) The pulley radiir, transmitted momeri¥l, driving pulley angu-
lar velocity w4, initial belt tensionT;,;, belt stiffnessk, and co-

or efficient of friction u between the belt and the pulleys are as-
dT=Gdv. (12) sumed to be specified. The unknowns that constitute the solution
) ) are the angular velocity, of the driven pulley, the subtended
Integration gives anglesB; and B, over which the belt is slipping on the driving
T=Gv+c, (13) and driven pulleys, respective(gee Fig. 3, the belt tensioi (s)

) ) ] ) ] and speed (s) at all locationss along the belt, and the normal
wherec is a constant of integration. For a linear elastic belt wand frictional forces per length(s) andf(s) from the pulleys on

must have the rewritten form of E¢L0), the belt at all locations of contact. We will see that soluti¢ins
K and(ii) depend on the specified quantities through the four dimen-
T= ( _) v+ T — k. (14) sionless combinations
Uref
The mass flow rat& (which is dependent on the procgssll not A= M _ Tt C= Gor w (16)
in general equal the elastic modulus divided by the reference ve- 2rk’ k' k -’
locity. Hence

Solution (iii) depends only o\, B, and u. (We select combina-
T=constant, v=constant, (15) tions (16) rather than, sayM/2rT i K/ Tinit , Gl / Tie, SiNCe it
is commonly argued that the fractional change due to including
the stretching acceleration is proportionalGo/k=Gw4r/k, or,
stated differently, solutiorii) likely can be obtained from solu-
" tion (i) by letting Gw,r <k. Combinationg16) allow us to inves-
5 The Torque Transmission Problem tigate this conjecture by considering the limit of smal)

We now solve the steady torque transmission problem of Fig. 3,In the free spans the tensions and velocities are conéiant
with an extensible, linearly elastic belt, and pulleys mounted &gs.(15)). When a constant torqud is transmitted between two
fixed center distance. We solve the problem three wéysising pulleys of the same radiusas shown in Fig. 3, the tensiofis in
our momentum Eqg3) for the belt on the pulley, which accountthe tight free span andy in the slack free span afé,8]
for both centrifugal acceleration and the acceleration due to
stretching(ii) using momentum equations in the form of E(S, M A M A
where centrifugal acceleration is included but stretching accelera t= Vit t 5= Tine| 1+ 51, Ts=Tine = 51 :Tinit( 1- §)'
tion is neglected; andiii) using Eqgs.(6) on the pulley surface, (17)
which neglect both accelerations. The quasi-static solutiibh ) ) ) o )
appears in the literature in Johnsfd. It has long been held that Obtained by assuming the bearings are frictionless and summing
the effect of centrifugal acceleration is significant, so that in belfl€ moments on either pulley to zerb;; is the tensile force in
applications solutiortii) is used, nevefiii). It is also widely con- the belt when the momend is zero.
jectured that the effect of the stretching inertia term is insignifi- We assume, as do Amijimia], Firbank[7], and Johnsof1],

cant, although it has never before been computed. Our new sdfiat the belt is not slipping on either the driving or driven pulleys
tion (i) for the first time calculates this effect. We find where it first attaches, so that the speedandu of the tight and

) o ) ) slack free spans are given by
e computationally it is less problematic to retain both accelera-

tion terms than to include one and neglect the other; Efjsand Vi=Twy, UVs=Tlw;. (18)
the elastic constitutive equation are inconsistéhé momentum
Egs.(5) predict that the tension is changing in the belt, and hen

is the relevant solution of Eq12) in the free span for isothermal
motion.

e choose our reference state as the one in which the tefigion
IS zero, so that the linearly elastic constitutive Etf)) reduces to

T=T, T(S)ZK(U(S) *1), (19)

slip zone V=V ST 0 1%
<re
TOpEVEIOy tight free span s=L ref

—_—

s=2L40 r+ 1= By)

the same constitutive equation employed by JohrddnEvalu-
ating this constitutive equation at the tight and slack free span

driving pulley

-slij . .
i oiey  speeds and recalling Eqd7) gives
no-slip zone ©, driven pulley CH
oL Gy 2 By rog A rws A
N — S b k( _1):Tinit(1+§ .k —1]=Tiwl 1- 5]
o Uref Uref
s=2L4m slack free span s=L+mr ip zome
ke s, )
T=T

These two equations can be inverted to give the angular velocity

Fig. 3 Schematic diagram of a belt transmitting a torque M w, of the driven pulley and the reference spegg in terms of
between two pulleys specified quantities,
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B-A+1 rwq —u(slr) A_C — u(slr)
wWy= m wq, Uref:m. (21) T(s)va(s)z(Tﬁle)e :Tinit 1+ E - E e ,
27
Note thatw,<w; . Then the constitutive Eq19) can be recast as @0
wheres=s—I|—r(w— ;) is the arclength from the start of the
Tinit v(s) slip zone. To obtain the belt tensidi(s) and speed(s) in the
T(s)= B (1+A+B)m -1} (22) slip zone separately as functions of arclength, we combine Eg.

(27) with the elastic constitutive Eq22) to obtain

In the torque transmission problem the belt passes through six
zones. In the direction of increasing arclengtkclockwise, re- A C/B —u(En C/B
ferring to Fig. 3, they are the tight free span, no-slip zone on thel (8)=Tini | 1+ 5= g5 AT7-¢ /¢ tBYATI_CI
driving pulley, the slip zone on the driving pulley, the slack free (28)
span, the no-slip zone on the driven pulley, and the slip zone on
the driven pulley. We selecd=0 as the start of the tight free
span. In the following subsections we obtain, for each of the three ;(g)=r,
formulations, the belt tension, speed, and friction and normal
force per length through these zones as a function of arclength
as well as the angular extengs and 3, of the slip zones. The normal and frictional forces per lengifis) andf(s) are then

) n . ) obtained algebraically fronT(s) andv(s) via Eq. (3), and the
5.1 Full Solution Retaining all Inertia Terms. We first  fiction relation:

solve the problem using our Eq&3) when the belt is on the

1
B+A+1-C

 B+A+1-C

(1 - )e’“@”)+

pulley. _ -
The tight free sparBelt behavior is governed by Eq4.5), so that n(s)= w = M ( 1 g _ E) @ M.
N r r 29)
T(S)=T=Tim| 1+ 5|, v=v(=lw;. (23) T A C _
B f(s)=—un(s)=—u m't(l 5 ——)e"“s’”.

No-slip zone on the driving pulleyrhe belt attaches without slip
to the driving pulley with the tight-span speed=rw;, and gjack free spanin this zone, as in the tight free span, the speed
maintains this constant speed through a no-slip zone of yet-to-kgrd the tension remain constant.
determined length. Since speed is constant so is strain, and hence

in the elastic belt so is the tensioh=T,. With constant speed

—A+
(dv=0) and constant tensiodT=0), Eq.(3); demandsf=0: T(S)=T5=Tinit(l_g)a U(S)zvszrwzz(B Atl

——|rw;.
there is no friction between belt and pulley in the no-slip zone. B+A+1)
The normal force per length is computed using Eq3),. Sum- (30)
marizing,
g No-slip zone on the driven pulleYhe belt attaches to the driven
A pulley at the slack-span speeg=r w, of the pulley surface. The
T(S)=Tinie| 1+ B/ v(s)=rw;, f(s)=0, belt continues with this speed for a yet-to-be-determined distance
(24) onthe pulley. As in the no-slip zone on the driving pulley, there is
- . no friction between belt and pulley. Summarizing,
init
n(s)= 1+5 —=.
(s) r( B B) T()T(lA © B-A+1
S:inil - =1, US=—I’a)1,
Slip zone on the driving pulleySince the belt leaves the driving B BrA+1
pulley with the slack-span speed=r w, less than the tight-span
speedv;=rw; that it attaches(recall from Eq.(21), that w, t(s)=0 _Tint|, A (B-A+1)C a1
> w,), there must be a slip zone on the driving pulley. In this zone (8)=0, n(s)= r B B+A+1/B|" (31)

the friction is kinetic, and, since the belt is moving slower than the
pulley surface, the direction of this friction is in the direction ofs|ip zone on the driven pulleyn this zone the belt speed in-
motion. Therefore, according to our sign conventiém; —un  creases frontw, to rw;. The belt is moving faster than the
(recall Fig. 1. Equationg(1), (3), and this friction relation reduce pylley surface speetw,, so that according to our sign conven-
to tion f=un. Combining this friction relation with Eq$1) and(3)

gives
= pdo. (25) d(T—Gv)
Integrating Eq.(25) over the entire slip zone yields a relation for

the angle of slip3, on the driving pulley, Integrating over the slip zone yieldsince the friction coefficients

on both pulleys are the sapmie same expression for the angle of

Blzi n(T‘—erl) = im B+A-C . slip B, on the driven pulley as we obtained in E&6) for the
m \Ts—=Groy) u BoA— B-A+1 angle 3, on the driving pulley,
B+A+1

(26) 1 B+A-C
The boundary between the no-slip and slip zones on the driving M B— _(
pulley is therefore as=L+r(7— 1), whereL is the length of B+A+1
the free span. We integrate E@5) from this boundary to arbi-
trary s within the slip zone: Within the slip zone of the driven pulley,
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T(s)=T 1,é,C/—B eu(s*”) i f(s)=—un(s)=— M 1 é,E g~ K(sln)
i B BtAf1-C BtA+1-C| AR B B '
v(s)=rw B-A+1 _ 1 e,AS*/r)Jr 1 If v is also set taw, in the slip zone of the driven pulley, one
1\B+A+1 B+A+1-C B+A+1-C|  obtains
(34)
T.i/ A (B—A+1|C . By fim—In| FATC
ns)=—|1- s~ 5|5 /e""*, Zhe T \B—-A-C)
r B \B+A+1/B
cigy, Tni[ A (BZA+LIC) teet (122 _C) s, ©
(S)=n— B |BrA+1/B/¢ (8)=Tmq | 1= 5 ~ g Bl )
where s*=s—2|l—ar—r(7—B,) is the arclength measured
from the start of the slip zone. n(s)= M ( 1— é _ E) QH(s*Ir)
The maximum valuéJ ,,, of torque that can be transmitted by r B B '
the extensible belt is
Tini A C
M Tinit - 1-C\? f(s)= '_”"(1,_ ,_) p(s¥1)
—_— M T R _ M e ’
MI’T‘IBX (e,uﬂ'_,’_l) (e +1) B 2+ B r B B

1 C ) wheres* =s—2|—@r —r(m— f3,) is the arclength from the start
+Ha{ 1+ gl 1-g]eT of the slip zone.
Note that belt elasticitk does not appear in this solution unless
1-C 1 C 1+C\2]¥2 one chooses to back out belt speed from the constitutive equation.
+12 T) 2+ g~ g) ] e 5 } ] (The problem for belt tension, normal force, and friction de-

couples from the constitutive equation; each of the nondimen-
(35) sional parameters, B, C havek in their denominators, but solu-
found by setting the angle8, = 3, of the slip zones equal to the tions (38) and(39) depend only on the ratio&/B, C/B, so that

maximum allowable valuer in Eq. (26). there is nok dependence. _ _ _
The maximum torque that can be transmitted according to this
solution is
5.2 Formulations Neglecting Stretching Acceleration in

the Momentum Equations. If the effect of centrifugal accelera- C\/er™1 erT_ 1
tion is included in the momentum equation, but not the tangentiaM max:ZrTinit( 1- E) v =2r(Tiii— Grwq) 1)
acceleration, i.e., if Eqg5) are employed instead of Eq®), the a1
mass conservation, momentum, and friction equations in the slip (41)
zones on the driving and driven pulleys reduce to 5.2.2 Alternate Solution. Although Egs.(36) follow from
dT settingdv =0 in the momentum equations, it is arguable thah
——— = —pudo, =udé, (36) Eds.(36) can be considered as a dependent variable, related to
T-Gv T-Gu tensionT through the constitutive Eq22). With this viewpoint,
respectively, rather than Eq5) and (32). The modeling incon- Ed- (36); becomes
sistency of this approximatiof@ssuminglv =0 in the momentum
equations but coupling change of speed with change of tension in dT
the elastic constitutive equatipallows for two possible ways to C Gra, —pdo. (42)
interpret Eqs(36), and hence two different solutions. [(1— )T—
B+A+1 B+A+1

5.2.1 The Engineering SolutionConsistent with the as-
sumption in the momentum equation that change of spke@ Integrating this cumbersome expression over the slip zone pro-
negligible, the common engineering practice is to considén  duces the angle of slip on the driving pulley,
Egs.(36) to be the surface spea@; of the driving pulley. Inte-

grating over the slip zone of the driving pulley we obtain the angle C
of slip, 1 BtA-BYAari-C
5 1 Tt—er1> 1 B+A—C) - B1= c i n c ., (43)
=—In =—In . - A ——
Y \Ts=Grey/ u \B-A-C '“(1 B+A+1> B-A~BTA+1-C

Then, Eq.(36); is a decoupled differential equation for the evo- i . ) . .
lution of belt tension in the slip zone of the driving pulley, whickénd integrating to arbitrary location with the slip zone produces

integrates to give
C/B

T(s)=(T,—Grwy)e *¥+Gro, T(9)=Til |1+ 5 ~grasi_c|e “ AT
A C - C
=Tl | 1+ 35 — —) e rINy — | (38) C/B
B B B TBYA+1I-C) (“44)

wheres=s—|—r(7— ;) is the arclength from the start of the
slip zone. The belt normal force per lengtifs) and frictional wheres=s—I|—r(7— ;) is the arclength from the start of the

force per lengthf (s) are obtained algebraically froffi(s), slip zone. Belt speed(s), normal force per lengtim(s), and
1 - A C frictiona_l force per Iength_‘(s) in the s_Iip zone are then olc_)tained
n(s)==(T(s)—Grw,)= init - _) e—ﬂ@r)’ algebraically fromT (s) using the elastic constitutive equation, the
r r B (39) normal projection of momentum, and the friction relation,
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Table 1 Maximum moment M,,,, that can be transmitted by the stiff (k=25 N) and compliant
(k=0.2N) belts and corresponding critical values of the dimensionless parameter A, and the
slip angles B;= B, for the subcritical moment M=2.0 Nm, as predicted by the four solutions

k=25kN k=0.2kN

Solution Mmax(Nm) Amax Bl=182 (de@ Mmax(Nm) Amax B1=BZ (de@

Full (Sec. 5.1 2.764 1.106x10°3 113.488 2.993 1.500x10° % 103.992
Engineering(Sec. 5.2.1 2761 1.104x10°3 113.597 2.761 1.381x10° % 113.597
Alternate(Sec. 5.2.2 2760 1.104x10°3 113.545 2910 145510 ! 109.040
Capstan(Sec. 5.3 3.682 1.473x10°3 80.911 3.682 1.841x10°! 80.911

v(S)=awqr

B

1
(l_B+A+1—C

e—ﬂ(l—C/(B+A+1)>(§r) n(s)= M ( 1 A _ E) e—#(l—C/(B+A+1))(§r)
r B '

1

Tinit( A C <
+ f(S): 1= — = e—p,(l—C/(B+A+1))(S/r)-
B+A+1-C H B

’ r B
(45)
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Fig. 4 Belt tension T(s) as a function of arc length s for a stiff belt (k
=25kN, top) and a compliant belt (k=0.2 kN, bottom ): Circles (O) indicate lo-
cations of attachment to the pulleys, and boxes (0O) indicate locations of depar-
ture. Full solution (——), engineering solution (- —-), alternate solution
(- - - +), and capstan solution (—.—.—.— ). The full, engineering, and alternate
solutions are indistinguishable for the stiff belt case.
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Fig. 5 Belt speed v(s) as a function of arc length s for a stiff belt (k=25 kN,
top) and a compliant belt (k=0.2 kN, bottom ): Circles (O) indicate locations of
attachment to the pulleys, and boxes  (OJ) indicate locations of departure. Full
solution (——), alternate solution (- - - +), and capstan solution (—.—.—.— ).
The full and alternate solutions are indistinguishable for the stiff belt case.

The solutions for slip angle on the driven pulley, and belt tension, B—A+1 1
s : B (1-CI(B+A+1))(s*/r)
belt speed, and normal and frictional forces in the slip zone of the(s)=r w; BrA+t1 BLA+1-C et
driven pulley are obtained in a similar fashion by integrating Eq.
(36),, 1 46
- B+A+1-C/’ (46)
B+A-—o———
1 B+A+1-C \
B2=pB1 C In C ) n(s)= Tinit 1— A _(B_A+1)E Qi(1=CI(B+A+1)(S*r)
ull— —— B-A— ——78— r B B+A+1/B '
B+A+1 B+A+1-C
Tini A [(B-A+1\C
A C/B . — it T 7)7 (1~ CI(B+A+1))(s*/r)
T(s)_Tinit[(l_ B BTAILC (1= CI(B+A+1)(s* /) f(s)=n r [1 B (B+A+l B|® )
i c/B wheres* =s— 2| —zr —r(7— f3,) is the arclength from the start
B+A+1-C|’ of the slip zone.
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Fig. 6 Normal force per unit length  n(s) from the pulleys on the belt for a stiff belt (k
=25kN, top) and a compliant belt (k=0.2 kN, bottom ): Full solution (——), engineering solution
(- — -), alternate solution (- - - -), and capstan solution (—.—.—.— ). The full, engineering, and

alternate solutions are indistinguishable for the stiff belt case.

The prediction of the maximum possible torque that can kendB~! finite.) In this formulation the predictions of behavior in

transmitted is
y(B+1)—um(B+1-C)

M nax= 25 Tinit Blpm—7) ) (47)
wherey is the root of
2(B+1)e?y?+ um[(C—3—2B)e?+1+C]y
+ u?m?(e”—1)=0, (48)

that produces the least value Mf, .

5.3 Capstan Solution Neglecting Inertia in the Momentum
Equations. The solution of Johnsoft], in which inertia is ne-
glected in the momentum equatiofis., Egs.(6) and (22) are
solved instead of Eq93) and (22)), is recovered by settin@
=0 with A andB finite in either the full solution of Section 5.1,
the engineering solution of Section 5.2.1, or the alternate soluti
of Section 5.2.2; all three collapse to the same solutiétierna-
tively, the solution can be obtained by setti@gB=0, with A/B

204 / Vol. 67, MARCH 2000

the two free spans are the same as those in the previous solutions,
but the prediction in all zones on the pulley surfaces are altered.
For instance, in the absence of inertia the momentum and friction
relations in the driving pulley slip zone reduce to the capstan
equation,

- =~ mdé, (49)
the slip angles are given by
1|(Tt) 1I B+A 50
,81—,82—; n\i’—;n _B—A ) (50)
and the maximum momem ., that can be transmitted is
on
erm™—1
M max= 21 Tinit 1) (51)

Transactions of the ASME



T T T
Tight Freespan Driving Pulley Slack Freespan Driven Pulley d

800 -
600
400

200

Friction f (N/m}

=200

—-400 [

-600

T

T

-800

1 1 1 1 1 1
o] 0.1 0.2 0.3 0.4 0.5 0.6
Arclength s (m)

T T
800 Tight Freespan Driving Pulley Slack Freespan Driven Pulley q

600 -
400 -

200

Friction f (N/m)

—-200

—400|

e

—600

—-800 - -~ .

1 1 1 1 1 1
¢} 0.1 0.2 0.3 - 0.4 0.5 0.6
Arclength s (m)

Fig. 7 Frictional force per unit length f(s) from the pulleys on the belt for a stiff belt (k
=25kN, top) and a compliant belt (k=0.2 kN, bottom ): Full solution (——), engineering solution
(= — -), alternate solution (- - - -), and capstan solution (—.—.—.— ). The full, engineering, and
alternate solutions are indistinguishable for the stiff belt case.

5.4 Comparison. We have presented four solutions to theial projection of momentumbefore solving them, and hence do
torque transmission problem: not represent some limit of the full solution. As noted in Section

« our new solutior(developed in Section 5.1 and referred to a?3’ setingC=Gw,r/k=0 with A=M/2rk, B=Tiy/k finite
the full solution, which for the first time includes the effect of neglecting inertia W't_h resplect to elastic stiffrgser se.tt.lng
stretching acceleration in the momentum equations; C/B=Gwyr/Tiy=0 with B™"=k/Tinr, AIB=M/2rT;y; finite
« two solutions which neglect stretching acceleration in theglecting inertia with respect to initial belt tensjdn the full,
momentum equation&ontained in Sections 5.2.1 and 5.2.2, an@ngineering, and alternate solutions reduces all three to the cap-
referred to as the engineering solution and alternate solution, fan solution.
spectively; and To examine the differences between the predictions of the four
« the solution that neglects all inertia contributions in the mdormulations for nonzero values & and C/B, we consider the
mentum equation&ontained in Section 5.3 and referred to as thivo cases with the same initial tensidg,;=50 N, pulley radius
capstan solution r=0.05m, driving pulley angular velocityw;=500rad/s, belt

We first note that neither of the two solutions which includé 2>> flow ratés=0.5 kg/s, and coefficient of friction. = 0.6, but

centrifugal acceleration and neglect stretching acceleration corW:IEh differing elastic mod_ulk. The e by
spond to a specialization of the full solution to small case porresponds to a Stiff bel; _the value0.2 kN .Of the s_econd
=Guw,r/k. These solutions follow from keeping th@ terms in case is much smaller, approaching that of a textile tow in a draw-
some of the governing equatiofspecifically the normal projec- iNg process. The dimensionless combinations Bre2x 10°°,

tion of momentum and, in the alternate solution, the constitutie=5x10"* for the stiff belt case K=25kN) and B=2.5

equation but dropping theC terms from otherge.g., the tangen- X10 %, C=6.25x10"2 for the compliant belt case k(
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=0.2kN). In both cases we take the lengtiof each free span to incorrectly sets the belt speed in the no-slip zone on the driven
be 7rr, so that the length of the total belt circuit ist2+2L  pulley to be the surface speed of the driving pulley, it overpredicts
=47r=0.2r m (see Fig. 3. the normal force there.

The maximum moment® .., that can be transmitted in either
case and the corresponding dimensionless critical valyg, as
predicted by the four solutions, are given in Table 1. The capstanThe quantitative differences just observed between the solution
solution (47) gives the same valuM ,,,=3.682 Nm for bothk including stretching acceleration in the momentum equations and
=25kN andk=0.2 kN since extensibility effects are decoupledhe solutions neglecting stretching acceleration increase as the
from the momentum equations in this approximation; in bothtiffness of the belt decreases and the speeds increase. The equa-
cases the capstan solution severely overpredicts the maximtions we have derived in this paper are also applicable to the
possible moment, by 33 percent and 23 percent, respectivalyawing process in the manufacturing of polymer fibers and films.
When centrifugal acceleration is included in the formulation, bun these processes the fiber or film is routed through a series of
not stretching acceleratiofthe engineering and alternate solusollers, each with faster surface speeds than the one before. Much
tions) the maximum moment is underpredicted. For stiff beltd not most of the stretchingi.e., draw can occur on the roller
relative to inertia or initial tensiofsmall values ofC or C/B) the surfaces. In applications of the equations of this paper to fiber and
error is slight, in agreement with the common prejudice in engilm drawing, the pulleys become the rollers and the belt becomes
neering practice, but as the belt becomes relatively more comghie fiber or film. Stiffnesses are much less and speeds usually
ant the error due to neglecting stretching acceleration increasgsich greater than in the torque transmission problem considered
The errors are 0.11 percent and 0.14 percentkfe25 kN, and here, and it will be essential to use E¢3). rather than Eqg5) or
7.8 percent and 2.8 percent fore=0.2 kN in the engineering and (6).
alternate solutions, respectively. We note that the alternate solu-
tion is worse than the engineering solution in the stiff belt casf\Cknowledgments
but better than the engineering solution for the compliant belt.  This work was sponsored in part by the National Textile Center

Table 1 also displays the slip anglgs= 3, on the driving and and the U.S. Department of Commerce under Grant E27B51, the
driven pulleys forM =2.0 Nm(A=8x 104 for the stiff belt case National Science Foundation under Grant CTS-9711109, and the
andA=1x10"1 for the compliant belt cagea value selected so Air Force Office of Scientific Research, Air Force Materials Com-
as to be less than the maximum mom#ht,,, that can be trans- mand, USAF, under Grant F49620-97-1-0003. The U.S. Govern-
mitted for either value ok, as predicted by all four solutions. ment is authorized to reproduce and distribute reprints for govern-
Figures 4, 5, 6, and 7 display the four predictions of belt tensiomental purposes notwithstanding any copyright notation thereon.
belt speed, normal force per length, and frictional force per lengithe views and conclusions contained herein are those of the au-
as functions of arclengtifor the complete circuit of the belt, for thors and should not be interpreted as necessarily representing the
this specified subcritical moment. For the stiff belt the predictiorafficial policies or endorsements, either expressed or implied, of
of the engineering and alternate solutions are graphically indistifie U.S. Air Force Office of Scientific Research or the U.S.
guishable from those of the full solution, whereas the capsté&pvernment.
solution neglecting all effects of inertia significantly underpredic
the lengths of the slip zones and significantly overpredicts t:%eferences
strain rate of the belt and the normal and frictional forces on thel1] Johnson, K. L., 1985Contact MechanigsCambridge University Press, New
belt in the slip ZO“‘?S' In the comp_llant belt case, the engln.eenngz] C(;:Is.on, C. D., 1996, Ph.D. dissertation, The Ohio State University.
and alternate solutions depart noticeably from the full solution ag3) amijima, s., 1963, “The Tension of the Belt When it is Running,” Sci. Eng.
well. On the driving pulley the errors are in the opposite directions — Rev. Doshisha Univ.4, pp. 14-24.
of the inertia-less capstan solution, overpredicting the slip zone$#! Amijima, S., 1962, “Some Problems Associated With the Friction Between
and underpredicting strain rates and frictional and normal forces, gf)'tthzg‘r’typﬁ_”%: Sg"il\fgghaﬁ?c"él%’;ﬁg:;%”gggéﬁ; dbadeGraw-
On the driven pulley the errors are more complicated to describe:™ i new York.

Both the engineering and alternate solutions overpredict the extens] Fazekas, G. A. G., 1963, “On the Lateral Creep of Flat Belts,” ASME J. Eng.
of the slip zone, and in this zone the alternate solution overpre-_ Ind., 85 pp. 307-313. . ) ]
dicts the normal and frictional forces; the engineering solution[”] F"bi‘gg’s-_r'lgé'glgm' “Mechanics of the Belt Drive,” Int. J. Mech. Sdi2,
predictions for normal and frictional forces coincide with the full g glr)ﬁijima, S., 1962, “Some Basic Problems About the Belts,” Sci. Eng. Rev.
solution where the zones coincide. Since the engineering solution Doshisha Univ.2, pp. 13-25.

6 Discussion
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Asymmetric Four-Point Crack the crack, the exact solution for the cross section has a parabolic
. distribution of shear stress proportional@oand a linear variation
Specimen of normal stress proportional td ([5]). By superposition of these

two contributions, the solution for the intensity factors in the pres-
ence of the crack can be written exactly in the form

M. Y. He
Materials Engineering Department, University of Kﬁ:g JmaF,(a/W) (2a)
California, Santa Barbara, CA 93106 W

R Q (a/W)SIZ
J. W. Hutchinson Ki=wiz 1—arwy 721 (@/W) (20)
Fellow ASME, Division of Engineering and Applied where, anticipating the application, we have takér-cQ at the

Sciences, Harvard University, Cambridge, MA 02138  crack. The solutiori2a) is the same as that for a pure moment. It
has been obtained numerically to considerable accuracy. Tada
et al.[6] give

Accurate results for the stress intensity factors for the asymmetric 4

ma
four-point bend specimen with an edge crack are presented. A 0.923+ 0.19§{1—sin—
. . L ) a 2W  7a 2W
basic solution for an infinitely long specimen loaded by a constant  F | — | = \/=—tan——
shear force and a linear moment distribution provides the refer- W ma  2W ma
ence on which the finite geometry solution is based. COSW\/
[S0021-893600)03601-1
a
This note was prompted by a comparisdh]) of existing nu- for 0= V—vsl (3a)
merical solutions([2—4]) for the crack specimen known as the
asymmetric four-point specimen shown in Fig. 1. Discrepanciegile Murakami[7] gives
among the solutions are as large as 25 percent within the param- 2 3
eter range of interest. Moreover, in some instances the full set of £ (3 =1.122- 1.12]<i +3_74(<3 +3.87< i)
nondimensional parameters specifying the geométngre are w w W w

four) have not been reported. The specimen has distinct advan- 2 5

tages for mixed mode testing, including the determination of _19.0%3) +22_55<3) for 3§0.7_ €)
mixed mode fatigue crack thresholds. Here a new fundamental W W W

reference solution is given for a infinitely long cracked specimeﬁhe second solutiof2b) is not in the literature.

subject to a constant shear force and associated bending momeg i« ajement analyses of the reference problem have been
distribution. The small corrections needed to apply this solution % rried out to obtain botR, (as a checkandF, . Our results for

the finite four-pqilnt _Ioading geometry are .inclgded.. . F, agree with(3b) to four significant figures over the entire range
By static equilibrium(the configuration in Fig. 1 is statically

determinant the shear forceQ, between the inner loading points
and the bending moment), at the crack are related to the force,

P, by (all three quantities are defingxr unit thickness . P .
—b —’l’_ be— Loading
Q=P(b,—by)/(b,+b;) and M=cQ. (2) @7 L — Points

Consider first the reference problem of an infinite specimen l B jw
with crack of lengtha subject to a constant shear for@eand aj}—-Crack

; . h . — “ Speci
associated linearly varying bending moméhtin the absence of /_./\)___‘_’_‘i_]\) Specimen

SUPPOrt fe fpy ———wla- by —=d
Points ' 2 B

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED ) . )
MECHANICS. Manuscript received and accepted by the ASME Applied Mechanidsig. 1 Geometry of the asymmetric bending and shear
Division, Feb. 22, 1999. Associate Technical Editor: A. Needleman. specimen
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Fig. 2 Location of the crack for pure mode Il at its tip (e=1) Fig. 4 Error boundaries for mode Il stress intensity factor of
two percent and four percent for  (a=1) for the reference solu-
tion (2). Combinations (a/W,b,/W) lying above a boundary

of a/W indicated. Equatiori3a) appears to be less accurate ovehave smaller error.

this same rangéwith error less than two percentut it can be

used fora/W>0.7. The same finite element meshes were used to

computeF . The following polynomial representation was ob-

tained by fitting the numerical results: Figure 2 displays the dependence /W on a/W for three
a a a2 a3 values ofb; /W and a=(b,—b,;)/W=1. This was computed as
Fu(_) =7.264— 9.37( _) +2_74( _) + 1.87( _) the c/W at whichK;=0. If the moment at the crack vanish@ge.,
W W W W c=0), the mode | factor can be significant when the loading
a4 a points are near the crack. For example, for the extreme, but not
- 1.04(V—V for 0< V—Vsl_ (4) entirely unrealistic case, whebg /W=0.6, «=1, a/W=0.2, and

c=0, the mode mixityg=tan (K, /K)), is 65 deg instead of 90
This result is believed to be accurate to within one percent ovéed.

the entire range of/W. The results of Suresh et 4] deter- Variations of the mode Il correction factay with a/W for

mined for a specific choice of the other dimensional parameters¥veralc/W are shown in Fig. 3 fob, /W=1.0 anda=1. The
the finite geometry are in good agreement with error is largest for short cracks and for cracks on the order of a
Without loss of generality, the solution for the asymmetricallgiistanceW from the closest loading point. Curves corresponding
loaded specimen in Fig. 1 can be written as to constant values of the correction factor are plotted in Fig. 4,

with ¢/W=0.2 anda=1. If the combination §, /W,a/W) lies
_G(C—CO)Q F(a/W 5 above the curve, the correction factor will be smaller than the

w2 maF(a/W) (53) correspondingy.

Finally, the effect of the parametet=(b,—b,)/W is dis-
played in Fig. 5 by normalizing each of the respective stress in-
tensity factors by the reference value fr¢®). These results have
been computed witty, /W=1.4 andc/W=0.2. The error in the
reference values is less than roughly 2 percent wiei®.5.

7Q (a/w)¥?
Ku:\,wmrzFu(a/W) (5b)

where, in generak, /W and » are functions o&/W, c/W, b, /W,
andb, /W. The mode | stress intensity factor is not precisely zero The plots in Figs. 2—5 provide guidance for eithér-ensuring

whereM =0, motivating the introduction og,. The representa- the test parameters are such that the reference sol@iaan be

tion (5) is chosen because |t_reduc_es to the r_ef_erence SO'““QQed with confidence, dii) estimating the corrections to the ref-
(Co/W=0,7=1) when the loading points are sufficiently far from, oo so1ytion usings). As long as the distance between the

the crack. The flnlte element resul'gs presented below indicate ck and the nearest loading point is greater than abolV/ 1.4
reference solution is accurate to within about two percent as long

as the distance of nearest loading point to the crack is greater than

1.4W.
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Fig. 5 Role of a=(b,—b,)/W in error of the reference solution
Fig. 3 Correction factor for mode Il intensity factor (a=1) (2) for b;/W=1.4 and c/W=0.2
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(i.e., (b,—c)/W>1.4 withb,>h,) the reference solution is accu-sults, in the case of a silicone tube, indicate that the increase of
rate to within a few percent. The errors in the reference solutigmestress minimizes the stress gradients due to the effects of the
are the smallest for deep cracks, i&W=0.5. shear.

Acknowledgment
This work was supported in part by the Multi-University Re2 Model Formulation

search Initiative on “High Cycle Fatigue,” which is funded at Consider a nonlinear ; .
. y elastic opened tube defined by the angle
Harvard by AFSOR under Grant No. SA1542-22500 PG, and s (Fig. 1). Let us suppose that the tube undergoes two successive

part by the Division of Engineering and Applied Sciences, Halgetormations; first, including the closure of the tube which in-
vard University. duced residual straing11]) and second, including inflation, ex-

tension, torsion, azimuthal and telescopic shears. The mapping is
References described by

[1] Campbell, J. P., 1998, private communication, University of California, Ber-

keley. ™
[2] Wang, K. J., Hsu, C. L., and Kao, H., 1977, “Calculation of Stress Intensity r=r(R) 0= (w_
Factors for Combined Mode Bend SpecimenAdvances in Research on the 0
ts”lengtg a”dd Frf;Cthe of Mgmfia'mo'- 4\,(D.kM. R-lggplil”éaed-' ICF4, Wa- where R,»,Z) and (,6,2) are, respectively, the reference and
[3] I—?;,Ol(\)/i. Y?ngaiv, Htlarg?n;ﬁg E:/?rfé, Ae.vé.,olrgygg,p‘.‘Mixed—Mo.de Fracture: Thethe defprmed .posmons of a material particle in a cylindrical sys-
Four-Point Shear Specimen,” Acta Metall. Mate88, pp. 839-846. tem. ¢ is a twist angle per unloaded lengtl,and\ are stretch
[4] Suresh, S., Shih, C. F., Morrone, A., and O’'Dowd, N. P., 1990, “Mixed-Modeatios (respectively, for the first and the second deformatiénis

Fracture Toughness of Ceramic Materials,” J. Am. Ceram. S@8,,pp. gn ang|e which defined the azimuthal shear, ané an axial

w+daZ+0(r) z=haZ+A(r) (1)

1257-1267. . : ) -
[5] Timoshenko, S. P., and Goodier, J. N., 197T0geory of Elasticity 3rd Ed. dISplacement which defined the te_lescoplc shear.
McGraw-Hill, New York. It follows from (1) that the physical components of the defor-
[6] Tada, H., Paris, P. C., and Irwin, G. R., 198%e Stress Analysis of Cracks mation gradienf has the following representation in a cylindrical
Handbook Del Research Corp., St. Louis, MO. system:
[7] Murakami, Y., 1987,Stress Intensity Factors HandbgoRergamon Press,
New York. i’(R) 0 0
. ) r(R)y =
F=| r(R)®(r)r(R) R o roa )
o
Large Shearing of a Prestressed Tube AMi(R) 0 o
where the dot denotes the differentiation with respect to the argu-
M. Zidi ment.

Incompressibility then requires thde=detF=1, which upon

UniversiteParis 12 Val de Marne, Facultes Sciences et . 1Ppres
integration yields

Technologie, CNRS ESA 7052, Laboratoire de

Mécanique Physique, 61, avenue dun@al De Gaulle, 2or2s 20 (ReR?) 3

94010 Creteil Cedex, France ' oman '

e-mail: zidi@univ-paris.12.fr whereR,; andr; are, respectively, the inner surfaces of the tube in
the free and in the loaded configuratidifig, andr are the outer

surfaces
This study is devoted to a prestressed and hyperelastic tube rephe strain energy density per unit undeformed volume for an
resenting a vascular graft subjected to combined deformatiorfd@stic material, which is locally and transversely isotropic about
The analysis is carried out for a neo-Hookean response auffiet(R) direction, is given by
mented with unidirectional reinforcing that is characterized by a _

. . . . . W W(Ilvl21|31|41|5) (4)
single additional constitutive parameter for strength of reinforce-
ment. It is shown that the stress gradients can be reduced \Where
presence of prestresgS0021-8936)0)00101-X |, =TrC, 1,= %[(TrC)Z—TrCZ], =1,

I,=tCt, 15=tC? (5)

. . L _are the principal invariants o = FF which is the right Cauchy-
Mechanical properties are of major importance when selectlgg;reen deformation tensdF is the transpose df)
a material for the fabrication of small vascular prostheses. T €The corresponding response e uatign for th.e Cauchv siress
operation and the handing of prostheses vessel by surgeons, or}th ransverser; isotr% ic ipncom rgssible(ime[lz]) y
one part, the design of such grafts, on the other, induce spec it y P P

1 Introduction

loading and particularly boundary or initial conditions. Conse- o=—pl+2[W;B—W,B 1+ ,W,T&T
quently, the interest in developing a theoretical model to describe
the behavior of the prostheses vessel is praf/&. In this paper, +1Ws(T®B-T+T-BRT)] (6)

we consider a thick-walled prestressed tube, hyperelastic, traﬂﬁ?reB:ngs the left Cauchy-Green tensdk,the unit tensor

versely isotropic, and incompressible assimilated to a vessel gr. p the unknown hydrostatic pressure associated with the
We give an exact solution of the stress distributions when the t”%ﬁompressibility constraint, W, = (0W/al;) (i=1,2,4,5) and

is subjected to the simultaneous extension, inflation, torsion, a?-—(ll\/l—) Ft
. ) Ft.

muthal, and telescopic sheaf2—10]). The first theoretical re- From (6), the equilibrium equations in the absence of body

forces are reduced to

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED do O —
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. " " 09 _ 0 (7a)
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R,w,72)
(a)

Fig. 1 Cross section of the tube in the stress-free

(1.0.8)
(b)

(r,0,2)

(©

(a), unloaded (b), and loaded configuration

(©
doyy 20y ( Rowg )2 "o =0
ar + = (7o) p(r)=p;+2W, P —2W,f(r)+ r,ids
dUrz Oz (8a)
dr - —0. (Te)  where
Suppose tha® and A satisfy the following boundary condi- f(r)= A2 1 N 'Rwgd)?
tions: (@ ®=0,, A=A, inr=r, and(b) ®=0,, A=A, in r (=20 oz 1 =
=r.. Then, a simple computation by integratifigh) and (7c) ) )
gives the expression & andA. - Rwg\2  O(NA(N)dws [rman)?
Integrating(7a), given the boundary conditions that, (r;) = +0(r) 7) -2 + R ) .
—pi ando,,(re) =0, and taking(R) =t (R)e,+t,(R)e; and us- 7 am “o
ing (3) yields the pressure fielg: (8b)
1,4
[
bl —— 0, =180°,0,=5
—- = 180°, ©, =30°
11 —a— @, =150°, ©, = 30°
<
—— @, =120°, ©, =30°
0,8 f-
;ﬁ 06 4
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=
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E o024
=]
z
0+ =N
02 4 I
0,4 + !
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Normalized radial position

Fig. 2 Azimuthal stresses distribution inside the wall without
p;=0.0133 Mpa, 7,=2 mm, 7,=3 mm)
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—— ©,=180°, ©, =5

= o,=180", ©,=30°
—— @, =150°, ©, =30
= @, =120°, ©, =30°

Normalized azimuthal stress

-6 + t t
0,1

0,4

0,5

Normalized radial position

Fig. 3 Azimuthal stresses distribution inside the wall with fibers
=10 Mpa, p;=0.0133 Mpa, 7;=2 mm, 7,=3 mm)

(stresses normalized by o ,4(r.), m=0.166 Mpa, E;

The expressions d, A, andp determine all the components ofnal azimuthal strain at a given pressure when taking into account

the Cauchy stress tensar

3 Results
To illustrate the response of the proposed model, we use

the effects of such residual stresses. We show clearly that a de-
crease inwg angle helps to distribute stresses in the loaded state
when the shear is important. This result does not change qualita-
tively when varying the pressurg .

therurthermore, the particular effects of the presence of fibers

extended Mooney Rivlin strain energy function which representfave been examined with a linear distribution of fiber orientation

the behavior of a prosthesiglL3]) constituted of a silicone matrix
and textile fibers,

E
W=W(I1,10=5(11-3)+ 5 (1= 12 ©

within the data rangey(R;)=—40deg andy(R.)=40deg. As
illustrated in Fig. 3, it is shown here that the effects of the azi-
muthal shear upon the distribution of the circumferential stresses
within the wall become significant. When the tube is prestressed,
the stresses are also distributed. Clearly these results will be able

wherey is the shear modulus of the isotropic matrix at infinitesit©® help the design and fabrication of a small vascular prosthesis

mal deformations an&; is the elastic modulus of the fibers.
The local tangent vector of the fibers is chosen her¢(BR$

=cosy(Re,+siny(R)e, that represent a helical distribution of

fibers ([1]).
From Egs.(7b), (7c) and using(3) it easily follows that the
expressions 06 andA are

r
riv1+k(r2—r?)
re
riv1+k(ra—r?)

log[ 1+k(r2—r?)]
logf 1+k(r2—r?)]

log

0(r)=(0.-9)) +0; (10)

log

A(r)=(Ac—4j) +4i (11

wherek= ma\/Reawy.

As an illustrative result, we focus our attention only when the
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In the present work, we use the dimensionless buckling pres-

sure of the overall structure consisting of the shell and surround-

Buckling of a Short Cylindrical ing medium developed by Razakamiadana efailand which is
Shell Surrounded by an given by the relation
Elastic Medium ., B

p:n -1+ n2_11 (1)
S. Naili where the dimensionless variables are given as follows:

e-mail: naili@univ-paris12.fr s .
r

— T — To
C. Oddou Prabp PP
e-mail: oddou@univ-paris12.fr and whereD = E,e3/12(1— v?) is the flexural rigidity modulus of
Laboratoire de Meanique Physique, UPRES-A CNRS  the shellE, and v, being, respectively, its Young's modulus and
7052. UniversiteParis XII. Val de Marne. Faclilte its Poisson’s ratio, while the index characterizes the buckling
' Vo R de. Th t d defined b
des Sciences et Technologie, 61, avenue dneaede mode. The parametersand 5 are defined by

Gaulle, 94010 Citeil Cedex, France Ao+ 2uy (Zeo)
Aot o )
a—= ’
i P €o M2 M2

The lateral surface of a cylindrical structure, which is composed 1- 1_2r_ 1-—+ Nt
of a thin tube embedded in a large outer medium, is submitted to 0 K1 1T
a uniform external pressure. The buckling pressure of such a P n2—1
structure, corresponding to a low flexural state of the inner tube ,3:2—2()\2+ )| ————|,
wall, is theoretically analyzed on the basis of the asymptotic o N(\2+2u2)+ o

method. The theoretical results are compared with experimen} |
ones obtained from a compression test realized on an elastic t

inserted in a foam. It is found that the Euler pressure and the In
associated buckling mode index strongly depend upon the rh%%'ck
logical and geometrical parameters of both the tube and the SUl-5s
rounding medium[S0021-89360)00201-4

which the Lame’s parameters of the shell and of the medium

denoted bw,uq, and\,,u,, respectively.

this study, we were interested in the smallest value of the

ling pressure—the Euler pressure—, while varying the index
sociated with the buckling mode; such a mode index charac-
terizes the number of axes of symmetry in the actual configura-
tion. Indeed, this minimal pressure is the most frequently ob-

served experimentally while applying incremental loading to the

1 Formulation of the Problem and Buckling Study structure. This pressure is expressed as

A nonhomogeneous cylindrical structure composed of a thin 1 D PBro
shell inserted in a surrounding elastic medium was subjected to a Pe=min| — ( (n?-1) -+ m) . )
state of plane strain by external pressurization and zero axial lon- n=2 & fo

gitudinal displacement constraint. The onset of the buckling pro-

cess for such a structure was analyzed. The theoretical results
were compared with original experimental ones as derived from a
hoop compression test which was conducted with elastic rubb: Monitor Video camera
tubes embedded in foamy materials.

Thus, we consider the mechanical behavior of a cylindrica
nonhomogeneous structure made of an internal shell confined in
large outer medium, the whole structure being submitted to a un
form pressure on its external lateral surface. Each solid is elas. ¥4 recorder ay :
tic, cylindrical—of same axis—with a circular cross section in the Prossurization system :
reference configuration. In this configuration, the mean radius ¢ o o &—— LTI B—Testcen
the shell is denoted ag,. The outer radius.. of the medium is
assumed to be very large compared go We will denote ase,
the thickness of the shell. The two solids have the same heig
which is small in comparison with,, . The outer lateral boundary

=

Foam medium’ Tire inner tube
buckled shell Container
Open window

Top view of the test cell

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i i i
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF AppLED  Fig. 1 Experimental apparatus for hoop compression tests.
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, FebThe tube inserted in the foam medium is in a buckled state with
12, 1999; final revision, July 22, 1999. Associate Technical Editor: S. Kyriadidesindex of buckling mode equal to two.
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Table 1 Experimental and theoretical results of Euler pressure normalized by E, and index of
buckling mode n associated for various dimensionless mechanical and geometrical param-

eters
- Experiment Theory
E E, (kPa e € (mm) Pe/Epx 1072 n Pe/Epx 1072 n
14.50 100 0.078 1.00 (8.69+0.80) 6 8.39 6
14.50 100 0.189 2.40 (15.34-2.19) 2 13.00 2
26.07 79 0.037 0.46 (4.21+0.40) 4 4.21 6
28.70 100 0.105 1.30 (11.00+1.00) 4 9.80 4
28.70 100 0.136 1.75 (12.89-0.92) 3 12.05 3
28.86 79 0.032 0.40 (3.98+0.33) 3 4.87 6
28.86 79 0.070 0.90 (6.13+0.63) 2 7.65 5
29.85 69 0.037 0.46 (4.66+0.78) 4 5.24 6
33.00 69 0.032 0.40 (4.21+0.21) 3 4.79 6
33.00 69 0.070 0.90 (6.10+0.31) 2 7.69 5
158.46 13 0.037 0.46 (11.76+3.69) 3 7.60 3
175.38 13 0.070 0.90 (17.69-0.10) 2 9.61 2
It is to be noted here that a classical case corresponds to #mut 0.5—, i.e., the material is incompressible—whereas the
particular condition of an external incompressible fluid—ig,, Poisson’s ratio for the foam media were around zero.
=0 and\ ,—»—surrounding the shell, so that=1 and8=0 in Next, the video images were digitized and then automatically
relations(1) and (2). processed using a global thresholding method so as to quantify the

inner cross section area of the inserted tube and to characterize its
. shape. In the extreme case corresponding to a significant variation
2 Experimental Procedure of this shape, the relative uncertainty of area measurement was
Hoop compression tests were performed on a cylindrical strugstimated to be of the order of two percent. Indeed, when the
ture with a circular cross section composed by a thin rubber sheftructure is submitted to a gradual and slow loading, we retained
of external radius =13 mm which was inserted in a large foamas Euler pressurg,, the one which corresponds to a clear change
medium of external radius.=110 mm. Both tubes had a heightin the inner cross section area, as discussed later on.
H=30mm. The thin rubber shell was slightly stressed when in- For a given structure, the measurement of the buckling pressure
serted within the foam medium in order to establish a good cowas repeated ten times at least and the relative gap compared to
tact between the two solids. the mean value varies between 1 percent and 30 percent.
A steady loading was applied on the external lateral wall of the
surrounding foam medium by means of a tire inner tube connect8d Analysis and Discussion
to a standard pressurization system. The plane strain of the stru . .
ture was obtarl)ned by malnta)llnlng it betvSeen two circular andCWe show, in columns 5 and 6 of Table 1, the experimental

polished PMMA transparent plates. In order to avoid &gnlflmﬁ?suns obtained on 110 tests implying 12 structures of different
friction between the foam and the plates, the lower and upp gometry and elastic properties. The results are discussed by using

faces of the foam were sprinkled with talc powder. e dimensionless geometrical and mechanical parameders

The applied pressure was measured by using a mercur;?o/ro andE=E, /E, in the case of rather thin tubes and exter-
U-manometer graded every 1 mm in height with a maximum read-
ing error estimated at about 0.5 mm. When the buckling pressure
s “very low,” the relative accuracy of the pressure measuremerj$s
was estimated at about seven percent. But, in 90 percent of tj
cases, the measured pressure was about 50 mm Hg and the
tive uncertainty of measurement was estimated, on average, to
one percent.

With this experimental setup, several tests of compression we|
conducted on the structure with given geometrical and mechani
characteristics. The tested structure was submitted to a grad
and slow loading so that, for each step, the system can be cons
ered in stationary equilibrium state. The shape of the cross secti
of the shell remains circular before undergoing a change of shag
We monitored the evolution of shape with a CCD camera vide
placed on the axis of the tubes—see Fig. 1.

The thicknes®, of the shell, in its reference configuration, was
inferred from the mean value of the measurements conducted wi
a micrometer at various locations on the wall. The variation
around the mean value were found to be in the order of tw
percent. The values of Young’s modulus of the shell and of th
medium were derived from traction and compression tests, respd
tively applied on samples of the constitutive materials. In the dif
ferent experimental setup, four types of latex foam media witl
different Young’'s modulus and Poisson’s ratio were combine&g

. - . -Flg. 2 Top view of the test cell giving an illustrative example
with tubes made of various PCP, PCV, or latex materials havi the tube inserted in the foam medium in a buckled state with

different characteristic mechanical properties as indicated in Tallge, of huckling mode equal to four. Circular windows—uwith a
1. For the deformations up to ten percent each Young's moduligiius in the order 30 mm—were cut on the top and bottom of
was evaluated with a maximum error of five percent. Besidese PPMA container for a better definition of the image during
these tests have shown that the Poisson’s ratio of the shell wias recording.
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nal foamy material softer than the rubbery one of the tube. Staadaptivity easier. Numerical results are presented. A specific
ing with Eq. (2), we determined the variations of the Euler presstudy of interfaces in a Al-SiC composite is given.

surep, normalized byE,—denoted ap.—as a function o for [S0021-89360)00301-9

various values ob. The associated buckling mode indexhen

depends of. It is worth noting that the assessment of the buck-

ling pressure in such an experiment was based on the variatiomof |ntroduction

a global geometrical parameter such as the area of the internal )
cross section of the inserted shell—see Fig. 2. Other more sensié* great number of recent papers are concerned by the solution
tive parameters, related to the changes in local shape properé®artial differential equations by wavelet baggs,2]). Mainly,
could, however, be envisaged but their quantification by dR€se works deal with one-dimensional or scalar two-dimensional

image-processing system would have been more difficult Rgoblem_s. The solution of the elastostatics system by this kind of
implement. method is not usud[3,4]). Boundary problems on open bounded

In columns 7 and 8 of Table 1, the theoretical results are corfets are very difficult to treaf5]). Nevertheless, periodic condi-
pared with experimental ones. These results show that the EUIEPS on elementary bounded sets are natural for the use of wave-
pressures, evaluated theoretically and determined experimentdW,tranSfQVm- In this paper, we show how to use such a technique
agree well accounting for the inherent scatter in experiment@ld We give applications to interfaces in Al-SiC composite. In the
measurements. Moreover, the mode indeassociated withp, first section we give the notatlons_and the necessary mathemat_lcal
coincides exactly for 50 percent of the cases. Nevertheless, itt@ckground. In the second section we present the mechanical
worth emphasizing that significant differences arised in the caBioblem: the homogenization of periodic heterogeneous media.
of very thin tubes for which the mode index are rather high, thEhe third section is concerned with the algorithm: a wavelet-
large number of lobes being more sensitive to small heterogerfgdlerkin method using Daubechies wavelgd). The determina-
ities in material property and geometry. Despite this, the observi@n of the macroscopic coefficients is treated in the fourth sec-

experimental results are, in general, well reproduced by our thé{#n- Applications and numerical results are described in the fifth
retical model. section. Concluding remarks are given.
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A Numerical Tool for Periodic u; denotes théth partial derivative of the function. We de-
i i i note C the fourth-order elasticity tensag,the strain tensor, ang
Heterogenequs Me_dla' App“ca,tlon the stress tensor. In the following=10,1[2. To construct a wave-
to Interface in Al/SIC Composnes let basis ofH, we use the compactly supported wavelets intro-

duced byl. Daubechied6] which is a basis ofL?(R). These
wavelets are periodized in order to obtain baseS. @y tensorial

D. Dl{mont ) and cartesian products wavelet basesidare obtained[7]). We
Facultede Mathenatiques et d’Informatique, 33, rue Saintdenote¥', =1, 2, 3, and¥° the wavelets and the scale functions
Leu, 80 039 Amiens, France (six degrees-of-freedom for each pointN'=2'—1 and A
e-mail: Serge.Dumont@u-picardie.fr =[ON'T2

Let V; be the subspace of dimensio® 2* of H generated by

this wavelet at approximation levglAn element ofV; is thus

F. Lebon written as i F e
Laboratoire de Meanique et Geie Civil, Universite

Montpellier 2, PI. E. Bataillon, 34 095 Montpellier Cedex U(X1 %) = (Ur(X1,%0) Ua(X1. o))

5, France 1=3 j=] max
! _ d0 43,0 dl !

e-mail: lebon@Imgc.univ-montp2.fr “d_,;;«_ ”JoK‘I'ioKJrZ:1 J;o K;_ Ui Wi - (2)

o 2

A. Ould Khaoua jo is a given integerd=1 or 2 andx=(kq,k).

Departamento de Matematicas, Universidad de los Andes, .

Calle 19 1-11, Bogota, Columbia 3 The Mechanical Problem

e-mail: ahmed@media.uniandes.edu.co We consider a multiphase isotropic elastic compogfig. 1)

and we intend to study the behavior of this heterogeneous media.
We introduce the notion of equivalent material, i.e., we mean that

under the same loadings, this equivalent material has globally the

A wavelet-Galerkin method for periodic heterogeneous mediaz% e response. In former pap€®,9)) bounds for the bulk and
presented. The advantages are to remove the mesh and to m (rgnar moduli of a two-phase composite have been given. Without

Comibuted by the Abplied Mechanics Division o A going into further detail, these bounds depend on the shear and
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i
]

Elementary volume

Heterogeneous material Homogenized material

Fig. 1 An example of a composite and its representative volume

consisting of the juxtaposition of identical heterogeneities arféroblem. P,

classically, we need to solve an elastostatics problem on a reps= L be given, findue H such thata,(u,v)=I(v) Vv eH
sentative volumeY (ProblemP):

Problem. P _ with a, (u,v)= j a(u):e(v)dy+sf uvdy
EeL be given, findue H such thata(u,v)=1(v) YveH Y Y

. _ . _ . It can be shown that the solution of this problem converges
with a(u,v)= J'YU(U)'e(U)dy_ JYC(y)e(u).e(v)dy toward the solution of probleniP) with average equal to zero
([4D.

Remarks.

(i) The problem(P) is solved classically by a finite element
method or by fast Fourier transforhll]). We have chosen to

Because of the nonuniqueness of the solution of prollem introduce wavelet methods in order to eliminate the notion of
(defined within a translationproblem(P) is replaced by problem mesh and to eliminate Gibbs phenomena.

(P,) (“viscous” problem): (i) If the discretization of probleniP) in a orthonormal wave-

and I(u):—f CE:D(v)dy
Y

KJ\J J+1 42 J+3 J+4 /\

00 T e ———— —]
1 KO | g0 | ko3
TIkk’ Tikk! Jjkke | Jjkk
J+2
J+3
10 | K” K12 KB
- o] K Ko
21 | 2 | 3
20 K. K...IK
L Tk iRk
10 31| 32 | 33
K0 Koo K Ko
L

" 2
6 2] 6(4M-3)

Fig. 2 Wavelet element matrix (jo=J, jmax=J+4)
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let basis leads to the systeklU =B, then the discretization of
problem @,) leads to K+eld)U=B, whereld is the identity
matrix.

(iii) The tensorC could be given by the imaggpixels) of the
microstructure.

4 Wavelet-Galerkin Method

The variational problem R,) is discretized by a Galerkin
method. We have introduced a wavelet basis because of their
localization and adaptivity properties. The projection of the plane
elasticity operator into the wavelet bagj3]) is given by a stiff-
ness matrixK where the “elementary matrix” of order 2 is

B [ Fii1rt Fasart Farnat Fagoe Fuooat Fisiat Fazpot Fsslj
| Fiotst Fagoot Fairt Fagor Fazoot Fosiot Faport Faa
(3) n
where

Fig. 3 AI-SiC composite with an interfacial zone (thickness %)

. | I
quaB—J Cpqq,jk,a\Pj’K’,B XmdXz.
Y Table 1 Interface laws

We have chosen to decompose the teri3on a wavelet basis
at levelJ noted 4. In the numerical applications, Haar wavelet is

used with its compact support equal to the squelg2,(l, #/€—0 uy=0 o7r=0 INT N or=0 ,=0
+1)/2TX[1,/2),(1,+1)/2]. This wavelet is constant on this sup- -
port which is a pixel of the image representation. Thus, the wave- B ® wo\ A
let coefficientd; is equal to the value of the tens@r on this u/e—u u=0 Ty Ur ON= ;+2:y Un UNZZ;UN
pixel. Due to the form of the wavelet€artesian and tensorial
products of one dimensional wavelethe computation of the m m
coefficients of the matriX leads to the determination of elemen- 0T=;Ur UT=; Ur
tary terms which are integral of products of three one-dimensional
wavelets and their derivatives: ule— u=0 u=0_ u=

N e—x Ne—N\ Ne—0

Lood™pyg d™y
19er7 ax m,n=0,1. 4)
These terms are obtained by the determination of eigenvect 0.0 ; .

of a low-order matrix[7,12)). The right-hand side of the problem —0(1,05)
corresponding to the teriifv) in problem @,) is computed by a E—8(0.50.5)

similar technique([4,5]). Classically, the matrixK is a sparse
matrix (Fig. 2). Because of the form of the wavelets bases,
seems natural to solve the linear system which is a discretizg
version of problem P,) by multigrid techniqueg[13,14]). Nev-

ertheless, we have chosen to use a conjugate gradient metho

030

Eceme

020

mp of displ

5 Determination of the Macroscopic Coefficients

The determination of the elastic macroscopic coefficients cc=
responds to the computation of the macroscopic stress t§nsor§

E=f (CE+Ce(u))dx,dx,. (5)
Y

The computation of these terms is in the same way as the n
trix and the right-hand sidp4].

i L

0.00 0.02 0.04 0.06 0.08 0.10

0.00

6 Numerical Results thickness

We present the example of a three-phase fiber-matrix compodiig- 4 Jump of displacement for different values of ~ a and B
(Fig. 3): SiC for the fiber, Al for the matrix and an interface. ThdM=3)
Lame coefficients associated to the interface arg® and u7?
where 7y is the thickness of the interfaca.and B are real posi-
tive parameters ang is a given function with a sufficient regu- Table 1 with respect to the value of the parameteesd 8. « and
larity. We have shown in former papeflsl5-17) that whens B determine how the thickness and the rigidity tend to zero. It
tends to zero, i.e., the thickness and the rigidity parameters teadnecessary to quantify the limit, in other words we seek an
to zero, we obtain an elastostatic limit problem with an interfadaterval in which the initial problem could be approximated by
law. This interface law keeps in memory the mechanical and gethre limit problem for which the solution is more easy to obtain.
metrical properties of the layer. The interface law is given i@n the other hand, it is very important to quantify the influence
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On the Original Publication of the

of the interface on the macroscopic coefficients, i.e., on the elasg%eneral Canonical Functional

behavior of a structure. Due to the shape and the thickness@f Linear Elasticity
the interface this problem is very difficult to treat by classical
techniques.

We present, in Fig. 4, a study of the convergence of the jump &. A. Felippa

displacement in the interface for the cage 1, for two values of pem. ASME Department of Aerospace Engineering and
a and 8. X and u are chosen as Aluminum coefficients. In this ) '

case the jump is equal to zero in the interface law. We have fouﬁ:oenter for Aerospace Structures, University of
that for values ofy smaller than 0.4 p.c. of the structure thecolorado, Boulder, CO 80309-0429

interface law could be considered as valid. Note that the displace-

ment in the interface has the forp16]) u(r,8)=ru(6)+ug.

Figure 5 shows the influence of the thickness parameter on tige general canonical functional of linear elastostatics is associ-
first component of the homogenized elasticity tensor for differegkeq with the names of Hu and Washizu, who published it inde-
values ofa and 8. For small values of the thicknesy smaller pendently in 1955. This note discusses how that functional, in a
than 0.2 p.c. of the structuré is convenient to neglect the inter- yeneralized four-field form, had been derived by B. M. Fraeijs de
face. Note that for values of the thickness larger than 0.02, tRubeke in a 1951 technical report. This report presents five of

coefficient depends linearly on the thickness. the seven canonical functionals of elasticity. In addition to the
general functional, it exhibits what is likely the first derivation of
7 Concluding Remarks the strain-displacement dual of the Hellinger-Reissner functional.

r;I'@e tour of five variational principles takes only a relatively small

fartion of the report: 8 pages out of 56. The bulk is devoted to the
to compute the influence of an interface even at a very small lev ﬁeh of lener?y methogsi_fo_; %ng!yss of V‘t’.'ng structures. 'I;hfe t'ttLe'
In the future, we want to investigate more complex materials su fchnology focus, and limited dissemination may account for the

: : . subsequent neglect of this original contribution to variational me-
random material$[18]) or other kind of interface§19,20). chanics [S0021-893(0)00401-3

In this paper, we have shown a robust tool to compute t
overall response of a composite. In particular, our method is a
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methods starts from the C4FLE functional, which he calls “thand P,, and Pg are potentials of the bodwolume forces and
general variational principle.” However, it does not reference Hsurface tractions, respectively,
and Washizu as its source but an earlier technical report, written
in French([4]). This appears as the third reference in the 1965 PV:f (Xu+Yv+2Zw)dV 4)
article. v

A subsequent journal paper on variational principls, is
slightly more explicit. It begins: “There is a functional that gen-
erates all the equations of linear elasticity theory in the form of
variational derivatives and natural boundary conditions. Its origi-
nal construction [12] followed the method proposed by Fraeijs de Veubeke presents the well-known Euler equations of
Friedricts . . . ” The reference number points to that report.  the TPE principle. Nexton p. § he recasts the internal energy

These references motivated the writer to investigate whether @@nsity in terms of strains?V=W(e) so that the variation be-
Veubeke had indeed constructed that functional in the 1951 &mes

ort. That would confer him priority over Hu and Washizu, al- _
Fhough of course these two p%persywere more influential in sub- OW= 06yt TaydYsy o+ 7206, (6)
sequent work. The writer was able to procure an archived copyFollowing that he states that to frédibe rer”) strains from the
thanks to Profs. Beckers and Geradin of the University ofjeje strain-displacement constraints and the boundary displacements
where Fraeijs de Veubeke was a professor of aeronautical erfgim the prescribed displacement constraints, one must add to the
neering from the early 1950s until his untimely death in 1977. expressions to be varied the volume term

&u’+8v’
gy ox T

Ps= L (Pxu+pyv +p,w)dsS. (5)

1

+T o

Construction of the C4FLE Functional fv T”(a_x_ N v

As discussed below, in the 1951 report Fraeijs de VGUbeh‘?which (T, T
constructs not simply the canonical three-field principle, but thag s iface term
four-field generalization C4FLE. Consequently his priority is es-
tablished unless an earlier publication can be found. The func- _ _ _
tional, however, appears as an intermediate result on the road f [ax(U—u)+ay(v—v)+a(W—w)]dS ®)
from the total potential energyT PE) to the total complementary S
energy(TCE) principle. The path also traverses a pair of two-fieléh which («, ,«, ,«,) are multipliers ors,. The displacements in
functionals, one being a generalization of the Hellinger-Reissn@h are marked by a prime to emphasize that the variations of the
(HR) functional published the previous year by Reisditdr The strains have become independent of the displacement gradients.
full sequence can be sketched as Fraeijs de Veubeke states on p. 9 that this expanded functional

- is subject to 18 independent variations: three displacements, six
TPE—CAFLE~Strain-displacement dual of HRHR_’TCEi strains, sixT multipliers, and threevr multipliers. He had noted

@ earlier(on p. 8 that variations with respect to the strainsirgive

The report does not call special attention to C4FLE, as well as &g Euler equations
the strain-displacement functional that appears there for the first
time. The bulk of the material is indeed devoted to the study of T :ﬂv T :ﬂ
energy-based approximation methods for the analysis of mono- de Yy
coque wing structures, rather than to the derivation of new fun\(/:v-hereas variations with respect to the displacemens,aive as
tionals. Its title, technology focus, and target audiefsteuctural | i P p a
engineers are likely responsible for subsequent neglect. This Eu er equations
reinforced by its limited dissemination and the fact that the mate- a =Ty +mTy+nT,,, ... . (10)

rial was apparently not submitted to an archival journal. h ltivliers f h theul
Fraeijs de Veubeke uses the full-component notational forpience thel multipliers form a stress system whereas zheul-

popularized by Timoshenko and others, which was then commbpliers form a system of_ surface tra_ctio_ns. Fraeijs de Veqbeke
in continuum mechanics. For historical accuracy this will be fold€notes these as’ andp’ in later publications, such as the cited
lowed below until Eq(10), at which point it is changed to modern1965 article. i _
indicial notation for compactness. The equations taken from theExcept for Py and Ps, Fraeijs de Veubeke does not define
report have been sequentially renumbered. global sympol; to |dent|fy his integrals. For convenience we rem-
The report comprises three chapters. The last two, which dé4}y that omission by calling .= J,W(€)dV and identifying Egs.
with the title application, are of no concern here. Chapter | begité a’ld (8) by Dy andDs, Iespec_tlvely, wher® stands for the
by summarizing the field equations of linear elastostatics for {grm “dislocation potential” now in vogue. We can thereby col-
three-dimensional body of volumé and surfaces. The fields in lect all the pieces into one compact expression:

V are displacements, v, w, body forcesX, Y, Z, infinitesimal S[U . +Dy+Py+Pst+Dg]=0. (11)

strainse, , yyy, - - - ,€;, and stresses,, 7y, . . . ,0,. The surface L . . C
Sis diviéegxi)ﬁtosl on which tractioxnsTxy Do\ D, are knownand  The expression in brackets is the C4FLE functional, which in
’ x» My» Mz Il

S,, on which displacements, v, w are prescribed. The direction Indicial notation can be compactly presented as

.. ) areLagrange multipliers i/, as well as

9)

cosines of the exterior normal ®are denoted by, m, n.
As starting point for the variational developmet@hapter I, p. Iy, o , € ,ti)=J [W(eij) + (U j)— ;) — fju]dV
6) Fraeijs de Veubeke exhibits the TPE principle: v
d| JW dV+Py+Pg|=0. 2) —f t_iuidS—J' ti(uj—u;)ds 12)
\Y Sy S

Here W is the internal energy density in terms of displacementi) whichug ;) denotes the symmetric gradient of the displacement

whose first variation is field. The three-field standard form C3FLE is obtained by setting
ti=oy;n; on S, a priori. A variant of C3FLE involving stress

®) derivatives, displayed for example in Gurfii] follows from in-
tegration by parts.

au v ow
+—|+to,6—
9z

ay  ax

au
OW= Uxﬁa + TxyO
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A Strain-Displacement Functional Fraeijs de Veubeke does not reference Hu or Washizu in any of

Continuing along the patfl), Fraeijs de Veubeke replaces thethe papers reprinted in the Memorial Volurfie2]. He acknowl-

T . . edges Friedrichs, Courant, Hilbert, Prager, Reissner, and Pian. On
multipliers in(7) and(8) by (9) and(10), respectively, and exhib- the other hand, he does not explicitly claim priority for the results

its on p. 9 a tw-field functional in which strains and dls.plac.e_discussed here. Perhaps he felt that the derivation of new func-
ments are primary v_arla_bles. His full form expression is falrl)(ionals was not the focus of the 1951 report. And indeed it was
long. In indicial notation it becomes not. The tour of five variational principles takes 8 pages out of 56.
In contrast, the titles of the contributions of Hu and Washizu
TI(y; veij):f
v is that Fraeijs de Veubeke’s personality would militate against
engaging in controversy. An aristocrat by birth and gentleman by

av expressly state that to be the main objective. The writer’s opinion
_ owW . L o
— | tjudS— a—nj(ui—ui)ds (13) nature, he never displayed greed for priority and recognition.
S, s, 9 €ij

JW
W(ej) + E(u(i,j)_fij)_fiui

in which for linear elasticityyW/ Je;; is understood to bE; €.  Acknowledgments
Now (13) is the stress-strain dual of Hellinger-ReissfigR) but
has escaped a name.

In an expository article([8]), the writer called it “Strain-
Displacement Reissner” following Oden and Red& who la-
beled it a Reissner functional when constructed as a member
canonical set of elasticity functionalgl0]). However, in a 1995
letter to the writer, Professor Reissner indicated that he had meferences
considered that form. This functional has had little use in meChan[l] Hu, H.-C., 1955, “On Some Variational Methods on the Theory of Elasticity
ics until assumed-strain finite elements began appearing in the and the Theory of Plasticity,” Sci. Sin4, pp. 33-54.
1980s. [2] Washizu, K., 1955, “On the Variational Principles of Elasticity and Plastic-

Again, Fraeijs de Veubeke uses Eﬂ!3) 0n|y as an intermedi- Il\t/)IIIT Acca;cr;egz:iztg;ar':/cliAStructures Research Laboratory, Technical Report 25-18,
ate_ result. He applies a F”ed”Chs'Sty_le Legendre tranSfor_mat'O"[b] Fraeijs de Veubeke, B. M., 1965, “Displacement and Equilibrium Models,”
to it and arrives on p. 10 at a generalized form of the Hellinger- ~ Stress AnalysjsO. C. Zienkiewicz and G. Hollister, eds., Wiley, London, pp.
Reissner(HR) functional. He remarks that it had been published = 145-197. e ]
by Reissnef6] but that the rederived form is slightly more gen- [4] Fraeijs de Vel.llbeke,‘ B. M., 1951, lef'us!’on des Inconnues Hyperstatiques
| in that it includes body forces as well as prescribed nonzero dans les Voiures aLongeron Coupls’ Bull Serv. Technique de
eral in y p L'Aéronautique No. 24Imprimerie Marcel Hayez, Bruxelles, 56 pp.
dlsplacements. [5] Fraeijs de Veubeke, B. M., 1974, “Variational Principles and the Patch Test,”
The remainder of Chapter(pp. 11-18 is devoted to the deri- Int. J. Numer. Methods Eng§, pp. 783-801. o
vation of the TCE functional from HR, and the energy theoremsl®! 59‘3';5‘)“8;65551950v On a Variational Theorem in Elasticity,” J. Math. Phys.,
of Ca_a_stlgllano and Menabrea. Even for this bett_er.known mat_e“ab] Gurtin, M. E., 1983, “The Linear Theory of Elasticity,Mechanics of Solids
Fraeijs de Veubeke displays a mastery of variational techniques vol II, C. Truesdell, ed., Springer-Verlag, Berlin, pp. 1-296.
unusual for the times. For example, several textbooks stilll8] Felirl)pa, C. A., 1994, “A SurvIEy of hParametrized Variatiorr:a:jPrinci?leS arr:d
; T ) ) Applications to Computational Mechanics,” Comput. Methods Appl. Mech.
thoughtlessly lift Castigliano’s second t.heore.m: aU(q)/(?F, . Eng.113 pp. 109-139.
_from trusses and framev_vorks to three-dimensional solids. This '%9] Oden, J. T., and Reddy, J. N., 1982ariational Methods in Theoretical Me-
incorrect because the displacement under a concentrated load is chanics Springer-Verlag, Berlin.

infinite. He carefully regularizes the singular energy integral bef10] Oden, J. T., and Reddy, J. N., 1974, “On Dual Complementary Variational
fore stating the theorem Principles in Mathematical Physics,” Int. J. Eng. Sdi2, pp. 1-29.
’ [11] Washizu, K., 1968Yariational Methods in Elasticity and PlasticitPergamon
Press, New York.
[12] Geradin, M., ed., 1980B. M. Fraeijs de Veubeke Memorial Volume of Se-
Conclusions lected PapersSitthoff & Noordhoff, Alphen aan den Rijn, The Netherlands.

The writer is indebted to Profs. M. Geradin and P. Beckers of
the University of Lige for locating and providing a copy of the
1951 report, and to Profs. T. H. H. Pian and J. N. Reddy for
Oqlgrifying historical points.

The 1951 report provides concrete evidence that Fraeijs de
Veubeke preceded both Hu and Washizu in the publication of the
CA4FLE functional. Furthermore, he appears to have been the first ] ] ! ..
to construct a strain-displacement dual of the HR functionaLogarlthmIC Stress Slngularltles

Hence it seems fair to propose Resulting From Various Boundary
1 that the canonical function&l2) be identified as the Fraeijs Conditions in Angular corners

de Veubeke-Hu-Washizu functional.

2 that the hitherto anonymous strain displacement functiongf Plates Under Bending
(13) be named after Fraeijs de Veubeke. This functional was con-
structed independently more than 20 years later by Oden and

Reddy[10]. G. B. Sinclair
Some historical questions remain, perhaps as curiosities for faepartment of Mechanical Engineering, Carnegie Mellon
ture science historians. University, Pittsburgh, PA 15213-3890

Fraeijs de Veubeke was a visiting professor at MIT during
1952, the year following publication of the report examined here.

Washlzu S publlcatlon IS an MIT report Qated Mar. 195.5' I:)mfesl:his note considers the occurrence of pure logarithmic singulari-
sor Pian(private communicationhas indicated to the writer that ties in angular elastic plates under bending within the context of

direct or indirect influence is unlikely, since Fraeijs de VeubekC assical theorv. Bv paralleling the development of requirements
was only a summer visitor. y.- By p 9 p q

The writer has not seen Washizu's 1955 report. However, in (;%r logarithmic singularities for plates in extension, requirements

early edition of his well-known monograpl11]) the derivation Comibuted by the Abplied Mechanics Division ofE A .
; _ i ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF
of the C4FLE functional on pp. 31-34 closely follows Fraeijs dS:ECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED

VeUbe.ke’S, as readerS. may Verify-_ The similarity of HU'S anfiechanics Manuscript received by the ASME Applied Mechanics Division, May
Washizu's paper titles is also puzzling. 18, 1999; final revision, Oct. 19, 1999. Associate Technical Editor: J. R. Barber.
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for log singularities in bending are developed, both for homogew,,
neous boundary conditions on plate edges and for inhomogt V\ /
neous. Using these singularity requirements, some 50-odd co /

Me

e
figurations with log singularities are identified, the great majority
being for inhomogeneous boundary conditions.

[S0021-893@0)00501-9

Mr
\ / M,
1 Introduction / M \

T

Elastic stress singularities are not of the real world. Howevel M
their presence in a stress analysis can be a real fact. Then it
essential that their participation be recognized if reasonable use ._ (a)
to be made of the analysis in the vicinity of the singularity. The,
objective of this note is to assist in achieving such recognition.Fig- 2 Plate theory resultants: (&) moment resultants, (b)

In particular, we are concerned with identifying configuration§hear resultants
which can have pure logarithmic singularities—that is, stress re-
sultants and attendant stresses which behave @iker) asr
—0. These are the weakest singularities that occur in elasticity. i . .

As a result, they can be the most difficult to detect with numericgl(b)- All of these field quantities are taken to be independent of
methods. Asymptotic identification is thus especially useful ifl€nce, we can confine our attention to the two-dimensional region
avoiding having them pass undetected. R where

For angular elastic .p.lates in ben@ing trea.ted within c!assical R={(r,0)|0<r<w, 0<0<g}.
fourth-order theory, William$1] identifies possible power singu-
larities for a variety of homogeneous boundary conditions on thith these preliminaries in place, we can formulate the class of
plate edges. No logarithmic singularities are identified[1}. problems for asymptotic analysis as next.

Logarithmic singularities can be found elsewhere in the literature, We seek the out-of-plane displacementtogether with its as-
but these occur in concert with the far stronger singularities tha®@ciated moment resultantdl, ,M,,M., and shear resultants
attend concentrated loads. Examples may be found waN2] Q;.Q,, as functions ofr, ¢ throughout?®t complying with the
Article 49, and Timoshenko and Woinowsky-Kried@] Article  following requirements. The displacement is to satisfy the dis-
75. Pure logarithmic singularities for plates in bending withiplacement equation of equilibrium in the absence of both body
classical theory would not appear to be identified in the literaturforces and loading on the plate faceszat+h,
Here, therefore, we seek to identify such singularities, and to do VA=

; ! i w=0, (1)
so when either homogeneous or inhomogeneous boundary condi-
tions apply on plate edges. on R, where V*=V?(V?), V2=g%/ar?+r Yalar +r 26/ 96°.

We begin, in Section 2, with a formal statement of the class ahe displacement and resultants are to satisfy the resultant-
asymptotic problems of interest. Then, in Section 3, we outline tlisplacement relations for a homogeneous and isotropic, linear
development of requirements for pure logarithmic singularitieglastic plate,

We close, in Section 4, with a tabulation of all the configurations

found to be able to have log singularities. {Mr -k [V] VZW[JF]ﬂ M =ki Ea_w )
M, 1—v|—) or? | "o\t 96
2 Formulation _ ko o, _ k19 o,
Q=17 VW, Q=7 775(VW,

The angular plate region of interest is shown in Fig. 1. To

describe this plate, we use cylindrical polar coordinate8.2)  on g, wherek=4uh%3 is the flexural stifiness of the plate while
with origin O at the vertex of its midplane ani=0 along one of |, ", are its shear modulus, Poisson’s ratio. The displacement/
its edges. The plate has indefinite extent in trrection, thick-  yesyltants are to satisfy any one of the admissible sets of boundary
ness A in the zdirection, and subtends an angjeat its vertex. conditions listed in Table 1 on the plate edgedat0, as well as a
The displacement of primary concern is that in ghairection, f,rther such set org= ¢. Finally, the resultants are to comply

w. This displacement has associated moment resultagjih the following regularity-singularity requirement:
M, ,Mq,M,q, as shown acting in a positive sense on an element

in ther -plane in Fig. 2a). It also has associated shear resultants M=0(1), Q=0O(Inr), asr—0, ()

Qr.Qy, as shown acting in a positive sense on an element in F@n R, whereM is any moment resultan@ either shear resultant.
Several comments on the foregoing formulation are in order.
First, regarding the boundary conditions in Table 1. In conditions
I-1l, M;, V, a;, andb are given constants € 1,2). When these
constants are zero, we obtain the corresponding homogeneous
boundary conditions. We distinguish these with a subsdript
Thus |, are Kirchhoff conditions for a stress-free edge,dte for
a simply supported edge, and,llare for a built-in edge. Condi-
tions IV model a plate edge which is elastically restrained by a
bar:k; is the bar’s torsional stiffnesg, its bending stiffness, and
plus signs are fop= ¢, minus for9=0.1

AN
RN

“Elastic :
/ Elast|9\plate\.\<

yd ) \\ N Second, regarding the regularity-singularity requirement. For
o ) | YR the usual relationships between stress resultants and stresses in
L fr] \ plate theory, this has pure log singularities #,,7,, while
e | \ o, ,04,Try are nonsingular.
Fig. 1 Geometry and coordinates for the angular elastic plate 1See[3], Art. 22, for a development of IV.
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Table 1 Boundary conditions

Assigned Physical Prescribed
Roman Numeral Description Quantities
| Applied moment/shear My=Myr
dM; g M,
QG TS Q('? - (7_|'r =
Il Applied moment/displacement M = Mor
w=a,r?
1 Applied displacement/rotation w=a,r?
ow
— =pr3
7 br
# (1 ow
WY Elastically restrained Mi=*koz |7 5
My Fw o
Q7 kg =
3 Analysis

Table 2 Eigenvalue equations
Boundary Conditions Eigenvalue
on 6=0,¢ Equation
Ih=1n (N—1)?(k? sirP Ap—N? sir? ¢)=0
h=1l, cog N ¢p—cos ¢$=0

1y, or IV=Ill, or IV Si? Ap—A2sir? ¢=0

Ih=1, (N —1)(x sin 24¢+\ sin 24)=0
I,=1Ily, or IV (N—1)(k*+ 2k COS Ap+1—-AN?sir? ¢)=0
=1y or IV Sin 2\ ¢—\ sin 2¢=0

wherec; (j=1-4) are the four constants, ands the separation-
of-variables parameter. The stress resultants for this basic field
follow from (2). Substituting these fields into a set of four homo-
geneous boundary conditions then gives

®)

where the vectoc=(c,,c;,C3,C4), andA is a matrix whose el-

As in the extensional case, requirements for logarithmic sing@ments are in general functions Xf A nontrivial solution to(5)
larities under bending follow from a further development of théequires that the determinabtof A satisfy
corresponding classical analysis for power singularities. Accord-

ingly we next summarize the asymptotic analysis of power singu-

larities in plates under bending.

D=0. (6)

In Williams [1], the appropriate choice of a separable biharrhis requirement generates an eigenvalue equation.f@eter-
monic function for the displacement leads to fields containing mining \ satisfying (6) with 0<Re\<2 then characterizes the

four constants which share a common power.of his function
has the form

w=r**"c; sifA+1)#+c, cogN+1)0+cgsinA—1)6

+c,cogN—1)6], 4)

Table 3 Configurations with

power singularities possible in stress resultants for the particular
homogeneous boundary conditions involved.

To extend the preceding to consider logarithmic singularities,
we need stress resultants containing kerms. To this end, we
differentiate the basic field af4) with respect tox: thus

Q@=0(1nr) as r—0

Boundary Conditions
on 6=0,¢

Configuration
Specifications

=1y,

k==*secy, My(k+2)

=1y,
=11, or IV

¢=(2m—

¢=n or 2, M;#0 orV#0
*1

“£+V(2—x),

tanE

¢= or 2m, M, #6a,k
¢=m or 2w, a,#0 orb#0

1)%, 248,k M y(k+5)— (—)™(k+1) (M=1,2)

¢=mm, M1 #(—)"M, (m=1,2)

k=—sec 2, (Vsinp—12a,K)(k—2)#M,(xk+2)coS¢p—My(k—4)

l=Ill, or IV

-1V

-1V

-

b=, , k# k, (M;—6ak cos 3p)(3 sin Ip—(k+2)sin¢)

#(V+2bk cos 35)(3 cos 3p+(k—2)cos¢)
b=, k=K
¢= or 2, V#0

¢=ml2 or 3w/2, M #0
k= —sec 2, My(k+2)tanp#V(2— k)

¢:(2m—1)7—27, 2M,#3(3— k)ak—(—)™(k+1)bk (m=1,2)

d=mm, a;#(—)"a, (M=1,2)
¢=ml2 or 3m/2, M, # 6a;k

¢=ml2 or 3ml2, a,#0
¢=m or 27, b#0
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w=r**1[Inr(csin(A+1)+C,cogr+1)+CasinA—1)6 treated. Subsequently we do note, though, the one instance of a
o o . log-squared singularity that attends partial compliance with them.
+C4c0gN—1)0)+ 6(Cy cOgA+1)0—CoSiN(A+1)6 With the requirements for logarithmic singularities at hand,
— — . analysis proceeds routinely. We first derive eigenvalue equations
+Cacodh—1)0—CysinA—1)0)], ™ as in(6) for all possible combinations of homogeneous boundary
where the bars atop constants serve to indicate that they no longenditions that can be drawn from Table 1. Then we clérknd
need be the same as their antecedenfd)inThe displacement in (12). When potential new configurations with log singularities are
(7) continues to satisfy the governing biharmonic Ef). Substi- revealed, the last requirement in eith® or (12) requires the
tuting (7) into (2) produces resultants containingriterms. Sub- assembling of associated new fields. The algebra involved is
stituting (7) and these last, together with the original basic fieldstraightforward but lengthy: details are furnished in Sinc8it
into a set of four homogeneous boundary conditions gives Displacements with log singularities in their companion resultants
dA are set out ibid. All of these fields are ;er)if(ie;j directly by substi-
i _ tuting them into the governing Eqgs(1),(2), checking the
Acinr+ dA ctAc=0, (®) regularity-singularity requiremer{8), and checking the pertinent
. . _ boundary conditions. In the interests of brevity, we omit these
W_heredA/d)\ is formed fromA _by differentiating ea_ch eleme_nt fields here and simply provide the configurations that engender
with respect ton. General requirements for a nontrivial solutlonthem
for c'in (8) are established in Dempsey and Sinclat. From '
these we obtain ourequirements for pure logarithmic singulari-

ties under homogeneous boundary conditions 4 Results
A=2, D=0, (%) Eigenvalue equations are set out in Table 2. Therein
3+v
d"D K= .
d)\n=0 for n=1,...,4-r4, (9b) 1-v
Except for a factor ofA—1) when free-edge conditions, | are
C3+C3#0, (%) involved, these equations are equivalent to those derived in Wil-

liams[1]. The equivalence of built-in conditions }Iwith elasti-
cally restrained conditions |V, as far as eigenvalue equations are
€Bncerned, follows from an adaptation of the argument in Sinclair
Tuming to the inh bound diti 1l | for boundary_ cpnditio_ns which _h_ave terms wi;h a different

urning to the nhomogeneous boundary conditions 0 -dependence within a single condition. This equivalence holds
Table 1, we obtain instead ¢5) for any value ofx. Just fork = 2, elastically restrained conditions

Ac=f, (10) are equivalent to symmetry conditionsy/d6=0 andQ,=0. We
) ) also investigate them in this role in what follows.

for A=2, wheref is a vector whose components involve one or Configurations which have logarithmic singularities in their
more ofM;, V, a;, andb (i=1,2). Forf#0, we have a problem shear resultants as i) are listed in Table 3. In Table 35, is
in (10) if D=0 for A =2, unless the rank of the augmented matrixsych that
(A")=(A:f), is also reduced. If this rank reduction does not oc-
cur, we can overcome the difficulty by again supplementing the Si? :il[2+ \/ﬁ]
basic fields associated witd) with the auxiliary ones stemming o4k T '
from (7).2 This gives

wherer , is the rank ofA when\ =2. Equation(9c) ensures that
one ofc; or ¢, is not zero so that the shear resultants are inde
logarithmically singular as ir3).

(13)
If in addition to (13),

dA
ACInT+ =c+Ac=f, (11) K:ﬂ
¢ cos 2¢’
for A\=2. The system ir(11) can be solved provided all the re-,, . _ - &=, (actual values in the physical range ok&

quirements in(9b) arenot met. Accordingly ourequirements for L — . A
pure logarithmic singularities under inhomogeneous boundary / &€ k=3.27, ¢,=74.8deg andk=3.02, ¢,=265.9 deg.
conditionsare or I-ll and = ¢,, k=k, a log-squared singularity occurs.

There are but two geometries with logarithmic singularities un-
AN=2, D=0, rp#ra, (12a) der completelx homogeneous conditions in Table 3. These occur
N for k=&, ¢=¢, when the boundary conditions arg-lll}, or
——#0 for at least onen=1, ... ,4-r, (12b) IV. One of these geometries is a re-entrant cornef, (
d\" B ' =265.9 deg) and so is not surprising, but the other is for a proud
—5 —o corner (¢,=74.8deg). Here, then, the increase in the occurrence
C3Fca#0, (1z) of singularities with mixed boundary conditions is making its
wherer j is the rank ofA’ when\ = 2. As with (9¢), (12c) ensures Presence felt, as it does in the extensional case.
(3) is complied with wher\ =2. I_:or _mhomogeneops bounc_iary c_ondltlorjs, there area n_u_mber of
An additional set of requirements for logarithmic singularitie§Uit€ innocent looking configurations with log singularities in
under inhomogeneous boundary conditions is given in Sinicfir | able 3. For example, Iglfor ¢=m whenM,=M,r: Here the
for the extensional case. These requirements arise from furtfagpment resultant actually varies continuously along the boundary,
auxiliary fields which result from a further differentiation withthough its derivative does not.
respect ton. However, we omit these requirements here because
they can never be completely satisfied for the class of problerReferences

[1] Williams, M. L., 1951, “Surface Stress Singularities Resulting From Various
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of concern here if one sought a corresponding evolution of responses. Shells 2nd Ed. McGraw-Hill, New York.
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[8] Sinclair, G. B., 1999, “Analysis of Logarithmic Stress Singularities Resultindhave imaginary numbeip, iq, the complex stress for orthotropic
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oy=2Re(1+Ma)[ ' (z) + ¢’ (29 ]} )
Stress and Displacement Fields for Txy=2 Imlay ¢’ () + s’ (z9)1}
Propagating the Crack Along where
the Interface of Dissimilar Orthotropic o Jex N
. . = — — ; = + _

Materials Under Dynamic Mode | P= VP VBB A7 VBT VB Bes
and Il Load 1 -

Bio= 5 [2a1+aget pC(aT,— A11865— A11820) J/A11
K. H. Lee 2 42
Department of Automotive Engineering, Sangju National Kes= {8221 pC7[ 12~ 822866~ 1122
University, Sangju City, Kyungbuk 742-711, Korea + pCags(ayia—as,) |Vag;
General stress and displacement fields are derived as a crack pc? 5 (pc?)? 5
steadily propagates along the interface of dissimilar orthotropic @ =pFaxp———ppcian- (a118320— a7,
materials under a dynamic mode | and Il load. They are obtained P
from the complex function formulation of steady plane motion
problems for an orthotropic material and the complex eigenex- pc? pc?)?

pansion function. After the relationship between stress intensity as=q+ap——gpcia;;— ———(aydzn— aiz)
factors and stress components for a propagating crack is defined, q q
the stress, displacement components, and energy release rate with ) )
stress intensity factors are derived. The results are useful for both Ma=pci(ap—ay), Mp=pci(a;—az).
dissimilar isotropic and orthotropic and isotropic-orthotropic bi- a;j(i,j=123...,6) aredisplacement constants, which are the
materials, and homogeneous isotropic and orthotropic mater'a§i3=aj3:0 for plane stress and are transformed into the
under subsonic crack propagation velocity. =a;;—a;3a;3/as3 for plane strain(5]. The p andc are, respec-
[S0021-89360)00601-2 tively, density and crack propagation velocity. And the character-
istic rootsm;, mg of orthotropic materials, which depend on the
. physical properties and the crack propagation, are either imagi-
1 Introduction nary when Kg<Bi,; Kg>0 or complex when yKgg
Yang et al[1] and Deng 2] provided the asymptotic fields of >|B,|; Kg>0 [4]. Most orthotropic materials have imaginary
the singular terms of steady-state elastodynamic bimaterial crackimber roots. The complex displacement for orthotropic plane
tip fields and Liu et al[3] obtained the asymptotic series repremotion can be represented as Ezj. [4],
sentation of stress fields near the tip of a running interfacial crack
in a bimaterial under s_teady or unsteady state conditions. How- u,=2 RE P p(2)) + Psit(zs) ]
ever, the stress and displacement components for the interfacial (2
ropagating crack in dissimilar orthotropic media, where the elas- _
tF:c Srir?cipa? axis direction with the cracpk direction is orthogonal uy=2Im{d) $(2)) +qsh(Z5)]
or parallel, is not clearly represented. where
Therefore, the general stress and displacement fields are de-
riveq vyhgn a finite crqck is s.teadily propaga’Fed along the interface pi=ap(My—p?)+a;(M,+1)
in dissimilar orthotropic media under dynamic mode | and Il load-
ing in the paper. Lee et al4] derived the steady plane motion
formulations for orthotropic material from the partial differential
equation for an elastodynamic plane. The general stress and dis-

ps=a(Mp—0?)+a(Ma+1)

placement fields are obtained from the formulation of steady plane q=[a1dMp—p?) +az(M,+1)1/p
motion which is added to the complex eigenexpansion functions
and the boundary conditions. The relationship between stress in- ds=[a1aMp—0?) +ax(M,+1)]/q.

tensity factors and stress components for propagating an interfa-
y P propagating Analytical complex functionsg’(z) and ¢'(zs) can be repre-

sented as such a power series in

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, June ’ A Nn , _ n Nn
23, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: W. J. Drugan. ¢ (Zl) - aZ| + bZ| ' lﬁ (ZS) - ng + dZS (3)

Journal of Applied Mechanics MARCH 2000, Vol. 67 / 223



wherea, b, ¢, andd are complex constants ang, is an eigen- n(=0123...)
value. They are to be determined from boundary conditions. From N.—{2n—1
the traction-free crack= + 7) and the traction and displace- n +ie (n=0,1,2,3...)

ment continuous condition across interfgee=0), the following (10)
equations can be obtained:

1 1-8 hiy
a b e= Eln —1+ ,8’ IB:
e2m[s]y| =mlq @) Vhiahay
! dy Therefore the two cases, oscillatory and nonoscillatory fields,
must be considered.
e 12mn[ S a =[T] & (5) 2.1 Oscillatory Stress and Displacement Fields. The\, is
?c, 2 d, a complex eigenvalue in this case. Therefore, in substituting the
complex eigenvaluex,=(2n—1)/2+ie in Eq. (10) into Egs.
N (4)—(7), complex constants,, by, ¢, andd, may be obtained
a, b, a, b, as
[Sly| .| ~[T]a| = | =[Sl o | ~[Tle| = (6)
1 dq| 2 d,
as—(1+My)n me(—1)k+1
o {=|———| € 4
a by a; b, P k
[Ulx cy —[VL1 d_ =[U], c, —[V], d_ (7
H 2 _ ast(1+My)n me(—1)K;
where k- D € ¢
k
B (1+Mp (1+My) B —(1+My —(1+My — o+ (1+M,) 7y ot
Lo o | a o -
“ (11)
Uk:|:_p| _ps}, Vk:|:p| ps} k:_ w e’”s(_l)kz
e]] Qs a Qs D

k

H * * .
MatricesLy, Lic, Hi, andHj input as follows: where 5= (h/h;,)¥2 and ¢ is a complex constant related to

stress intensity factors. Substituting Efjl) into Eq.(3), ¢,,(z)

L=UiSh LE=V, T * ®) and ¢, (zs) for material 1 are written as
(2n—-1)12
H=L,—L}, H*=L}-L,. , 2 sy e
! 2 ! 2 ¢n1(zl):D—{[asf(1+Ma)7l]e gnzi
Substituting Eq(8) in_to Eqgs.(4)—(7), the characteristic equation 1
can be derived for eigenvalue,, +lagt (1+My) ple *7Lozs e} 12)
N, O (@272 N+, 0 (@27 + Ao O 0 , 2212 .
0 N 0 N+A, A\, llfnl(zs)=D—{[—au+(1+l\/la)n]es”{n2|‘
©) !
where —[as+(1+Mg)ple”*"nzs ).
Stress intensity factors can be defined as(E@) when the crack
Ni=hg+Vhho,  Npy=hg—+hishy is propagated along the interface in dissimilar media.
_ _ _ ) 1
h11=(l)1= (12, he=(l)1+ (1122 K +iK,=limy2arr ' O'y+i;rxy (13)
r—0 6=0
ha1= 201+ (1202 In substituting Eq(12) into Eq.(1) and substituting EqJ1) into
Eq. (13), the complex constants related to stress intensity factors
sty — Py s ds— 0 are obtained as Eq14),
(1= 5 o
K sT Ay Ko=2\2m(e*"+e *™) {0 (14)
(g EEMIBR] _‘asq.—mqs] Ki=2\2m(e*™+e >k,
k=) - [ 20k— )~
D ‘ D ‘ where? and £* are real parts of complex constaft. Whenn

=0in Eq.(14), K andK* are stress intensity factoks andK, .
Di=[(1+Ma)(as—a)]x. In substituting Eq(14) into Eq.(12) and substituting Eq12) into
Eq. (1), stress fields for propagating the crack along the interface
When D=0, the crack propagation velocity becomes the in dissimilar orthotropic material can be obtained. Oscillatory
Rayleigh speed. From E), eigenvalue\ , can be determined as stress fields with odd power series=£1,3,5 .. .) for material 1
Eq. (10). (the material above the interfgcean be represented as
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©

sy K
n=odd 227D coshem)

— n—-2
e (™A cos(a Inr+ —0,) +e (T cos( elnr— —01) ] r{n-2"2

A2
(My—p?) 2 2

Oxn

— n—2 n—2
(Mqu){e“”gs)B cm(a Inret —63) +e s(m0)p cos(a Inrg— — 05)]@”2)’2}

%

2
— n—-2 n—-2
)(es(”BI)A sin(s Inr+ —0|) +e s(moA sin(e Inr— —0,)}%”2)’2

K&
+ ——(Mp—p?
n:EOdd 227D coshem) (My=p 2 2
— n—2 n-2
+(Mb_q2)[es<ﬁos)5 sin(s Inre+ TGS +e s 09p sin(s Inrg— TGS)]r(Sn—zwz} (15)
*® KO n—-2

(1+My)

e“”’“'ﬁcos( elnr+——0,

n-—2
+e em o 005(8 Inr— —0,)]rf”2)/z

o= 2 .. n
Y SSud 227D coshe ) 2

P(’)T70>_ 2
—(1+My,)je’ B cog ¢ In rSJrTHs

n-2
+e (™ 0)B cos(s Inrg— Tas)]rg“”?}

0

K* _
e (M A sin( elnr+——6,

n
> " _(1+M
n;dd 227D cosHem) ( )

n—2
+e #m A sin(s Inr— TO,) } r(n-2r2

— 2 n—2
+(1+ Ma)[es“fgs)B sin(s Inrgt Tas) +e " %B sin & In rg— Tes)]rgnz)’z} (16)

%

KO
Txyn™ 2 .

n=odd 227D coshem)

— n n—2
m{es(”‘”l)A sin(s Inr,+ —0|) —e *(m0p sin(e Inr— —0,)]4””’2

2 2

— n n—2
+as[ —ef(m 0B sin(e Inrg+ —03) +e~¢(m=0B sin(s Inre— THS)]HS“Z)’Z}

2
- K} — n—2 n-2
+ Y =" | em A cos(a Inr+ —0|> —e (™A co%s Inr— —ﬂ)]rf”z)’z
n=odd 227D coshem) 2 2
e(m—0)R —2 —e(m— 0 n-2 (n-2)/2
+ag —€° B cog ¢ In rerTé’s +e ? B cog ¢ In rs—Tas re a7)

where

A=ast(1+ My n, A=as—(1+My)n, B=a+(1+My)n, B=a—(1+My7.

By substituting Eq.(11) into Eq. (3) integrated withz and substituting Eq(3) into Eq. (2), oscillatory displacement fields can be
obtained. Oscillatory displacement fields with odd power semes1(,3,5 . ..) for material 1 can be represented as

%

0
= 2 Ky [es(wenmx[n cos(s Inr+ Ee,) +2¢ sin(a Inr+ Eglﬂrln/z
n=odd y2m(n?+4&?)D coshem 2 2

n n
= }r{"z— es(”‘as)psg{n cos(s Inre+ 565)

2
n H n n/2
ncog e In rs*§9s +2¢ &nalnr;zes re

uxn

+e #(mWpA o)

n
ncog ¢ In r|—§0|

+2¢ sin(s Inr—

n
+2¢ sin(s Inrg+ EGS”rQ’zeE‘"@pSB

%

K { <[ n n
+ —e?(m=0) Ansin(slnr+—0)—28 005(elnr+—0) rn2
n;dd V2m(n?+4¢%)D coshem i 2 2

. n n
n sm(s In r|—§0|)—28 cos<s In n—ze,)

_efg(ﬂ"el)plA

n
ri2+ es(”"s)psg[n sin(s Inrg+ 505)

I'2I2+ e,s(,,, Hs)psB

n
—2¢ cos(a Inrg+ 503)

. n n n/2
n sinl £ In rs= 5 0s —2g cog e In re=50s) |1 (18)
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%

> <
u =
Y 0 Sodd 2 m(n?+ 4e2)D coshe

[es(”‘ﬁ)qﬁ{n sin(s Inr+

7efa(‘n'70|)qlA

n
n sin(s In r|*§0|)*28 cos(s Inr—

N

K*
n
+
nzzodd V27 (n?+4¢?)

2
n

5 r2/2+ efs(w* ﬁs)qSB

—2¢ cos(s Inrg+

n sin(s Inrg—

0

n
=6

_efs(‘n'70|)qlA >

n
n cos(a In I’|—§0|)+28 sin(e Inr—
n
_05)

5 r2/2+efs<”7”5)qu

+2¢ sin(s Inrg+

n
2

n
G,Hr,”’z es(m~ Bs)qsg{n sin(s Inret+

2
[es(“el)qﬁ[n cos<s Inr+ E0|
D coshe 2

e

n
n cos(s Inrg— 505

I

n
=6

0|)—28 CO{& Inr+ 5

n
2

e

H n n/2
+2¢ sin e Inr+ §0| r

e(m—0g) n
e s'gsB| n co 8Inr3+549s
e

y

n

05) —2¢ cos(s Inrg— 5

n

5 (19)

+2¢ sin(s Inrg—

wheren>0. For material 2, which is the material below the in- Nonoscillatory displacement fields with even power series (

terface, parameteesT and —er in oscillatory stress and displace-
ment fields are changed tes, e7. Whennis 1, Eqs.(15)—(19)
are stress and displacement fields around the propagating interfa-

2,46 ...) for material 1 can be represented as

©

0
cial crack tip. ThusK? andK?* are stress intensity factols and o Ko 2 (1+M,) { D2 cost
Ki - X Een V27 1+wg Dn s 2°°
2.2 Nonoscillatory Stress and Displacement Fields.The n
N\, is a positive integer eigenvalue in this case. Nonoscillatory —pir"2cosz 0,]
stress fields with the even power series=2,4,6 . . .) for mate- 2
rial 1 can be presented as N % Kf 2 1 ( N ,
— —— — g pJosing
o 0 n=even 2 1+Ww, Dn IPsls 27
Kn 1 (1+Myp) 2 (n-2)12
Oxn™ \/2—1 D (Mp=0)rg L
nSeven 27 1+ Wwq —agpiri*sing (23)
n— n—2
X cos—— 03—(Mb—p2)r,(”_2)/2cosT 0,]
L e S Kh 2 (1+My)
+ E Ka 1 i[al(Mb_qz)r(n—Z)/z o Sven V27 1+wg Dn
n=even\ 27 1+w, D s *
> x{q (M2 ginD g qr”/zsinne + o 2 1
- n— 5 0s—qr 50 T Pn
XsinT 0s— as(Mb_DZ)rl(n72)/2 sinT 9|] (20) s's 278 2 n=even 27 1+w, Dn
X! —a n/2 E n/2 E
10sl's 0052 Os+ aqr) 0052 0. (24)
S 0
B Kn 1 (1+MQ?[ (., n-2
Oyn= on rs cos—— 0
n=even V27 1+ W D For material 2, which is the material below the interface, pa-
e KE 1 (14M,) rameterswg and w, are changed tav;* and w; *. Therefore,
—rfn’z)’zcos— o1+ n a general stress and displacement fields for propagating the inter-
2 n=even V27 1+W, D face crack can be represented as
n—-2 n—2
X1 ayr"=272 sin—— 6~ agr("2)2 sin—— 6|] (21) »
O'n(l',e):zl [Oxn Oyn 7'xyn]T
= o "~ (25)
KO 1 (1+My

n—2
[ agr 22 sin—— s

P
N Sen V2 1+ Wwg D

%

K: 1

n=even\27 1+w; D

ajag
+

n—2
_el

—ayr{"?2sin 5

Un(r,0)= ngl [Uxn uyn]T-

2.3 Stress and Displacement Fields at the Interfacial
Propagating Crack Tip. Whenn is 1, the general fields be-
come the propagating crack-tip fields. Stress and displacement
componentso,, U, at the interfacial propagating crack tip for
material 1 are expressed as

n—-2 n—-2
X{ —rin-202 COS—— b+ r{"=22cos——

5 0|] (22)

wheren>0, we=(115)1/(112)2, andw,= (1)1 /(121)5.

226 / Vol. 67, MARCH 2000 Transactions of the ASME



K

— (M= p) (6
2\27rD coshe (Ms=pH1(6)

(e

—(Mp—g*)f4(6)

— 6
e?(77 0B 00$< elnrg— ES

— 0
e* (" A co{a In r,fEI

0
+e ¢(m 0B co{ elnrg+ ES

6,
+e #(mlA cos{ elnr+ 5

|

KII P P Hl B Ly ) 0I
1= (Mp—pAf ()] ™ DAsin e Inri——=|+e " WA & Inr+—
227D coshew 2 >
2 s(71- 09 gj Os —e(m-O9R «i Os
+(My—0g9)fy(0)| e B sin| ¢ In I’S—E +e B sinl & In rs+; (26)

K| 2r B 0| . 9|
Uy= — e*™%pAlcog e Inr+—|+2¢ sinelnr+—
2D(1+4&?%)coshem ¥ 7 2 2

1

f1(0)

_ —p 9| . 0I 1 _ ‘95 . 65 1
+e ?(m=WpAlcog e Inrj——|+2¢e sinl e Inrj— —| |———e*""%pB| cog & Inrg+ —| +2¢ sinl & In rg+ —
2 2/ |%,(0) 2 2/ |t40)
6 6 1
—e ¢ %p B cos(e Inrg— —|+2¢ sin & Inrg— —s)
2 2/ |t0)
K 2r ) _ o, o\] 1
+ —{ —e?™ WpAlsineInr+—|—-2scod elnr+—||—
2D(1+4&%coshem ¥ 7 2 2/ 1,00
o . 0, o1 B _ 0 6\ | 1
—e ™ WpAlsinelnr——|—2ecodelnr——||—(8)+e ™ %pB|sin elnrs+—|—2ecodelnrgt—
2 2/ 1f 2 2)1f4(6)
) O 0
+e (" ¥%pB|sinl & Inre——|—2s cog & Inrg— — (27)
2 2/ |t0)

where
r=r\coZ 6+ p2Si? 6, re=r\cod o+ 2sim o
f,(6)=[co 6+ p?sir? 6]~ 14,

fy(6)=[cos 6+ sin? 6]~
6,=tan %(z;tand), j=l.s, Z=p, Zs=q.
The displacements between the crack surfaces are given by

2r Hoy(K,+iK,)rie
5(r):62+i7;61: = 21( | II)

: (28)
T (1+2ieg)coshem)
and the energy release rate is given by
(KF+KiDHa
=—. (29)
4 cost(e )

As the stresgr, is taken to be discontinuous and strainto be
continuous across the ling=0, the relation betweenof), and
(oy), is the same as

(a1)1(00) 1+ [(a12)1— (a12)2]oy
(a11)2 .

(0x)2= (30)

with (r/1)~'¢ in Eq. (13), wherel =2a (crack length, the stress
intensity factors become the following equation, which does not
contain the ambiguity of the dependence on the measuring unit of
the crack length:

1
K, +iK,=+vma(l+2ie) O';,a‘f‘i;T;y). (32)

When stress intensity factors are the same as in&j, the term
e Inr, (k=1,s) in Egs.(15—-(19) and (26)—(27) is replaced by
e In(r/2a).

3 Conclusions

General stress, displacement fields, and energy release rate are
explicitly presented for the interfacial propagating crack in dis-
similar orthotropic materials.

When the orthotropic materials have characteristic roqts i
andmg=~i in the stationary crack state, the fields are the same as
the Deng[2] results for the propagating interfacial crack in iso-
tropic bimaterials. When the mechanical properties of dissimilar

From Eq.(13), the stress intensity factors for propagating th@rthotropic materials are the same, the stress, displacement fields,

crack along the interface in the infinite plate are obtained as

K+iK,=Jma(1+2ie)(2a) ' (31)

O'y+|777'xy

and energy release rate are the same as those of homogeneous
orthotropic materiall4]. When the interface crack propagation
velocity is zero, the fields of the interfacial propagating crack are
identical to those of the interfacial stationary crack. The results
are useful for both dissimilar isotropic-isotropic and isotropic-

where o and 7, are the applied normal and shear stresses @thotropic and orthotropic-orthotropic bimaterials under subsonic

infinity. Since Eq.(31) contains the term (&) ¢, the ambiguity

crack propagation velocity lower than the two Rayleigh wave ve-

of the dependence on the measuring unit of the crack length fotities and homogeneous isotropic and orthotropic materials un-

the value of the stress intensity factor occursrif (° is replaced

Journal of Applied Mechanics

der subsonic crack propagation velocity.

MARCH 2000, Vol. 67 / 227



Table 1 The comparison of dissimilar isotropic and orthotro-
o,/K, under plane stress (c¢/Cg;=0.5)

pic stress component

0 (deg Iso-Iso.Mat Ort-Ort.Mat 6 (deg Iso-Iso.Mat Ort-Ort.Mat
0* .634439 .6344413 0 1.503408 1.503400
10 7468052 7468115 -10 1.302192 1.302208
20 .8190195 .8190226 —-20 1.064251 1.064264
30 .8481339 .8481356 —30 .8146014 .8146035
40 .8359575 .8359596 —40 5795064 5794959
50 .7908002 .7907966 —50 .382161 .3821618
60 7287843 7287816 —60 2386282 .2386150
70 6730161 6730131 -70 .1543843 .1543860
80 .6487839 .6487848 —80 1229814 .1229963
90 .6748663 .6748638 —90 1271673 1271672
100 7547211 7547229 —100 1428393 1428359
110 .8735087 .8735143 —110 1447629 1447555
120 1.00348 1.003481 -120 1124064 1124141
130 1.114235 1.114237 —-130 0342066 0341946

140 1.181642
150 1.191849
160 1.14096
170 1.032682
180 .8758961

1.181642 —140
1.191844 -150
1.140951 -160
1.032665 —170

.8758781 —180

—.0908023 —.0908047
—.2536999 —.2537051
—.4382891 —.4383058
—.6245366 —.6245342
—.7919333 —.7919445

Appendix

 Properties of isotropic-isotropic bimaterial:
Cs/Cs1=2, v1=0.3, v,=0.2, p;=p,, r=0.01.
 Properties of orthotropic-orthotropic bimaterial:
Csr/Cs1=2, v 11=0.3, v 1,=0.2, p1=p,, r=0.01

ELl . ETl . GLT].: 2.6000001:2.6: 1!CS|(:( \/GLT /p)k

228 | Vol. 67, MARCH 2000

ELZ : ETZ:GLT2: 9600001964,E: K| / \ 2mr
A= U= 90 deg

E., Er, G.1, andy {(—&7/e.) are elastic constants and Pois-
son’s ratio,L and T are, respectively, the fiber direction and the
transverse direction to the fiber, whiteis the angle of the fiber
direction with respect to the crack direction. The above orthotro-
pic materials are almost like the isotropic ones i and mg

~i in ¢/C4=0). As shown in Table 1, when the orthotropic
materials have isotropic characteristics, the fields derived in this
study are the same as the Dend'g]) results of the interfacial
propagating crack in isotropic bimaterials.
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