
Transactions
of the ASME®

Technical Editor, LEWIS T. WHEELER

Department of Mechanical Engineering,
University of Houston,

Houston, TX 77204-4792

APPLIED MECHANICS DIVISION

Chairman, A. NEEDLEMAN
Secretary, S. KYRIAKIDES

Associate Technical Editors,
J. R. BARBER „2000…
R. C. BENSON „2000…

M. M. CARROLL „2000…
W. J. DRUGAN „2000…

A. A. FERRI „2000…
J. W. JU „2001…

V. K. KINRA „2002…
D. KOURIS „2002…

S. KYRIAKIDES „2000…
A. K. MAL „2001…

B. MORAN „2002…
A. NEEDLEMAN „2001…

M. ORTIZ „2001…
N. C. PERKINS „2002…
M.-J. PINDERA „2000…
K. T. RAMESH „2000…

K. RAVI-CHANDRA „2002…
D. A. SIGINER „2000…

BOARD ON COMMUNICATIONS

Chairman and Vice-President
R. K. SHAH

OFFICERS OF THE ASME

President, R. E. NICKELL
Executive Director, D. L. BELDEN

Treasurer, J. A. MASON

PUBLISHING STAFF

Managing Director, Engineering
CHARLES W. BEARDSLEY

Director, Technical Publishing
PHILIP DI VIETRO

Managing Editor, Technical Publishing
CYNTHIA B. CLARK

Managing Editor, Transactions
CORNELIA MONAHAN
Production Coordinator

JUDITH SIERANT
Production Assistant
MARISOL ANDINO

Transactions of the ASME, Journal of Applied
Mechanics (ISSN 0021-8936) is published quarterly

(Mar., June, Sept., Dec.)
The American Society of Mechanical Engineers,

Three Park Avenue, New York, NY 10016.
Periodicals postage paid at New York, NY and additional

mailing office. POSTMASTER: Send address changes to
Transactions of the ASME, Journal of Applied Mechanics,

c/o THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS,
22 Law Drive, Box 2300, Fairfield, NJ 07007-2300.

CHANGES OF ADDRESS must be received at Society
headquarters seven weeks before they are to be effective.

Please send old label and new address.
STATEMENT from By-Laws. The Society shall not be

responsible for statements or opinions advanced in papers or
. . . printed in its publications (B7.1, Para. 3).

COPYRIGHT © 2000 by The American Society of Mechanical
Engineers. For authorization to photocopy material for

internal or personal use under those circumstances not falling
within the fair use provisions of the Copyright Act, contact

the Copyright Clearance Center (CCC), 222 Rosewood Drive,
Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Request for special permission or bulk copying should
be addressed to Reprints/Permission Department. INDEXED by

Applied Mechanics Reviews and Engineering Information,
Inc. Canadian Goods & Services Tax Registration #126148048.

TECHNICAL PAPERS
1 Radiation of Body Waves Induced by the Sliding of an Elastic Half-Space

Against a Rigid Surface
G. G. Adams

6 A Mathematical Model for the Strained Shape of a Large Scientific
Balloon at Float Altitude

F. Baginski and W. Collier

17 On the Development of Volumetric Strain Energy Functions
S. Doll and K. Schweizerhof

22 Melan’s Problems With Weak Interface
S. Lenci

29 Ill-Posedness in a Thermomechanically Consistent Constrained Theory
for Materials With Prescribed Temperature-Dependent Density

Q. Wang

33 Combined Torsion, Circular and Axial Shearing of a Compressible
Hyperelastic and Prestressed Tube

M. Zidi

41 Modeling of Interphases in Fiber-Reinforced Composites Under
Transverse Loading Using the Boundary Element Method

Y. J. Liu, N. Xu, and J. F. Luo

50 Analysis of a Sector Crack in a Three-Dimensional Voronoi Polycrystal
With Microstructural Stresses

M. S. Wu and J. Guo

59 Effects of Mixed-Mode and Crack Surface Convection in Rapid Crack
Growth in Coupled Thermoelastic Solids

L. M. Brock

66 Critical Wavelengths for Gap Nucleation in Solidification— Part I:
Theoretical Methodology

F. Yigit and L. G. Hector, Jr.

77 Critical Wavelengths for Gap Nucleation in Solidification— Part II: Results
for Selected Mold-Shell Material Combinations

F. Yigit and L. G. Hector, Jr.

87 Thermoelastic Fracture Mechanics for Nonhomogeneous Material
Subjected to Unsteady Thermal Load

B. L. Wang, J. C. Han, and S. Y. Du

96 An Iterative Method for Solving Elasticity Problems for Composite
Laminates

A. Makeev and E. A. Armanios

105 Plane-Stress Deformation in Strain Gradient Plasticity
J. Y. Chen, Y. Huang, K. C. Hwang, and Z. C. Xia

112 Sliding of a Mass on an Inclined Driven Plane With Randomly Varying
Coefficient of Friction

P. Vielsack and H. Spiess

117 Bending of Cord Composite Cylindrical Shells
A. J. Paris and G. A. Costello

128 Machining as a Wedge Indentation
V. Madhavan, S. Chandrasekar, and T. N. Farris

Journal of
Applied Mechanics
Published Quarterly by The American Society of Mechanical Engineers

VOLUME 67 • NUMBER 1 • MARCH 2000

„Contents continued on inside back cover …



140 Forced Vibration Analysis for Damped Periodic Systems With One Nonlinear Disorder
H. C. Chan, C. W. Cai, and Y. K. Cheung

148 Equilibrium Solutions and Existence for Traveling, Arbitrarily Sagged Elastic Cables
A. C. J. Luo and C. D. Mote, Jr.

155 Mold Surface Wavelength Effect on Gap Nucleation in Solidification
L. G. Hector, Jr., J. A. Howarth, O. Richmond, and W.-S. Kim

165 Interaction Between a Semi-Infinite Crack and a Screw Dislocation in a Piezoelectric Material
Kang Yong Lee, Won Gyu Lee, and Y. Eugene Pak

171 Stability of Rectangular Plates With Free Side-Edges in Two-Dimensional Inviscid Channel Flow
C. Q. Guo and M. P. Paidoussis

177 Aerodynamic Characteristics of Pressure-Pad Air Bars
Y. B. Chang and P. M. Moretti

183 The Tip Region of a Fluid-Driven Fracture in an Elastic Medium
D. Garagash and E. Detournay

193 Continuum Damage Mechanics and Creep Life Analysis
G. J. Rodin

197 The Stretching and Slipping of Belts and Fibers on Pulleys
S. E. Bechtel, S. Vohra, K. I. Jacob, and C. D. Carlson

BRIEF NOTES
207 Asymmetric Four-Point Crack Specimen

M. Y. He and J. W. Hutchinson

209 Large Shearing of a Prestressed Tube
M. Zidi

212 Buckling of a Short Cylindrical Shell Surrounded by an Elastic Medium
S. Naili and C. Oddou

214 A Numerical Tool for Periodic Heterogeneous Media: Application to Interface in Al ÕSiC Composites
D. Dumont, F. Lebon, and A. Ould Khaoua

217 On the Original Publication of the General Canonical Functional of Linear Elasticity
C. A. Felippa

219 Logarithmic Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates
Under Bending

G. B. Sinclair

223 Stress and Displacement Fields for Propagating the Crack Along the Interface of Dissimilar Orthotropic Materials
Under Dynamic Mode I and II Load

K. H. Lee

ANNOUNCEMENTS AND SPECIAL NOTICES
229 Worldwide Mechanics Meetings Conference Listing

231 Special Announcement From the Technical Editor

232 Information for Authors

233 New Reference Format

234 The Mechanics of Plants, Animals, and Their Environments—Announcement

235 Applied Mechanics Reviews—Announcement

„Contents continued …

Volume 67, Number 1Journal of Applied Mechanics MARCH 2000



cial
tible
hear
such
o the
ratio

bject
ntial
nd

two
nt of

nt of
with
result
f the
ction
G. G. Adams
Professor,

Fellow ASME
Department of Mechanical Engineering,

Northeastern University,
Boston, MA 02115

e-mail: adams@neu.edu

Radiation of Body Waves Induced
by the Sliding of an Elastic
Half-Space Against a Rigid
Surface
The steady sliding of a flat half-space against a rigid surface with a constant interfa
coefficient of friction is investigated. It is shown here that steady sliding is compa
with the formation of a pair of body waves (a plane dilatational wave and a plane s
wave) radiated from the sliding interface. Each wave propagates at a different angle
that the trace velocities along the interface are equal and supersonic with respect t
elastic medium. The angles of wave propagation are determined by the Poisson’s
and by the coefficient of friction. The amplitude of the waves are indeterminant, su
only to the restriction that the perturbations in interface contact pressure and tange
velocity satisfy the inequality constraints for unilateral sliding contact. It is also fou
that a rectangular wave train, or a rectangular pulse, can allow for motion of the
bodies with a ratio of remote shear to normal stress which is less than the coefficie
friction. Thus the apparent coefficient of friction is less than the interface coefficie
friction. Furthermore it is shown that the apparent friction coefficient decreases
increasing speed even if the interface friction coefficient is speed-independent. This
supports the interpretation of certain friction behavior as being a consequence o
dynamics of the system, rather than strictly as an interface property. In fact no distin
is made between the static and kinetic interface friction coefficients.
@S0021-8936~00!02101-2#
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1 Introduction
The sliding of two surfaces upon each other is such a comm

occurrence. Yet this phenomenon remains one which is not
understood. The relative motion of two surfaces is resisted b
tangential force which is called the friction force. The ratio of th
tangential force to the normal force is called the coefficient
kinetic friction ~m! and this coefficient can easily be determin
experimentally. However, the mechanics of contact and frictio
quite complex. Friction is a consequence of many interacting p
nomena, e.g., adhesion, plastic deformation, roughness, and
tic waves. It is the interaction of elastic body waves with observ
friction which is the subject of this investigation.

Rayleigh waves can propagate along the free surface of a s
infinite elastic body and have amplitudes which decay expon
tially with distance from the free surface. Similar waves can tra
along the interface of two contacting elastic bodies. Such wa
were investigated by Stoneley@1# for bonded contact and ar
known as Stoneley waves. Stoneley waves exist only if the sh
wave speeds of the two materials do not differ greatly. Achenb
and Epstein@2# investigated interface waves in unbonded frictio
less contacts in which separation does not occur. These ‘‘sm
contact Stoneley waves’’~also known as slip waves! are qualita-
tively similiar to those for bonded contact and occur for a wid
range of material combinations.

Slip waves with periodic regions of separation along a frictio
less interface were found by Comninou and Dundurs@3#. Comni-
nou and Dundurs@4# also investigated the possibility of two iden

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
12, 1999; final revision, Mar. 31, 1999. Associate Technical Editor: A. K. M
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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tical half-spaces sliding with friction due to the presence
separation waves and/or stick-slip waves. Both of their analy
showed that such waves could exist only withsquare-root singu-
larities at the tips of the slip zones. Freund@5# pointed out that the
singularities encountered by Comninou and Dundurs@3,4# would
require energy sources and sinks.

Martins, Guimara˜es, and Faria@6# investigated the sliding of
elastic and viscoelastic half-spaces against a rigid surface.
namic instabilities, in the form of subsonic surface waves, w
found for cases in which the friction coefficient and the Poisso
ratio were sufficiently large. These instabilities were thought
play a role in Schallamach waves@7#. Adams@8# showed that the
steady sliding of two elastic half-spaces is dynamically unsta
The instability mechanism is due to destabilization of interfac
slip waves and gives rise to a dynamic instability, in the form
self-excited motion, which is generally confined to a region n
the sliding interface. It was speculated that the instability wo
eventually lead to either partial loss of contact or to regions
stick-slip motion. It is noted that the cases investigated by Com
nou and Dundurs@3,4# were those of frictionless sliding of differ
ent materials and frictional sliding of identical materials. Neith
of those cases would lead to the dynamic instabilities encount
by Adams@8#.

Adams @9# investigated the sliding of two dissimiliar elasti
bodies due to periodic regions of slip and stick propagating al
the interface. It was found that such motion allows for the int
face sliding conditions to differ from the observed sliding con
tions. In particular the interface coefficient of friction can be co
stant or an increasing/decreasing function of slip veloc
However, theapparentcoefficient of friction can be less than th
interfacefriction coefficient. Furthermore the apparent coefficie
of friction can decrease with sliding speed even though the in
face friction coefficient is constant. Thus the measured coeffic
of friction does not necessarily represent the behavior of the s
ing interface. Also the presence of slip waves may make it p
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sible for two frictional bodies to slide without a resisting she
stress and without any interface separation. The notion that ce
observed friction behavior is not a property of the interface, b
rather a consequence of system dynamics, was suggested by
tins, Oden, and Simo˜es @10#. In the limit as the slip region be-
comes very small compared to the stick region, the results
Adams@9# become that of a slip pulse travelling through a regi
which otherwise sticks. Rice@11# derived that result, in a simple
manner than the periodic solution of Adams, by using the mov
dislocation formulation of Weertman@12#. Rice then extended the
pulse solution to rate and state friction. Consequences to seis
ity were also discussed. A numerical solution for a slip pulse w
found by Andrews and Ben-Zion@13#. The amplitude of the slip-
pulse increases and the pulse width decreases as the pulse c
ues to propagate. This self-sharpening effect is consistent with
Adams@8# solution for sliding.

This paper is motivated by the desire to better understand
nature of sliding interfaces. In particular it addresses the inte
tion of elastic body waves in the sliding of an elastic half-spa
against a rigid surface. It will be shown that steady sliding
compatible with the formation of a pair of body waves~a plane
dilatational wave and a plane shear wave! radiated from the slid-
ing interface. Each wave moves at a different angle with respec
the interface such that the trace velocities along the interface
equal and supersonic. It will further be shown that a rectangu
wave train, or a rectangular pulse, can allow for motion of the t
bodies with a ratio of remote shear to normal stress which is
than the coefficient of friction.

2 Formulation of the Sliding Problem
Consider a perfectly flat elastic half-space, moving to the l

with constant speedV0 , in contact with an infinite rigid surface
The elastic body is subjected to a remotely applied compres
normal traction (p* ) and shearing traction (q* ) as shown in Fig.
1. The ratioq* /p* is, at this point of the analysis, the same as t
coefficient of friction~m!, where no distinction is made betwee
static and kinetic friction.

A well-known solution to the plane strain equations of motio
is in the form of plane body waves in an infinite medium~e.g.,
Graff @14#!. It is emphasized that solutions in the form of bod
waves, rather than surfaces waves, are sought here becaus
was noted in the Introduction, surface waves for this configurat
were shown to exist only for high values of the coefficient
friction ~m.1! and of Poisson’s ratio~@6#!. Consider a plane dila-
tational and a plane shear wave which move away from the in
face at anglesu1 andu2 , respectively. The displacement comp
nents in thex–y coordinate system are

Fig. 1 An elastic half-space sliding against a rigid surface
2 Õ Vol. 67, MARCH 2000
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u~x,y,t !5A1 cosu1 exp@ ik1~x cosu12y sinu12c1t !#

1A2 sinu2 exp@ ik2~x cosu22y sinu22c2t !#,
(1)

v~x,y,t !52A1 sinu1 exp@ ik1~x cosu12y sinu12c1t !#

1A2 cosu2 exp@ ik2~x cosu22y sinu22c2t !#

which were determined by standard coordinate transformation
~1!, u5u(x,y,t) andv5v(x,y,t) are the components of displace
ment in thex andy-directions, respectively,A1 , A2 are the wave
amplitudes andk1 , k2 are the wave numbers for dilatational an
shear waves, respectively, andc1 andc2 are the dilatational and
shear wave speeds, respectively.

In order for the boundary conditions at the sliding interface
be satisfied, it is necessary that the trace velocity~c! and the wave
number along the interface~k! of both waves, be identical, i.e.,

c[c1 /cosu15c2 /cosu2 ,
(2)

k[k1 cosu15k2 cosu2 , ⇒ k25k1c1 /c2 .

Thus it is observed from~2! that the dilatational and shear wave
yield wave motion along the interface which is supersonic. F
thermore,~2!1 provides a constraint between the angles of pro
gation of the dilatational and shear waves. Finally, the normal
shearing stresses are given by

tyy~x,y,t !5A1Gik1@~c1 /c2!2212cos 2u1#

3exp@ ik~x2y tanu12ct!#

2A2Gik2 sin 2u2 exp@ ik~x2y tanu22ct!#
(3)

txy~x,y,t !52A1Gik1 sin 2u1 exp@ ik~x2y tanu12ct!#

1A2Gik2 cos 2u2 exp@ ik~x2y tanu22ct!#

whereG is the shear modulus.

3 Steady Sliding With Radiated Waves
For contact of the elastic body with a rigid surface

v~x,0,t !50, ⇒ A25A1 sinu1 /cosu2 . (4)

Frictional contact obeying Coulomb’s law requires

q* 1txy~x,0,t !5m@p* 2tyy~x,0,t !# (5)

which leads to

sinu1

cosu2
S c1

c2
D cos 2u22sin 2u152mF S c1

c2
D 2

212cos 2u1

2S sinu1

cosu2
D S c1

c2
D sin 2u2G (6)

where

c1

c2
5A2~12n!

122n
, u25cos21S cosu1

c1 /c2
D . (7)

In ~7!1 n is the Poisson’s ratio and~7!2 comes from~2!1.
So in order to obtain solutions for sliding with a pair of bod

waves and for given Poisson’s ratio and coefficient of friction, it
necessary to solve~6!–~7! for the dilatational wave angle (u1). It
is, however, mathematically more convenient to varyu1 , calcu-
late u2 from (7)2 and solve form from ~6!. Results have been
obtained in this manner and are shown in Figs. 2–3. It is inter
ing to note that these waves result from theboundary conditions
of frictional sliding of the elastic body against a rigid surface.

3.1 Results and Discussion. In Fig. 2 is shown the angles
of propagation of dilatational waves (u1) and of shear waves (u2)
versus friction coefficient~m! for various values of Poisson’s rati
~n!. Note that for small values ofm, the angleu1 is small and
hence the dilatational wave travels in a direction nearly paralle
Transactions of the ASME
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the interface. Asm increases so doesu1 . The angle of propagation
of the shear waveu2 remains almost constant asm varies. As
Poisson’s ratio~n! increases, so do the values ofu1 andu2 . In fact
asn increases toward 0.5, the ratioc1 /c2 becomes infinite requir-
ing that the angleu2 approach 90 deg. In Fig. 3 is shown the ra
of amplitudes of the shear and dilatational waves (A2 /A1) versus
friction coefficient for various values of Poisson’s ratio. Note th
A2 /A1 is always positive and its value increases with increas
friction. Thus small values ofm correspond to nearly pure dilata
tional waves, with the shear waves becoming more important am
increases. This trend is especially true for a large value of P
son’s ratio in which case the shear component can be m
greater than the dilatational part.

The question arises as to where the energy source is w
generates these waves. The energy dissipated~due to friction! per
unit surface area over one period of oscillation is given by

«5E
0

2p/ck

m@p* 2tyy~x,0,t !#@V02u̇~x,0,t !#dt

5
2pmp* V0

ck
1E

0

2p/ck

mtyy~x,0,t !u̇~x,0,t !dt (8)

where

u̇~x,0,t !52A1ikc cosu1~11tanu1 tanu2!exp@ ik~x2ct!#.
(9)

It can be shown that the phase oftyy(x,0,t) is opposite to the
phase ofu̇(x,0,t). Thus« will be less than (2p/ck)mp* V0 and

Fig. 2 The angles of propagation of dilatational waves „u1…

and of shear waves „u2… versus friction coefficient „m… for vari-
ous values of Poisson’s ratio „n…

Fig. 3 The ratio of amplitudes of the shear and dilatational
waves „A 2 ÕA 1… versus friction coefficient for various values of
Poisson’s ratio „n…
Journal of Applied Mechanics
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hence the energy dissipated at the interface will be less than
work done in moving the rigid body. This extra energy is t
contributor to the energy of the radiated dilatational and sh
waves.

4 Propagating Stick-Slip Regions
In this section the possible relative motion of the two bod

due to the presence of propagating stick-slip regions is inve
gated. Due to the presence of stick regions, the ratio of the
motely applied shear-to-normal stress would not necessarily
the same as the ratio of the interface shear-to-normal stress.

m* [q* /p* , m* ÞmÞm̄,
(10)

txy1q* 5m̄~p* 2tyy! in slip regions

wherem* is the apparentfriction coefficient,m̄ is the interface
coefficient of friction, andm is the ratio of shear-to-normal trac-
tions for the body waves. It will be shown that Coulomb’s law
friction can be satisfied even though these three coefficients d
from each other.

Consider a superposition of the wave pairs obtained in the
vious section, the form of which is a rectangular wave train
tangential velocity~Fig. 4! which is invariant in the moving coor-
dinate ‘‘k(x2ct). ’’ A typical stick region is defined bykux
2ctu,a, whereas slip occurs fora,kux2ctu,p. For stick

u̇~x,0,t !5V0 , kux2ctu,a (11)

which states that the tangential velocity of the upper surface of
elastic body is equal to the sliding speed. The requirement tha
average values of the velocity, shear stress, and normal stres
each zero for this superposition of harmonic waves leads to r
tionships between these quantities in the stick and slip regio
i.e.,

u̇Slip52
aV0

p2a
, txy

Slip52
atxy

Stick

p2a
, tyy

Slip52
atyy

Stick

p2a
.

(12)

Now the parametera is defined according to

a[@txy~x,0,t !/G#/@ u̇~x,0,t !/c2#, (13)

where, from ~3!2 and ~9!, a depends only onm and n and is
independent ofx and t. From the plot in Fig. 5 ofa versus the
wave friction coefficient~m! it can be seen thata.0. Further-
more,~12!–~13! leads to

txy
Stick

G
5a

V0

c2
,

txy
Slip

G
52

aa

~p2a!

V0

c2 (14)
tyy

Stick

G
52

a

m

V0

c2
,

tyy
Slip

G
5

aa

~p2a!m

V0

c2
.

In the slip region, the shear stress is related to the normal st
through Coulomb’s law, i.e.,

txy
Slip1q* 5m̄~p* 2tyy

Slip! (15)

Fig. 4 A rectangular wave train of tangential velocity
MARCH 2000, Vol. 67 Õ 3
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where the interface friction coefficient~m̄! appears in~15!. Sub-
stitution of ~10!1 and ~14!2,4 into ~15! leads to

m* 5m̄2S m̄

m
21D aa~V0 /c2!

~p2a!~p* /G!
. (16)

The result~16! is significant only if sliding could occur with an
apparent friction coefficient~m* ! which is less that the interfac
friction coefficient (m̄), i.e.,

m* ,m̄ ⇒ m̄.m.0. (17)

The requirement that Coulomb’s inequality be satisfied in
stick region, i.e.,

txy
Stick1q* ,m̄~2tyy

Stick1p* ! (18)

is automatically satisfied due to~17!.
The normal contact stress must remain compressive throug

the entire interface. This condition leads to a maximum value
the length of the stick zones (2a/k),

aMax5
m~p* /G!

m~p* /G!1a~V0 /c2!
. (19)

It is noted that theshear stress is increased in the stick zoneand
that this result may appear counterintuitive. However, the con
pressure also increases in the stick region. Sincem,m̄ Coulomb’s
inequality holds. Likewise, in the slip region, the shear stress
the contact pressure decrease. Thus Coulomb’s law is satisfi
the slip region but with a different coefficient of friction that th
ratio of the remote shear-to-normal traction~m* !. The tangential
velocity increases in the stick region such that it equals the slid
velocity.

4.1 Results and Discussion. It is observed that the nature o
sliding friction is profoundly influenced by the length of the stic
region, i.e.,

a50, ⇒ m* 5m̄
(20)

a5aMax , ⇒ m* 5m.

Thus sliding with small stick zones is governed by the interfa
friction coefficient, whereas sliding with large stick regions
dominated by the behavior of radiated body waves. It is furt
noted that a vanishing value ofm causes a perturbation in th
contact pressure without a change in the interface shear st
This case corresponds toc5c1 , i.e., a dilatational wave paralle
to the interface and no shear wave. Under these conditions
sider an applied normal traction (p* ) without an applied shea
traction (q* ), i.e.,m*50. In that case the results obtained here
qualitatively similar to the interface stick-slip problem of Adam
@9#. However, the results of Adams were applicable for interfa

Fig. 5 The parameter a versus the wave friction coefficient „m…

for various values of Poisson’s ratio „n…
4 Õ Vol. 67, MARCH 2000
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waves with material combinations for which slip waves exi
Such is not the case here in which there is a large mismatc
material properties.

It is also observed from~16! that theapparent coefficient of
friction ~m* ! will decrease with increasing speed even though
interface friction coefficient (m̄) is constant and speed
independent. This behavior is due to the existence of the stick-
zones which propagate along the interface. Thus the use
speed-independent interface friction coefficient is consistent w
observations of friction decreasing with increasing sliding spe
The distinction between observed static and kinetic friction
greatly influenced by the time of repose@15#. Here the time of
repose is equal to the wavelength divided by the speed of
interface wave. Hence the time of repose is short and the dist
tion between static and kinetic friction is not as great as it wo
otherwise be.

5 A Slip Pulse
In this section the propagation of an isolated slip pulse along

interface which otherwise sticks is investigated. Condition~4! still
holds along the entire interface, along with~10! in the slip region
(kux2ctu,b), and

u̇~x,0,t !50, kux2ctu.b, (21)

in the stick region. The width of the stick region is 2b/k and the
results for this case may be obtained by takingb5p2a in the
limit as b becomes very small. For this caseV0→0 and from~12!1
and ~14!4

u̇Slip

c2
52

m

a S tyy
Slip

G D . (22)

The magnitude of the slip distance is found by integrating
negative of the tangential velocity in the slip region. The resul

USlip/~b/k!5b~tyy
Slip/p* !~p* /G!, b[2~m/a!cosu2 .

(23)

Thus the magnitude of the slip distance depends nonlinearly u
m and linearly upon the magnitude and width of the pulse.1 In Fig.
6 is shown the slip parameterb versus the wave friction coeffi-
cient m for various values of Poisson’s ratio. The slip increas
with increasingm and this trend is more pronounced with small
values of Poisson’s ratio.

The apparent friction coefficient for the slip pulse is found fro
~14!4 and ~16! and is given by

m* 5m̄2~m̄2m!~tyy
Slip/p* !. (24)

1Note thatm, a, andu2 are interrelated.

Fig. 6 The slip parameter b versus the wave friction coeffi-
cient „m… for various values of Poisson’s ratio
Transactions of the ASME
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Thus the apparent friction~m* ! decreases fromm̄ as the magni-
tude of the slip pulse increases, approachingm astyy

Slip→p* . The
coefficientm is related to the wave angleu1 and to the Poisson’s
ratio through~6!–~7!.

Finally it is noted that dynamic shear-dominated cracks, pro
gating at supersonic speeds along a bimaterial interface wi
large mismatch in material properties, have recently been
served @16# using photoelasticity and high-speed photograp
The @16# cracks exhibit large scale frictional contact between
crack faces at the leading edge of the crack-tip. That investiga
which includes stick, separation, and slip zones, differs from
slip pulse considered here.

6 Conclusions
The steady sliding of a flat half-space against a rigid surf

with a constant interfacial coefficient of friction has been inves
gated. Steady sliding is compatible with the formation of a pair
body waves radiated from the sliding interface. Each wave mo
at a different angle with respect to the interface such that the t
velocities along the interface are equal and supersonic with
spect to the elastic medium. The angles of wave propagation
determined by the Poisson’s ratio and by the coefficient of f
tion. The amplitude of the waves are indeterminant, subject o
to the restriction that the perturbations in interface contact p
sure and tangential velocity satisfy the inequality constraints
unilateral sliding contact. For identical materials, waves of t
type appear not to exist. A complete study of material combi
tions has not been conducted and falls outside the scope of
paper.

It is found that a rectangular wave train or a rectangular pu
can allow for motion of the two bodies with a ratio of remo
shear-to-normal stress which is less than the coefficient of frict
Sliding with small stick zones is dominated by the interface fr
tion whereas sliding with large stick zones is governed by w
motion. Furthermore theapparentcoefficient of friction is less
than theinterfacecoefficient of friction. It is also shown that th
apparent friction coefficient decreases with increasing speed
if the interface friction coefficient is speed-independent. Theori-
gin of this wave motion is not addressed in this investigatio
Furthermore this result supports the notion of certain frictio
Journal of Applied Mechanics
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behavior as being a consequence of the dynamics of the sli
bodies, rather than as a property of the interface. No distinctio
made between static and kinetic friction.
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A Mathematical Model for the
Strained Shape of a Large
Scientific Balloon at Float Altitude
A large scientific balloon is constructed from long flat tapered sheets of thin polyethy
film called gores which are sealed edge to edge to form a complete shape. The ball
designed to carry a fixed payload to a predetermined altitude. Its design shape is bas
an axisymmetric model that assumes that the balloon film is inextensible and tha
circumferential stresses are zero. While suitable for design purposes, these assum
are not valid for a real balloon. In this paper, we present a variational approach
computing strained balloon shapes at float altitude. Our model is used to estimat
stresses in the balloon film under various loads and for different sets of material
stants. Numerical solutions are computed.@S0021-8936~00!02201-7#
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1 Introduction
For design purposes, a large scientific balloon is usually m

eled as a loaded axisymmetric inextensible membra
Archimedes’ principle states that the buoyant force acting on
balloon system is equal to the weight of the displaced air
lifting gas. The balloon system includes the weight of the fil
load tapes, payload, ballast, venting ducts, end fittings, fins,
The design shape is based on conditions that the balloon
encounter at its float altitude. The standard model was develo
by researchers at the University of Minnesota in the 1950s~@1#!
and its solutions are often referred to as(-shapes~( is a param-
eter that appears in the model equations!. When one assumes tha
the circumferential stresses are zero in the(-shape equations, its
solutions are called ‘‘natural-shape’’ balloons. A common fi
used in the construction of large scientific balloons is 20.32
cron polyethylene. The balloon is constructed from flat tape
sheets of polyethylene called gores that are roughly 183 mete
length and about 2.5 meters at the widest point. The gores are
sealed edge to edge to form a complete shape and load tape
attached along each seam. As a material for the balloon struc
polyethylene is very forgiving and can adapt to flaws that m
have been introduced during the manufacturing process. As
denced by numerous successful balloon missions over m
years, the natural-shape design has proven to be adequate fo
sign purposes. Nevertheless, it would be desirable to estimate
stresses in the balloon film during the course of a normal ball
flight. Ignoring the variety of shapes that are observed sho
after launch, there are three types of configurations that war
study: the in-spool configuration~prior to launch!, ascent configu-
rations, and the float configurations. In this paper, we will rest
our attention to strained float configurations. Our goal here is
present a mathematical model that can provide a reasonable
mate of the balloon film stresses while the balloon is in the fu
deployed configuration.

Previous work on modeling balloon shapes focused on axis
metric solutions based on the natural shape~@2–4#! or asymmetric
models that consider large-scale geometric features~@5,6#!. In
these previously mentioned works, the straining in the film
ignored. In the model that is presented here, the total energy o

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
3, 1997; final revision, Oct. 12, 1999. Associate Technical Editor: M. M. Carr
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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balloon system is modeled as the sum of the hydrostatic pres
potential due to the lifting gas, the gravitational potential ene
due to the weight of the balloon system~film, caps, load tapes
end fittings, etc.!, and the strain energy due to the balloon film a
load tapes. The balloon surface is triangulated, using the g
structure as a fundamental building block. A flat reference c
figuration is associated with each gore in the balloon shape, an
it is possible to associate a triangle in the balloon surface wit
unique triangle in the flat reference configuration. A const
strain model is used to compute the strain energy for the fac
balloon surface~including internal folds!. An isotropic plane-
stress constitutive model is used to estimate the stresses w
each facet. The load tapes that run along the edges of the gore
modeled as linearly elastic strings. In the present work, we w
assume that the zero-pressure level is at the base of the balloo
strained zero-pressure balloon will always have some small in
nal folds, but we will refer to these as fully deployed configur
tions. These types of shapes are in contrast to those with d
internal folds such as those observed in partially inflated sha
~@5,6#!.

The term fold has been used in membrane problems that
volve wrinkling. For example, in Contri and Schrefler@7# the au-
thors draw a distinction between a wrinkled region and what th
term a ‘‘fold’’ ~a large single wrinkle, but without self-contact!;
both features are included in their model. For the results prese
here, the wrinkling in the balloon film is negligible in compariso
to the magnitude of typical folds that are observed. We includ
model for folds, and ignore wrinkling in the balloon fabric. In ou
work, a fold is a region of external contact forming in the cen
of a gore, where symmetric portions of a flat polyethylene film
back to back against each other. This is different from the sit
tion in ~@7#!, where a fold represents a large single wrinkle, b
without self-contact.

Although large deformations of membrane-like structures h
been studied theoretically and experimentally~@7,8#! the loading
conditions and size of a typical large scientific balloon are n
standard. For example, the axisymmetric elastic membrane
~@8#! is loaded under uniform pressure in the range 98.15 Pa
981.5 Pa. However, the maximum differential pressure at the
of the balloon at float is only about 3.83 Pa when the tail of t
balloon is at 39429 meters. Although the membrane considere
Fig. 18.20 of~@8#! had roughly the same thickness as polyethyle
film, the structure is only about 20 cm in diameter. If one were
scale up this model to the size of a real balloon, one would fi
that the scaled-up version would have a thickness of nearly 1
and so it would not be appropriate to extrapolate results to
actual balloon. A similar remark would apply to the results
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~@7#!, where experimental data is presented on an airbags~thick-
ness: 50 to 150 microns, Young’s modulus 85 to 177 MPa, P
son’s ratio 0.4!; the pressure loadings for the experimental airba
were not reported, but the pressure in the corresponding nume
model was reported at 0.005 MPa~significantly higher than the
hydrostatic pressure experienced by the balloon film!. It would be
virtually impossible to build a scaled-down version of a lar
scientific balloon, because the film thickness in the actual ball
is only 20.32 microns. These are reasons to develop an acc
mathematical model that is representative of how a real ball
behaves.

Material constants such as Young’s modulus and Poisson’s
tio are highly temperature-dependent and we will consider sha
for a variety of these parameter values. In reality, the balloon fi
is a nonlinear viscoelastic material, but we will model it as
linearly elastic material. We will ignore the stress response his
of the ascent to float altitude and assume that the balloon i
quasi-static equilibrium for a fixed altitude. Since the balloon fi
is allowed to strain, internal folds of excess material~correspond-
ing to regions of external contact! are possible at float. An interna
fold is a region of external contact because the outside of
balloon comes into contact with itself. For balloons at or ne
float, the volume is sufficiently large to avoid internal contact a
so we need not consider shapes with wing sections~wing sections
are regions of internal contact; for further discussion, see~@5#!!. If
one models a gore using standard membrane theory, one w
find that the model would predict negative stresses. In reality,
balloon film does not undergo compression, but wrinkles and
forms internal folds. One way to treat the negative compress
is to introduce a tension field model~@7,9,10#!. A fully inflated
balloon similar to those considered here is considered in~@10#!.
Tension field theory normally deals with finely wrinkled mem
branes~@11#!, but has also been applied to larger scale structu
such as ‘‘folds’’ in the sense of~@7#!. While our definition of a
fold is similar to what~@7#! term a single wrinkle, our definition o
a fold refers to a region of external contact. In addition, the pr
sure loading in~@7#! is of significantly higher magnitude than tha
experienced by the balloon.

Our approach of modeling the behavior of the balloon film
the fully deployed configuration has several assumptions in c
mon with the wrinkling of a thin membrane:~a! the use of plane
stress theory~as applied to individual facets in our triangulation
the balloon!, ~b! the assumption that bending of the membra
does not introduce stresses, and~c! the assumption that the mem
brane is not able to support negative stress~@12–14#!. Our ap-
proach in this paper is fundamentally different from that of
tension field. We do not impose the condition that the stresses
non-negative~as is done when the complementary approach
used @12#!. Rather, we develop a geometric model that allo
internal folds to form within each gore~just as in a real balloon!.
What we term a ‘‘fold’’ can be small when compared to the d
mensions of a real balloon, but large in comparison to
wrinkles which are observed in the balloon film. Unlike~@9#! and
~@15#!, where a relaxed strain energy function is used, in
model, we use the usual energy for a constant strain triangle
folded and nonfolded facets~see Appendix A!. This is appropriate
as a first approximation, since we ignore the wrinkling. During
process of evolving an energy minimizing shape, it is possible
an intermediate state may possess regions of high neg
stresses; similarly, the load tapes may also experience com
sions. These transient states are not physically realistic. Howe
after we have solved the minimization problem and have co
puted a shape that minimizes the balloon’s total energy, we
that the averaged principal stress resultants are non-negativ
within the accuracy of our numerical model and the strains in
load tape segments are all strictly positive. In an approach
~@7#!, the compressive stresses are eliminated through an iter
procedure at each stage of the incremental loading procedu
their algorithm.
Journal of Applied Mechanics
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In this paper, we present some results on strained float confi
rations of large scientific balloons that can be compared to p
lished work using finite elements with a tension field~@10#!. In the
special case of float conditions, we find that the approach of~@10#!
and our own approach lead to the same stress distribution
strained float shape. In this paper, we include numerical solut
for a variety of parameter values and estimate the maximum p
cipal stresses for the corresponding shapes. We find that eve
the extreme conditions, the maximum stresses fall well be
stress tolerance levels for typical operating conditions. One
vantage of our approach is that we will be able to apply our str
energy methods to ascent shape geometries with large regio
folded material~@16#!.

In Section 2, we formulate our model for strained ballo
shapes. In Section 3, we present a number of numerical res
We consider two types of designs. One is based on the natu
shape model as presented in~@2#!. The second design is based o
a variation of the natural shape, where the weight of the ca
incorporated as an added thickness in the(-shape model and the
tail of the gore is tapered near the bottom of the balloon. W
include computed equilibrium shapes for a variety of parame
values and a higher than nominal payload. In Section 4,
present some concluding remarks.

2 Problem Formulation
Before describing the variational principle that is used to mo

strained balloon shapes, we describe first how the unstrained
reference configuration is obtained from the generating curve
the axisymmetric design shape. This construction is consis
with the way real balloons are manufactured. We will assume
the number of gores in a complete shape isng . Let

~Rd~s!,0,Zd~s!!, 0<s< l d , (1)

be the generating curve for the design shape. We assume tha
unstrained curved gore is a ruled cylindrical surface that is c
tered about the curve in Eq.~1!. The unit vector normal to this
surface is perpendicular tojW5(0,1,0). The left edge of the gore
lies in the planey52tan(p/ng)x and the right edge of the gor
lies in the planey5tan(p/ng)x. If we flatten out this region, we
obtain what we call the flat reference configuration. Load ta
are attached along the edges where the gores are sealed t
another. When evolving an equilibrium shape, the gore can
dergo large rigid-body displacements and deformations that st
the film. We will assume that the deformed gore is symme
about they50 plane, and so we only need to consider the rig
half. The load tape remains in the planey5tan(p/ng)x. In Fig.
1~a!, we present a flat reference configuration. In Fig. 1~b!, we
present the curved but unstrained design shape. Because the
loon film is so thin, it has negligible bending stiffness. Instead
compressing, a small fold of excess material will form along t
center of each gore. This is based on observations of real ballo
In Fig. 1~c!, we present a typical deformed half-gore with a sm
internal fold. The pre-image of the fold can be seen in Fig. 1~a!.
We will let Sf denote the right half of a deformed gore. Th
reflection ofSf in they50 plane is denoted bySf8 . The complete
balloon shape is made fromng copies ofSføSf8 . Ck will denote
the class of balloon shapes generated in this fashion from a
damental sectionSf . Corresponding toSf andSf8 in the deformed
configuration are the flat reference configurations,Sf andSf8 , re-
spectively.

A vertex Vi , j in Sf is identified with a vertexv i , j in Sf where
j 50,61,62 and i 51, . . . ,nc12 and nc is the number of cir-
cumferential fibers. Perpendicular to the center axis of a flat
erence configuration are the directed edges~see Fig. 2~a!! Ci
5Vi,22Vi ,0 , i 51, . . . ,nc12. Note, C15Cnc1250W. Along the
‘‘right’’ boundary of a gore are the directed edges,

Ei5Vi 11,22Vi ,2 . (2)
MARCH 2000, Vol. 67 Õ 7
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Verticesv i ,25(xi ,2 ,yi ,2 ,zi ,2) lie in the planey5tan(p/ng)x, and

ei5v i 11,22v i ,2 . (3)

M2 will denote the edge of a deformed gore inR3 formed by
joining vertices$v i ,2 ,i 51, . . . ,nc12%. A load tape will be lo-
cated alongM2 . Sinceyi ,25tan(p/ng)xi ,2 , we say thatv i ,2 has
two degrees-of-freedom. Verticesv i ,1 are determined by project
ing v i ,2 onto thexz-plane, i.e.,

~xi ,1 ,yi ,1 ,zi ,1!5Pxz@~xi ,2 ,yi ,2 ,zi ,2!# (4)
5~xi ,2,0,zi ,2!.

Fig. 1 „a… Sf –half-gore in the flat reference configuration; „b…
unstrained curved configuration; „c… Sf –deformed half-gore
8 Õ Vol. 67, MARCH 2000
Vertex v i ,1 has zero degrees-of-freedom.M1 denotes the curve
defined by$v i ,1 ,i 51, . . . ,nc12%. The vertex at the top of the
balloon has one degree-of-freedom, since only itsz-component
can vary. The vertex at the tail of the balloon is assumed to
fixed.

Vertices v22,i and V22,i are determined by symmetry, i.e
v i ,225(xi ,2 ,2yi ,2 ,zi ,2) and Vi ,225RZ@Vi ,2#, whereRZ@(Y,Z)#
5(2Y,Z). The surfaceSf is triangulated by facets formed from
verticesv i , j . Normal to each facet of this type is an outwa
pointing unit vector. We define an outward normalni , j at the
vertexv i , j that has the direction of the average of all normals
exterior facets that share the vertexv i , j . Vertices

v i ,05v i ,12a ini ,1

will form the crease of the internal fold. The parametera i mea-
sures the depth of the fold at theith station and is computed a
part of the solution process. In the flat reference configuration,
define

Fig. 2 „a… Typical quadrilateral in the reference configuration
Sf defined by Vi ,j ; „b… distorted quadrilateral in the deformed
configuration Sf defined by v i ,j
Transactions of the ASME
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Vi ,15Vi ,01
a i

a i1yi ,2

Ci ,

(5)
Vi ,215RZ@Vi ,1#,

where i 52, . . . ,nc11. Note, bothVi ,21 and Vi ,1 are identified
with v i ,1 and the vertexVi ,0 is identified withv i ,0 . Whena i50,
thenVi ,215Vi ,15Vi ,0 andv i ,15v i ,0 .

The initial configuration of the balloon shape is triangulate
The superscript ‘‘0’’ of a vertex label indicates that it is in the
~unstrained! initial configuration. By construction,a i

050 and
v i ,1

0 5v i ,0
0 5v i ,21

0 for all i and thev i ,1
0 ’s lie on the generating curve

given by Eq.~1!. Corresponding vertices in the flat reference co
figuration are given byVi ,2 ,Vi ,0 . Note, material pointsVi ,2 ,Vi ,0
are fixed throughout the evolution, butVi ,61 are determined by
Eq. ~5!.

A typical fundamental section generated by the set of verti
$v i , j% will be denoted bySf(v i , j ) ~see Fig. 1~c!!. The initial un-
strained configuration is denoted bySf(v i , j

0 ) ~see Fig. 1~b!!. As
the balloon shape evolves to equilibrium, the verticesv i , j can
move, subject to the degrees-of-freedom previously described

Each triangleTl in the deformed configuration is identified wit
a triangleTl in the reference configuration. If we letNT denote the
total number of facets in a triangulation of a fundamental sect
we have

Sf5 ø
l 51

NT
Tl . (6)

We can partition the setTf5$Tl ,l 51, . . . ,NT % into two disjoint
subsetsT f

o and T f
i , whereT f

o denotes the set of triangles th
form the ‘‘outside’’ of the balloon andT f

i denotes the set o
triangles that form the internal folds. For the range of volum
considered here, the trianglesT f

o are those on which the atmo
spheric pressure acts. The trianglesT f

i are regions of externa
contact~the outside of the balloon contacts itself!. Note, triangles
in T f

o are constructed from the sets$v i ,1% and $v i ,2%, while tri-
angles inT f

i are constructed from$v i ,0% and $v i ,1%. We let NT
o

denote the number of triangles inT f
o andNT

i denote the number o
triangles inT f

i . Without loss of generality, we can assume th
the trianglesT l are numbered so that

TlPT f
o, for l 51, . . . ,NT

o ,
(7)

TlPT f
i , for l 5NT

o11, . . . ,NT ,

whereNT 5NT
i 1NT

o . The triangles are labeled from bottom to to
as shown in Fig. 1~c!. A similar convention will apply to triangles
Tl and the reference configuration~see Fig. 1~a!!. In particular, we
let Sf5ø l 51

NT Tl denote the pre-image ofSf . By construction,NT
o

5NT
i 52nc and we say thatT2q andT2q11 are adjacent inSf .

The total energy of a balloon configurationETotal is the sum of
six terms,

ETotal5Egas1Efilm1Etapes1Stapes1Sfilm1Etop, (8)

whereEgas is the gravitational potential energy due to the liftin
gas ~i.e., the hydrostatic pressure potential!, Efilm is the gravita-
tional potential energy of the film,Etapes is the gravitational po-
tential energy of the load tapes,Etop is the gravitational potentia
energy of the top fitting,Stapes is the strain energy of the loa
tapes, andSfilm is the strain energy of the balloon film. In th
following, we give a brief description of each of these quantit
and indicate how they are computed numerically.

For a balloon at a fixed altitude, it is reasonable to assume
the densities of the lifting gasrgasand ambient airrair are constant
over the height of the balloon. In this case, the pressure differe
across the balloon film at levelz is given by

P52g~rair2rgas!~z2z0!, (9)
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wherez0 indicates the location of the zero-pressure level~@3#, Eq.
~7!, p. II.5!. The specific buoyancy at float will be denoted b
bd5g(rair2rgas). In this work, as in previous works, we assum
that the zero-pressure level is located at the base of the ball
i.e., z050. In this case, the potential energy of the lifting gas
given by

Egas52bdE E E
V
zdV, (10)

whereV is the region occupied by the gas bubble. Equation~10! is
the potential for hydrostatic pressure~@17#!. Using the divergence
theorem and the symmetries ofS, Eq. ~10! can be replaced by a
sum of surface integrals~~@6#!!

Egas522ngbd(
l 51

NT
o

E
Tl

1

2
z2kW•dAW , (11)

wheredAW 5nW dA, nW is normal toS, anddA is surface area mea
sure onS. Because triangles forming the internal fold will no
contribute toEgas, the summation in Eq.~11! is taken from l
51 to l 5NT

o . For triangular facets, terms in Eq.~11! can be
computed exactly~see Eq.~5!, @18#!.

Assuming a single balloon skin with uniform thicknesse, the
gravitational potential energy due to the weight of the balloon fi
is

Efilm5E E
S

wfilmzdS, (12)

where the film weight density iswfilm . A cap is a subset ofS that
covers the top portion of the balloon. If the balloon system
cludes several caps, their contribution to the gravitational pot
tial in Eq. ~12! can be incorporated by appropriately modifyin
the film weight density. For our purposes, we will assume th
are two caps denoted byC1 andC2 whereC2,C1,S. Each cap
is assumed to have the same material properties as the single
layer of the complete balloon. We define a functionv~•! on tri-
angles inSf as follows:

v~Tl !5number of film layers coveringTl .

Efilm is given by

Efilm52ngwfilm(
l 51

NT

z̄lv~Tl !area~Tl !, (13)

wherez̄l is thez-component of the centroid of triangleTl .
The gravitational potential energy due to the weight of the lo

tapes is

Etapes5ngwtapeE
0

Lm

a2~s!•kWds,

wherewtape is the weight density of the load tape,a2(s)PR3 for
0<s<Ld is a parametrization of the curveM2 , s is arc length in
the flat reference configuration, andkW5(0,0,1). Thez-component
of the centroid corresponding to the edgeei is z̄i ,25

1
2(zi 11,2

1zi ,2). The contribution to the gravitational potential of this se
ment iswtapez̄i ,2uEi u, whereEi is defined in Eq.~2!. The energy of
M2 is wtape( i 51

nc11z̄i ,2j uEi u. The gravitational potential energy o
the load tapes in a complete shape is

Etapes5ngwtape(
i 51

nc11

z̄i ,2uEi u. (14)

We assume that the fibers making up a typical load tape beh
like a linearly elastic string with stiffness constantK tape. If s*
denotes arc length along a deformed meridional fiber, ands the
MARCH 2000, Vol. 67 Õ 9
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corresponding arc length in the undeformed state, the linear
strain ise'(ds* 2ds)/ds, and so the linearized strain of theith
segment inM2 is

« i5~ uei u2uEi u!/uEi u, i 51, . . . ,nc11, (15)

where Ei and ei are defined in~2! and ~3!, respectively. The
corresponding strain energy for theith segment of the load tap
running alongM2 with stiffness constantK tape is 1

2K tape(« i)
2uEi u.

It follows that the strain energy of the load tapes in a compl
shape is

Stapes5
1

2
ngK tape(

i 51

nc11

~« i !
2uEi u. (16)

In what follows, we will assume that the balloon is made up
a single layer. Using the previously defined functionv, we will
add the contribution of the caps. In our work, we will use a st
dard measure of shell strain energy~Eq. ~1.2.20!, @19#!. However,
since the balloon film has negligible bending stiffness, we d
terms related to the bending energy. Retaining only the first in
gral in Eq.~1.1.20! ~~@19#!! and assuming a linearly elastic isotro
pic material, the film strain energySfilm is given by

Sfilm5
Ee

2~12n2!
E E

V
$~12n!gb

a~u!ga
b~u!1nga

a~u!gb
b~u!%dA0.

(17)

The mixed tensorgb
a corresponds to the Cauchy-Green strain. T

setV denotes the parameter space for the flat reference con
rations. The vector fieldu in Eq. ~17! denotes the displacemen
field that maps a triangle in the reference configuration to on
the deformed configuration. We will not useu directly in our
derivation of an expression forSfilm , but we will compute the
contribution toSfilm for a typical facet, then sum the results
obtain an approximation of the total strain energy ofS.

There are alternative forms forSfilm and in our computations
we use

Sfilm5
1

2E E
V

n:gdA0, (18)

wheren represents the Second Piola-Kirkoff stress tensor,g rep-
resents the strain tensor, and ‘‘:’’ is the tensor inner product. T
contravariant components ofn are denoted bynab. Equation~18!
is equivalent to Eq.~17! and follows after substitutingn:g
5nb

aga
b into Eq. ~17!, where

nab5Eablmglm , (19)

Eablm is the tensor of elastic moduli, i.e.,

Eablm5
eE

2~11n!Faalabm1aamabl1
2n

12n
aabalmG , (20)

E is Young’s modulus,n is Poisson’s ratio,e is the shell thick-
ness, andaab is the first fundamental form of the reference co
figuration. The Cauchy-Green straingab is defined in Appendix
A. In our work, we use flat facets to approximate the ballo
surface and so on each facet, we havebab50, wherebab denotes
the second fundamental form of the reference configuration. C
tesian coordinates are used, soaab5da

b .
After triangulatingSf , Eq. ~18! can be written in the form

2ng(
l 51

NT 1

2ETl

n~Tl !:g~Tl !dA0. (21)

For a constant strain model, terms of the formn(Tl) andg(Tl) are
constant on each triangleTl , so *Tl

n(Tl):g(Tl)dA0 can be re-
placed byn(Tl):g(Tl)3area(Tl). If we add the contribution of
the external caps, we have
10 Õ Vol. 67, MARCH 2000
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Sfilm52ng(
l 51

NT 1

2
v~Tl !~n~Tl !:g~Tl !!area~Tl !. (22)

Let Sf(v i , j ) denote the fundamental section of a faceted ballo
defined by vertices$v i , j%. The discrete form of the total energy o
S will be denoted byE(v i , j ), and is obtained by substituting Eq
~10!, ~13!, ~14!, ~16!, ~22! into Eq. ~8!. In particular, we have

E~v i , j !5Egas1Efilm1Etapes1Stapes1Sfilm1ztopwtop. (23)

The last term is the gravitational potential due to the top fitting
the balloon (wtop is the weight of the fitting andztop5z2,nc12 is its
height of above the base!.

A volume constraint,

V22ng(
l 51

NT
o

Vl50, (24)

whereVl is the volume of the tetrahedron with baseTl in a parti-
tion of the gas bubble. Upper and lower bounds in the form

xi ,2
lb <xi ,2<xi ,2

ub , i 52, . . . ,2nc11,

zi ,2
lb <zi ,2<zi ,2

ub , i 52, . . . ,nc12, (25)

0<a i<a i
ub, i 52, . . . ,nc11,

corresponding to vertices with nonzero degrees of freedom
applied. Because we are including strain energy in our prob
formulation, we do not include the fiber constraints that we
employed in previous work~Eqs. ~13!–~14! of @5#!. The Matlab
software~constr! that is used to solve variational problems allow
~25! to be specified. In practice, the upper and lower bounds
chosen sufficiently large so they do not affect the solution. T
variational principle that is used to compute the numerical E
shapes presented in Section 3 is given by the following:

Problem ~* !

For S~v i , j !PCk ,
minimize: E~v i , j !,

subject to: G~v i , j !50,

satisfying~25!, whereG is defined by the left side of~24!.

3 Numerical Solutions
Previous work on EM-shapes~@5,6#! rescaled the balloon di-

mensions to be in agreement with the scaling of the stand
shapes based on the design parametersl and( and the(-shape
equations~see, e.g.,@2,3#!. In the present work, we use desig
shapes that are similar to those used for large scientific ballo
flown by NASA. For our calculations, we will consider two type
of designs. The first design is based on the standard natural-s
model as described in~@2#!. This balloon has a volume of a
804,198 m3 ~28.4 million cubic feet!, two caps, and uses a desig
value of (50.29. We will refer to this as thenatural-shapede-
sign. The second design is a 835,347 m3 ~29.5 million cubic feet!
balloon that is based on a variation of the natural shape, where
caps are modeled as added thickness and the gore is tapered
than usual near the bottom. For this particular design, the bas
the balloon is nearly the shape of a cone~the source of the tapere
design profile was a balloon manufacturer!. We call this theta-
pereddesign. Because caps are included as an added thickne
the second model, the resulting design shapes are in gen
shorter in height and wider in diameter than the shapes produ
by the natural-shape model, and we cannot assign a value of( to
the shape. Material constants and additional parameters are
sented in Table 1. Poisson’s ration and Young’s modulusE for
the balloon film are based on 20.32 micron polyethylene and
highly temperature-dependent. For example, under normal op
ing conditions,n and E could lie within the respective intervals
Transactions of the ASME
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0.72<n<0.82 and 124<E<248 ~MPa!. For the purposes of this
paper, we use nominal valuesn50.82,E5248 MPA, but consider
a number of different combinations ofn andE.

We use a specific buoyancy that corresponds to an altitud
39,429 m~@20#, p. 73! as the nominal altitude for Cases I. Ca
I~a! refers to the tapered design, while Case I~b! refers to the
natural-shape design. For Cases II, the specific buoyancy c
sponds to an altitude of 36,596 m. Case II uses the tapered
and considers various combinations of Young’s modulus
Poisson’s ratio. In Cases I–II, the payload is adjusted appro
ately so that the balloon is in equilibrium for the float condition
The number of circumferential segments in the discretization
nc553.

In the following,m r ,l for r 51,2 will denote the principal stres
resultants of thelth triangle~see Appendix A!. The averaged prin-
cipal stress resultants are denoted bym̂ r ,q wherem̂ r ,15m r ,1 ,

m̂ r ,q5
1

2
~m r ,2q1m r ,2q11!,

wherer 51,2, q52, . . . ,nc21, andm̂ r ,nc
5m r ,2nc

. In Sf , the tri-
anglesT2q ,T2q11 form a quadrilateral and we can interpretm̂ r ,q
as measured at the centroid of theqth quadrilateral~note, inSf ,
T2q , T2q11 need not lie in the same plane!.

In Table 2, we present data on the strained float shapes fo
tapered and natural designs. In both cases, the strained shap
roughly three meters taller than their respective designs. The
ameter of the strained tapered shape is about 1.2 meters le
diameter than its design, while the strained natural shape is a
0.7 meters less than its design. Of the two design shapes co
ered here, the natural shape is curved more near its base~see Fig.

Table 1 Parameter values

Description~units! Variable

Young’s modulus~MPa! E 248.2, 124.1
Poisson’s ratio n 0.82, 0.72
Film weight density~N/m2! wfilm 0.18386
Load tape weight density~N/m! wtape 0.08785, 0.08002
Load tape stiffness parameter~N! K tape 25000, 26244
Film thickness~microns! e 20.32
Specify buoyancy at float~N/m3! bd 0.0354, 0.0542
Volume at float~m3! Vfloat 804198, 835347
Number of gores Ng 156, 159
Design gore length~m! l d 178.476, 181.905
Payload~N! 16035, 31751
Gross weight~N! 29531, 45247
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3~a!!. This means that after straining, the natural shape will h
slightly more excess material in this lower region. Consequen
its fold will extend all the way to the base of the balloon. On t
other hand, the internal fold of the tapered design initiates m
further up from the bottom of the balloon and nearer the t
Where the natural design forms a small internal fold near the b
of the balloon to account for excess balloon material, because
tapered near the base, the tapered design does not need to f
fold of excess material. In Fig. 3~b!, we present the tension in
each segment of the load tape.

For the tapered design, Fig. 4 suggests that the film is un
biaxial tension near the base. Although the hoop stresses are
tive, they are very small~less than 0.17 N/cm! and within the
accuracy of our model, one could argue they are zero. In any c
this effect is due to the design shape, not our solution proc
~compare to Case I~b!!. Near the base of the balloon, most of th
load is carried by the load tapes. However, the tapering of
design in Case I~a! tends to transfer more of the load into the fil
near the bottom of the balloon~see Figs. 4!. The corners in graphs
nears5122 m in Fig. 3~b! and Figs. 4 correspond to the bounda
of the caps~when the caps are removed, we find that the corn
are no longer present!. The caps are not needed to support t
balloon system at float altitude, but are needed to contain the
bubble at launch and during the initial stages of ascent. In
figures, the locations of the fold initiation and termination poin
are indicated by a ‘‘̂ .’’ The parameters is measured along the
edge of the gore in the undeformed configuration.

One major difference between the present work and our ea
work on energy minimizing shapes is that fiber constraints are
enforced here~compare to Eqs.~13!–~14! in @5#! where the
lengths of certain fibers were required to be fixed!. However, we
find that our computed solutions at float that include strain ene
have significantly less distortion when compared with those ba
on the variational principle in~@5#!. If Ld is the unstrained length
of a meridional fiber andl its strained length,dm5( l 2Ld)/Ld .
The quantitiesdc

6 are similarly defined, exceptdc
2 is the mini-

mum anddc
1 is the maximum over all circumferential fibers. I

~@5#!, the quantitydc was nonnegative by definition. However, i
the present work, circumferential fibers are allowed to stretch
contract, so thatdc could be negative. IfuEd,l u represents the
unstrained length of the ‘‘diagonal’’ edge in thelth triangle, and
ued,l u its corresponding strained length, thendd

15maxl$(ued,l u
2uEd,l u)/uEd,l u,l 51, . . . ,NT

o%. Similarly, dd
2 is the minimum di-

agonal strain andd̂d is the average diagonal strain. One notab
difference between the present results~that include strain energy!
Table 2 Strained EM-shapes with nominal load at float; units of energy are megajoules „MJ…; units of strain are m Õm

Tapered Design Natural Design

Description Initial Strained Initial Strained

Young’s modulus~MPa! - 248.2 - 248.
Poisson’s ratio - 0.82 - 0.82
Strain energy of film 0 0.00425 0 0.00424
Strain energy of load tapes 0 0.00960 0 0.01007
Hydrostatic pressure potential 21.83983 21.89893 21.68884 21.74499
Gravitational potential of film 0.85422 0.89227 0.77447 0.79135
Gravitational potential of tapes 0.14013 0.14194 0.14013 0.14440
Gravitational potential of top fitting 0.01403 0.01451 0.01376 0.01418
Total energy of balloon system 20.79567 20.83634 20.79567 20.78073
Maximum depth of internal fold~cm! 0 1.05156 0 0.62484
Minimum contraction of circumferential fibers 0 20.01891 0 20.02027
Maximum elongation of circumferential fibers 0 0.00205 0 0.00188
Load tape strain 0 0.00485 0 0.00509
Maximum strain of diagonal fibers 0 0.00190 0 0.00188
Maximum strain of diagonal fibers 0 0.00655 0 0.00772
Average strain of diagonal fibers 0 0.00431 0 0.00455
Base angle~deg! 57.460 56.45 63 60.93
Height of top fitting~m! 105.156 108.784 103.176 106.301
Maximum radius iny5tan(p/ng)x-plane 64.5963 63.9269 63.0744 62.7787
MARCH 2000, Vol. 67 Õ 11
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Fig. 3 „a… Profiles of natural-shape and tapered natural shape designs „•••… and strained
shapes „—…; „b… one-half load tape tension at nominal conditions; ‹ marks the range of the
fold
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and our previous work~where fiber constraints are included, e.
@5#! is a reduction in the overall distortion of EM-shapes. Restr
ing our attention to the data on the float shapes in~@5#!, we found
distortions on the order of 0.2 percent for the maximum mer
onal stretchdm , 2.0 percent for the maximum circumferenti
RCH 2000
.,
ct-

di-
l

stretchdc
1 ; there were a few triangles with a diagonal stretchdd

1

on the order of 4.0 percent and the average positive diago
stretchesd̂d were on the order of 0.60 percent. In the present w
on the natural design, we found that the meridional stretch w
0.50 percent and the maximum circumferential stretch was 0
Transactions of the ASME
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Fig. 4 Averaged principal stress resultants „NÕcm … for nominal float conditions; „a…
m̂1,q –circumferential stress resultants, „b… m̂2,q –meridional stress resultants; ‹ marks the
range of the fold
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percent; a contraction of approximately 2.0 percent was obse
in the strained float shape. For the EM-shape at float, we fo
that all triangles experienced a positive diagonal stretch that
at most 0.77 percent and on the average about 0.45 percent.

In order to compare our results with~@10#!, we need to compute
an estimate of the meridional and hoop stresses. By examining
eigenvectors corresponding to the principal stress result
m1,l ,m2,l , we observed thatm1,l corresponds to the hoop directio
and m2,l corresponds to the meridional direction. The zero lo
tape slackness case presented in~@10#! that were obtained using
the commercial finite element code ABACUS is the most app
priate set of results that are available in the literature for comp
sons with our results on float shapes. The tapered balloon de
d Mechanics
ved
nd
as

the
nts

n
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ro-
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used here is very similar to the one in~@10#!, where shapes have
volume of around 826,852 m3 ~29.2 mcf!, the specific buoyancy is
0.0344 N/m3, and n50.82, E5248 Pa. The volume is not in
cluded as a constraint, and is computed after a solution is fou
quadrilateral elements and a finer mesh are used in~@10#!. The
author in~@10#! uses an artificial bending stiffness to aid conve
gence, but indicates that this does not affect the membrane s
tion. Since the directions of our principal stresses for the fl
shape align with the circumferential and meridional directions,
can directly compare our results with the meridional and circu
ferential stress resultants presented in~@10#!. We find that our
estimated meridional stress resultants are relatively constant~ap-
proximately 0.28 N/cm! over the bottom two-thirds of the gore
Table 3 Strained EM-shapes with heavy load at float, tapered design; units of energy are megajoules „MJ…; strains are measured
in m Õm

Description Initial Case II~a! Case II~b! Case II~c! Case II~d!

Young’s modulus~MPa! - 248.2 124.1 248.2 124.1
Poisson’s ratio - 0.82 0.82 0.72 0.72
Strain energy of film 0 0.01428 0.01107 0.01481 0.01550
Strain energy of load tapes 0 0.03404 0.04347 0.03458 0.04446
Hydrostatic pressure potential 21.83851 22.98221 23.00368 22.98545 23.00769
Gravitational potential of film 0.81339 0.91330 0.91878 0.91401 0.91959
Gravitational potential of tapes 0.13782 0.14542 0.14632 0.14552 0.14643
Gravitational potential of top fitting 0.01403 0.01490 0.01499 0.01491 0.01499
Total energy of balloon system 20.88728 21.86025 21.86903 21.86159 21.87069
Maximum depth of internal fold~cm! 0 1.93548 2.28905 2.26162 2.54203
Minimum contraction of circumferential fibers 0 20.03485 20.04074 20.03058 20.03591
Maximum elongation of circumferential fibers 0 0.00339 0.00514 0.00459 0.00662
Load tape strain 0 0.00899 0.01032 0.00917 0.01055
Minimum strain of diagonal fibers 0 0.00328 0.00504 0.00450 0.00647
Maximum strain of diagonal fibers 0 0.01279 0.01288 0.01283 0.01292
Average strain of diagonal fibers 0 0.00804 0.00924 0.00828 0.00954
Base angle~deg! 57.460 55.28 55.55 55.66 55.68
Height of top fitting~m! 105.156 111.726 112.392 111.735 112.375
Maximum radius iny50 plane~m! 64.622 63.139 63.020 63.121 63.002
MARCH 2000, Vol. 67 Õ 13
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Fig. 5 (a) Profiles of tapered shape design „•••… and strained shapes „—… for Cases II „a…–„d…;
„b… one-half load tape tensions; ‹ marks the range of the fold
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rising sharply in the top one-third of the gore to a maximum va
of 1.68 N/cm. In~@10#!, the maximum meridional stress resulta
is roughly 1.75 N/cm and the minimum meridional stress result
is approximately 0.49 N/cm. The results from~@10#! were ob-
tained from graphs and so an error on the order of 0.2 N
should be taken into account. In addition to the good agreem
on the maximum and minimum principle stress resultants, we
RCH 2000
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that our plots of the meridional and circumferential stress res
ants in Figs. 4 and the corresponding figure in~@10#! are in good
qualitative agreement~i.e., stresses are relatively constant over t
bottom two-thirds of the gore, and begin rising at about the sa
station along the gore to roughly the same maximum values
summary, we find good agreement.

Based on the results presented in Case I, we see that
Transactions of the ASME
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Fig. 6 Averaged principal stress resultants „NÕcm … „m̂1,q ,m̂2,q… for Cases II „a…–„d…; „a…–
circumferential stress resultants; „b…–meridional stress resultants; ‹ marks the range of
the fold
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natural-shape design and tapered design behaved roughly
same, so we carried out the parameter studies only for the tap
design. In Table 3, we present results for strained float shapes
support a heavy payload~almost double that used in Case I!. As
one might expect, we see upon comparing Table 2~column 3!
with Table 3 ~column 3!, a doubling of the payload results in
doubling of the load tape strain and the corresponding maxim
principal stresses. From Table 3, we see that varying Poiss
ratio over the range 0.72<n<0.82 has little effect on the corre
sponding solutions where the fold is present. Near the top of
balloon, the solution with the higher Poisson ratio~and same
Young’s modulus! has the larger principal stress resultants.
reduction in Young’s modulus by a factor of two, is accompan
by an increase in strain of about ten percent~as indicated by the
load tape strain and average strain of diagonal fibers in Table!.
For comparison purposes, the launch specification for maxim
film stress is roughly 3.85 N/cm~2.2 lbf/in!, so the maximum
stresses that are considered here are within the range that a
balloon film might experience. Plots of the design shapes
strained equilibrium shapes are presented in Fig. 5~a!. Plots of the
load tape tensions are presented in Fig. 5~b!. Plots of the stress
resultants are presented in Fig. 6.

4 Concluding Remarks
A mathematical model for estimating the stresses in a stra

large scientific balloon is proposed. Though in some ways
sophisticated than many standard finite element method packa
our model can accurately describe the geometry of the gore s
ture with internal folds of excess material as observed in r
balloons. For float conditions, a balloon should behave like a s
dard membrane under biaxial tension near the top of the ballo
but somewhere below its shoulder, the balloon should beh
more like a degenerate membrane where tension is predomin
in the meridional direction. Our model predicts similar behav
and can handle strained balloon shapes with internal folds,
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viding reasonable estimates of the film stresses. Our solutions
in good qualitative and quantitative agreement when compa
with similar results obtained using a commercial finite elem
package that is combined with a tension field model. Our res
on strained float shapes give us confidence that when we a
our model to ascent shapes~i.e., partially inflated configurations!
with significant regions of folded material, we should be able
obtain useful estimates for the principal stresses. Our E
approach is tailored to handle configurations with excess fol
material.

Appendix A

Computation of Principal Stresses. In the following, let T
and T denote triangles in the reference and deformed configu
tion, respectively. We temporarily drop the subscriptl for tri-
angles. In the following,Ve represents the ‘‘standard triangle
for a typicalT in the reference configuration,

Ve5$~j1 ,j2!u0<j11j2<1,0<j1 ,j2<1%.

Let n and j denote the edges of the standard triangle. LetMR be
the linear map that takesi,j to the respective edgesc1 ,c2PR2 of a
typical triangleT in the reference configuration. Similarly, letMD
be the linear map that takesi,j to the edges of a typical triangleT
in the deformed configurationf1 ,f2PR3, respectively. The defor-
mation mapping is linear and is given bypPT→qPT whereq
5MD+MR

21(p). The displacement mappingu is defined by the
equationq5p1u.

Because the mappingp→q is linear, the deformation gradien
F is the map itself, i.e.,

F5
]q

]p
5MD+MR

21.

In matrix form, the Cauchy strain tensor is given by
MARCH 2000, Vol. 67 Õ 15
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BecauseC is symmetric, by the spectral representation theore
there exist orthonormal vectorse1 ,e2 such that

C5l1e1e1
T1l2e2e2

T .

The Cauchy-Green straing in matrix form is given by

E5
1
2 ~C2I !.

The eigenvectors ofE and C are the same, and soE has the
representation

E5
1
2 ~l121!e1e1

T1
1
2 ~l221!e2e2

T .

In matrix form, the second Piola-Kirkoff stress is given by

N5
eE

12n2
@~12n!E1nTrace~E!I #,

and follows from Eqs.~11.1.22!–~11.1.23! in ~@21#! for the special
case of a formulation with respect to Cartesian coordinates~i.e.,
aab5db

a), whereE is Young’s modulus andn is Poisson’s ratio.
SinceE5ET,we see thatN5NT, and by the spectral represent
tion theorem we have

N5m1n1n1
T1m2n2n2

T ,

wheren1 andn2 are orthonormal vectors. The eigenvectors ofC
determine the principal axis of strain,Al1 andAl2 are the prin-
cipal stretches, andm1 and m2 are the principal stress resultan
~see, e.g.,@22#!.

Each of the above quantities are defined for a typical trian
Tl , and so we will use a subscriptl to indicate that a quantity is
related to thelth triangle. For triangleTl , we have the following
representations:

C~Tl !5l1,le1,le1,l
T 1l2,le2,le2,l

T ,

E~Tl !5
1
2 ~l1,l21!e1,le1,l

T 1
1
2 ~l2,l21!e2,le2,l

T ,

N~Tl !5m1,ln1,ln1,l
T 1m2,ln2,ln2,l

T .

For a constant strain model, the strain energy corresponding tTl
can be written as

E
Tl

n~Tl !:g~Tl !dA05N~Tl !:E~Tl !3area~Tl !.

Note, the above descriptions assumed a single shell thicknes
all triangles. The values for the principle stresses for triangleTl
would need to be modified based on the number of ca
16 Õ Vol. 67, MARCH 2000
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On the Development of
Volumetric Strain Energy
Functions
To describe elastic material behavior the starting point is the isochoric-volumetric
coupling of the strain energy function. The volumetric part is the central subject of
contribution. First, some volumetric functions given in the literature are discussed
respect to physical conditions, then three new volumetric functions are developed
fulfill all imposed conditions. One proposed function which contains two material par
eters in addition to the compressibility parameter is treated in detail. Some paramete
are carried out on the basis of well-known volumetric strain energy functions and ex
mental data. A generalization of the proposed function permits an unlimited numb
additional material parameters. Dedicated to Professor Franz Ziegler on the occa
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1 Introduction
The success achieved in the application of finite element te

niques during the recent years has the consequence that now
nonlinear material laws at finite strains are frequently applied
structural analysis. In the case of finite elasticity, strain ene
functions for compressible~or nearly compressible! materials are
preferable because displacement-based finite elements ca
used. As a special assumption the isochoric-volumetric dec
pling of the energy function is frequently applied in this conte
An advantage appears that the isochoric and the volumetric m
rial behavior can be treated as completely independent, w
permits their decoupled treatment in the development of fin
elements, e.g., using different integration schemes to avoid lo
ing phenomena. A disadvantage of the split is the increase
computational effort due to the product formula that must be ta
into account, deriving the stresses and the elasticity tangent f
the strain energy function.

The outline of this contribution is as follows: After reviewin
the isochoric-volumetric decoupling of the strain energy functi
the conditions imposed on the decoupled energy function are
tivated and a complete representation is given. Then the focu
on the volumetric part, first discussing known functions and th
developing new functions.

2 Decoupling of the Strain Energy Function
As is well known~e.g., @1#! under the assumption of isotrop

the strain energy function depends only on the left~or right!
Cauchy-Green tensorb through the invariantsI b , II b , III b or the
related principal stretchesl1 , l2 , l3 :

W5W~b!5W~ I b ,II b ,III b!5W~l1 ,l2 ,l3!.

In the compressible case all invariants and principal stretches
independent and no constraint exists. The determinant of the
formation gradient, which allows for the measurement of the lo
change of volume during the deformation, is given byJ5AIII b
5l1l2l3 with 0,J,`.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
27, 1997; final revision, Oct. 12, 1999. Associate Technical Editor: M. M. Carr
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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For compressible materials a totally decoupled isochoric
volumetric material behavior is commonly assumed~see citations
in Section 4!. This leads to the definition of the isochoric le
Cauchy-Green tensorb̂ with the invariants

I b̂5J22/3I b , II b̂5J24/3II b , III b̂51 (1)

and the isochoric principal stretches

l̂ i5J21/3l i , (2)

which date back to Flory@2#. Because of the isochoric incom
pressibility the classical constraint (1)3 holds, thusl̂1l̂2l̂351.
Now only two of three isochoric principal stretches are indep
dent. Including the isochoric-volumetric decoupling into the stra
energy function leads to

W5Ŵ~ I b̂ ,II b̂!1U~J!,
(3)

W5Ŵ~ l̂1 ,l̂2 ,l̂35l̂1
21l̂2

21!1U~J!

whereŴ is the isochoric part andU(J) is the volumetric part.
The question for which materials or in which range such

decoupled strain energy function holds is not discussed here~see,
e.g., Penn@3#! for some criticism of the additive split or van de
Bogert and de Borst@4# for the investigation of coupling terms!.
In the following we assume that the additive split~3! is valid for
the materials considered.

3 Requirements for the Strain Energy Function
The strain energy function has to satisfy some physical con

tions. For completeness the conditions are listed for the isoch
part as well as for the volumetric part separately. In each ca
short motivation is given. For simplicity the considerations a
based on the representation (3)2 . Some typical references ar
Ogden@5,1# or Ciarlet @6#. It should be noted that all of the con
ditions imposed on the isochoric strain energyŴ in this contribu-
tion coincide exactly with those imposed on the strain ene
function for incompressible materials. The only difference is th
the isochoric principal stretchesl̂ i replace the principal stretche
of the incompressible case.

Isotropy requires that the principal stretches can be arbitra
ordered in the strain energy function

Ŵ~ l̂ i ,l̂ j ,l̂k!5Ŵ~ l̂ l ,l̂m ,l̂n!

for iÞ j ÞkÞ i and lÞmÞnÞ l .

ly
ll.

essor
on,
li-
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The determinantJ and therefore the volumetric part fulfill thi
requirement automatically. For isotropic materials the derivati
must fulfill the following conditions:

]l̂ i
Ŵ~ l̂1 ,l̂2 ,l̂3!u l̂m515]l̂k

Ŵ~ l̂1 ,l̂2 ,l̂3!u l̂m51 ,

]
l̂ i l̂ i

2
Ŵ~ l̂1 ,l̂2 ,l̂3!u l̂m515]

l̂ j l̂ j

2
Ŵ~ l̂1 ,l̂2 ,l̂3!u l̂m51 ,

]
l̂ i l̂ j

2
Ŵ~ l̂1 ,l̂2 ,l̂3!u l̂m515]

l̂kl̂ l

2
Ŵ~ l̂1 ,l̂2 ,l̂3!u l̂m51

for iÞ j , kÞ l .

(4)

Herein ] denotes the first partial derivative with respect to t
indicated variable and]2 denotes the second partial derivativ
These conditions hold only in the case of identical princip
stretches. Because of definition~2!, identical principal stretches
always lead tol̂m51. The corresponding conditions on the d
rivatives of the volumetric part are then automatically fulfilled.

In the strainless initial state no strain energy

Ŵ~ l̂151,l̂251,l̂351!50 and U~J51!50 (5)

is stored. If the strainless state is assumed to be stressfre
condition

]JUuJ5150 (6)

must hold, wherep(J)5]JU represents the volumetric stres
~5hydrostatic pressure!. Due to (4)1 , no similar statement for
]l̂ i

Ŵ can be obtained. If strains are present, i.e.,l̂ iÞ1, the stored
energy

Ŵ~ l̂1Þ1,l̂2Þ1,l̂35l̂1
21l̂2

21!.0, U~JÞ1!.0 (7)

must be always positive.
In the case of infinitesimal strains the strain energy funct

leads in the limit to the classical Saint-Venant-Kirchhoff~SVK!
material law

Ŵ~ l̂1→1,l̂2→1,l̂35l̂1
21l̂2

21!1U~J→1!→WSVK .

Considering the tangent of the stress-strain relation in the in
state the conditions

@]l̂ i
Ŵ1]

l̂ i l̂ i

2
Ŵ2]

l̂ i l̂ j

2
Ŵ#l̂1→1,l̂2→1,l̂35l̂

1
21l̂

2
21→2m for iÞ j

(8)

and

]JJ
2 UuJ→1→K

occur, wherem is the shear modulus andK is the bulk modulus of
the infinitesimal theory.

In the limit case when the continuum degenerates to a sin
point, the strain energy tends to positive infinity and the volum
ric stress to negative infinity:

U~J→10!→1` and ]JUuJ→10→2`. (9)

Accordingly, a infinitely stretched continuum results in a positi
infinite strain energy and a positive infinite volumetric stress

U~J→1`!→1` and ]JUuJ→1`→1`. (10)

These two limit cases lead to undeterminable isochoric stretc
~2! due to a product zero times infinity. Therefore no conditio
for Ŵ and]l̂i

Ŵ are available.
With respect to the requirement of polyconvexity of the stra

energy function the volumetric part has to satisfy the convex
condition

]JJ
2 U>0 (11)

which appears in conjunction with the existence of solutions~see,
e.g.,@6#!.
18 Õ Vol. 67, MARCH 2000
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In the following the attention is focused on the volumetr
strain energy functionU exclusively.

4 Discussion of Volumetric Strain Energy Functions
The first part of this section extends the considerations of

and Mang@7# and sets the motivation for the second part whi
deals with the design of alternative volumetric strain ene
functions.

4.1 Functions Suggested in the Literature. In Table 1
some volumetric strain energy functions suggested in the litera
are summarized. Some characteristic references are: forU1 Suss-
man and Bathe@8#, Simo @9#, van den Bogert and de Borst@10#,
Chang et al.@11#, van den Bogert et al.@4#; for U2 Hencky @12#,
Valanis and Landel@13#, Simo et al.@14#, Simo @15#, Roehl and
Ramm@16#; for U3 Simo and Taylor@17#, van den Bogert and de
Borst @10#, Liu and Mang @7#; for U4 Ogden @18#, Simo and
Taylor @19#, Miehe@20#, Kaliske and Rothert@21# and forU5 Liu
et al. @22–23#. The cited references show that the isochor
volumetric decoupling of the strain energy function is very co
mon, especially in the treatment of nonlinear elasticity using
finite element method. In some references the extension of inc
pressible materials to nearly incompressible materials is

Fig. 1 Curves U„J …ÕK

Table 1 U„J … suggested in the literature „see references …

U1(J)5K(J21)2/2
U2(J)5K(ln J)2/2
U3(J)5K@(J21)21(ln J)2#/4
U4(J)5Ku22(u ln J1J2u21) for u,21
U5(J)5K(J ln J2J11)

Table 2 Fulfillment of the volumetric conditions for the given
and proposed U„J …

Condition

Literature Proposed

U1 U2 U3 U4 U5 U6 U7 U8

(5)2 A A A A A A A A
~6! A A A A A A A A
(7)2 A A A A A A A A
(8)2 A A A A A A A A
(9)1 →K/2 A A A →K A A A
(9)2 →2K A A A A A A A
(10)1 A A A A A A A A
(10)2 A →0 A A A A A A
~11! A 1³ lnJ A A A A A A
Transactions of the ASME



h

v

. In

large

ess

be
al
n-
the
tted
lu-

ite
have

a
on
or-
o
uch

of

ion

tric

n

n

cussed. These proposed extensions are closely related to the
metric strain energy function and can be interpreted in a sim
fashion.

For the given volumetric strain energy functions, the fulfillme
of the conditions~5!–~11! in Section 3 is given in Table 2. AA
denotes the fulfillment of the corresponding condition. In the ca
of violation the limit value is listed instead. It is obvious that on
the behavior of the functionsU3 andU4 is correct. The functions
U1 , U2 , andU5 show some deficiencies. In particular,U1 andU5
should not be used in applications with large compression w
U2 does not make sense in cases where large volumetric ex
sions occur. In Figs. 1, 2, and 3 the functionsU3 , U4a ~index a
stands foru522! and their derivatives]JU, ]JJ

2 U are given~the
newly proposed functionsU6 – 8 are discussed later!. All curves
are plotted usingK to scale. The fulfillment of the conditions
~5!–~11! can be checked now very easily. It appears also that
functionsU3 andU4a lead to very similar shapes.

The compressibility parameterK only scales the functions bu
does not change their shapes. In this contextK can be interpreted
as a penalty parameter that enforces incompressibility if large
ues are chosen. The functionU4 seems to be superior compared
the other functions given in Table 1 because it contains one a
tional parameteru which permits to fit the shape of the function t
experimental data. However, only values ofu,21 guarantee the
fulfillment of all conditions. In the literature the choiceu522 is
very popular. As found by Ogden@18# the valueu59²21 fits

Fig. 2 Curves of the first derivative ­JU„J …ÕK

Fig. 3 Curves of the second derivative ­JJ
2 U„J …ÕK
Journal of Applied Mechanics
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experimental data for nearly incompressible rubber rather well
this respect the violation of the conditions (10)2 and~11! seems to
be acceptable because for nearly incompressible materials a
K has to be taken andJ remains close to 1. Applications withJ
.1 should be handled with care due to the small volumetric str
obtained in this range~see also Fig. 4!.

4.2 Alternatively Proposed Functions. Before developing
alternative volumetric functions their desirable properties must
defined: First, the functions must be conform with the physic
conditions~5!–~11! and, second, the functions should be as ge
eral as possible. The fulfillment of the second requirement has
advantage that a wide range of experimental data can be fi
with only one general function. Then a wide range of elastic vo
metric material behavior can be described with little effort—
which can be seen as an advantage in conjunction with fin
element codes. This means not each special material should
its special volumetric function but its special parameters within
general function. Generality of a volumetric strain energy functi
is only achieved, if some additional material parameters are inc
porated. In the following a class of volumetric functions with tw
additional parameters is proposed. The design process of s
functions is described in detail with respect to the fulfillment
the physical conditions.

4.2.1 Function With Two Additional Parameters.The pro-
posed starting point of the development is the following equat

(12)

for the volumetric stress. The index 6 indicates a new volume
strain energy function. Condition~6! is obviously fulfilled. The
first term with the positive exponent~a.0! vanishes asJ→10.
The second term with the negative exponent~b.1! vanishes as
J→1`. Consequently the conditions (9)2 and (10)2 hold. The
differentiation of Eq.~12! with regard toJ shows that conditions
(8)2 and~11! are fulfilled. It has to be noted, that starting with a
undetermined constant in~12! the constantK(a1b)21 follows
directly from condition (8)2 . The integration of Eq.~12! with
regard toJ results in the following according volumetric strai
energy function:

Fig. 4 Fitted curves of the first derivative ­JU„J …ÕK
MARCH 2000, Vol. 67 Õ 19
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3.
The integration constant is chosen such that condition (5)2 is
satisfied. Conditions (7)2 , (9)1 , and (10)1 are directly fulfilled.
Differentiating or integrating~12! the negative exponent of th
second term is preserved whereas the sign changes. This pro
holds asb.1 and ensures that the volumetric strain energy fu
tion as well as the second derivative remain always positive. T
in the limit U6 tends to infinity asJ→10 or J→1`, as it
should.

In Eqs. ~12! and ~13! two special cases are contained. Setti
b5a the relationp6(J)52p6(J21) holds. That means in a ho
mogeneously compressed brick with the stretch factorg21(g
.1) and in a homogeneously expanded brick with the stre
factor g volumetric stresses act with identical absolute values
different signs—once as compressive and once as tensile s
Usingb5a12 the relationU6(J)5U6(J21) holds, i.e., two iden-
tical bricks, the first compressed homogeneously byg21 and the
second expanded homogeneously byg, store the same volumetri
strain energy.

Figures 1, 2, and 3 contain the curves for functionU6a ~indexa
meansa5b52! and its derivatives. The identical constants re
to the first one of the special cases considered above. The fu
ment of the conditions~5!–~11! is obvious.

The major task now is to assess the new volumetric func
U6 .

1 Assessment: The limit processa→0 in Eq. ~12! leads di-
rectly to the pressure formula

p~J!5K~12J2b!b21 (14)

given in Murnaghan~@24#, pg. 73!. Note, that in this contribution
the compressive volumetric stress has a negative sign in con
to the positive pressure in the cited papers. The advantage o
pressure formula~14! is its excellent adjustment to experiment
data for sodium~see references in Murnaghan@24# for informa-
tion concerning the experiments!. Settingb53.79 the experimen-
tal valuesp(J) are approximated at pressures up to 10GPa wit
the accuracy of measurement~three percent!. Therefore the prac-
tical applicability of U6 is proofed. On the other hand the volu
metric strain energy function based on Murnaghan’s pressure
mula ~14! is a limit case~a→0! of the well-behaved more genera
function ~13! which fulfills all conditions~5!–~11!. In Fig. 4 the
volumetric stress curve derived fromU6b ~index b means
a50.001,b53.79! is given. The curve fora50 is omitted here,
because no difference compared to]JU6b is visible. Due to ex-
perimental considerations the fit of the volumetric stre
~5pressure! seems to be superior over the fit of the energy fu
tion itself or the second derivative. Therefore the plots of
U-curves and]JJ

2 U-curves are omitted.
2 Assessment: The task now is to fit the constantsa andb in

U6 to obtain similar curves as given by the two frequently us
and well-behaved functionsU3 andU4a ~index a meansu522!.
Because both functions are similar, the attention is restricted
to functionU4a . Looking at the first derivative ofU4a the com-
parison with Eq. ~12! would lead directly to the constant
a5b51, which in turn would violate the second restriction
relation~12!. But the choicea51, b→1 ~especiallyb51.001 ref-
erenced asU6c! satisfies the second restriction and a perfect
rameter fit with respect toU4a can be observed. In Fig. 4 th
volumetric stress curve]JU6c is plotted. The curve for]JU4a ~see
Fig. 2! is omitted here because it is indistinguishable from]JU6c .
20 Õ Vol. 67, MARCH 2000
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Because fora51, b→1 the functionU6 becomes identical to the
well-known functionU4a , the applicability ofU6 is confirmed
once more.

3 Assessment: As mentioned previously, the volumetric fu
tion U4b ~indexb meansu59! was found to fit experimental dat
rather well in the compression range for nearly incompress
rubber. But for this choice ofu, the violation of two physical
conditions must be accepted. The first derivative ofU4b in com-
parison with Eq.~12! would suggest to use the valuesa521 and
b510, which would violate the restriction for parametera in ~12!.
Choosinga50.001 andb510 ~referenced asU6d! the restrictions
for a, b and all physical conditions~5!–~11! are fulfilled. The two
volumetric stress graphs derived fromU4b , U6d are given in Fig.
4. In the compression range (J,1) both graphs are nearly indis
tinguishable. Thus once more a good parameter fit to experime
data~see Ogden@18# and references! is obtained, and the genera
stability and versatility ofU6 is confirmed. As a drawback the
physically nonreasonable small stresses forJ.1 should be men-
tioned. Due to the fulfillment of all conditions the performance
U6d appears to be somewhat more reasonable in this range.

4.2.2 Generalization of the Two-Parameter Function.A fur-
ther generalization of the volumetric strain energy functionU6 is
possible by the additive composition of single functions of t
proposed type~12!. The volumetric stress of the generalized fun
tion is then given by

p6gen~J!5]JU6gen~J!5KF(
i 51

n

~Ja i2J2b i !GF(
i 51

n

~a i1b i !G21

with a i.0 and b i.1. (15)

Integration of Eq. ~15! results in the generalized functio
U6gen(J). The integration constant has to be determined fr
(5)2 . It is straightforward to verify thatU6gen(J) fulfills all con-
ditions ~5!–~11!. Now more general strain energy functions wi
an unlimited number of additional material parametersa i , b i can
be derived.

It should be mentioned that every additive composition of
single volumetric strain functionsU1 – 6 which fulfills the physical
conditions is an admissible ‘‘generalization’’ of the single fun
tions; e.g., the function (U11U4)/2 leads to an admissible new
function which overcomes the deficiencies of the single funct
U1 .

4.2.3 Further Functions. In addition to functionU6 , two
further functions

(16)

are newly proposed here in the context of volumetric strain ene
functions. As reported in Table 2 these two functions fulfill a
conditions~5!–~11! as well. However, they do not contain som
constants to influence their shapes, which reduces the possibi
to fit experimental data in general. But both functions~16! seem to
be superior overU1 , U2 , andU5 because they do not violate an
condition. For further comparison the functionsU7 and U8 , re-
spectively, their derivatives are also plotted in Figs. 1, 2, and
Transactions of the ASME
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Two additional parameter fits of the single functionU6 are
performed now with respect to the functionsU7 and U8 . This
should give an idea of the possibilities and limits in the appro
mation of volumetric stress data usingU6 . With a52.3, b51.4
referenced asU6e the function U7 is fitted and witha50.45,
b51.05 referenced asU6 f the functionU8 is approximated. The
derived volumetric stress curves are plotted in Fig. 5. The co
parison shows that bothU7 andU8 can be nearly approximated b
U6 . To expect a perfect approximation in the whole range oJ
would require more parameters, e.g., using the generalized f
tion U6gen. But the really good parameter fit over most importa
ranges has to be noted.

5 Concluding Remarks
Well-known and newly proposed volumetric strain ener

functions have been discussed. The newly proposed functions
closely related to frequently used functions. The advantage
these new functions is the fulfillment of all known physical co
ditions. The more general functionU6 contains two material con-
stants in addition to the compressibility parameter. Therefor
good fit to given data is possible. The good adaptability of t
proposed volumetric strain energy functionU6 to well-known
functions and experimental data is proofed.

It must be noted that applications with small volumetric defo
mations do not require general volumetric strain energy functio
Because of the physical conditions all admissible functions
close together in this range of deformation. The proposed func
U6 with two additional constants and its generalizationU6genwith
an arbitrary number of additional constants must be seen in
context of large volumetric deformations. A good adjustment
the volumetric function to given data in a wide range of volum
ric deformation can only be expected if sufficient material para
eters are available, as inU6 , U6gen. However, it has to be noted
that the determination of the constants is difficult, because in
volumetric stress formula the constants appear simultaneous
the exponent and in the denominator. Furthermore, conside
real materials, the modeling failure due to the assumed isocho
volumetric split of the strain energy function should be taken in
account to prevent an overprecise volumetric part.

Fig. 5 Fitted curves of the first derivative ­JU„J …ÕK
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Melan’s Problems With Weak
Interface
The problem of a fiber attached to an infinite sheet (Melan’s problem) has been re
sidered under the hypothesis that the adherence between the two bodies is not perfe
have assumed that the link is guaranteed by the so-called ‘‘weak interface,’’ i.e., we
supposed that the jump of the displacement is linearly proportional to the interface s
The solutions of (i) the case with a concentrated force acting on the fiber and (ii) the
of the redistribution of stresses as a consequence of the rupture of the fiber have
obtained in closed form. We have discussed how the interface stiffness k influenc
solutions and, in particular, the interfacial stress. Emphasis is placed on determining
the zone of influence of the applied load is modified by k. Approximate (though accu
simple expressions for the length of the zone of influence are given and discu
@S0021-8936~00!01001-1#
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1 Introduction
In 1932, Melan @1# studied the problem of transmission o

stress between an infinite stiffener and an infinite, linear elas
sheet. By supposing perfect adherence between the bodies a
treating the fiber as a uniaxial bar, he was able to obtain
closed-form solution of the problem when the exterior load c
sists of a single force directly applied to the fiber~Fig. 1!. He
determined the interface tangential stress and he found that i
comes unbounded in the neighborhood of the force applica
point. The singularity is of the logarithmic type, contrary to that
power type observed in the case of force directly applied to
plate~@2#! ~Article 148!. This fact emphasizes one of the practic
advantages obtained by introducing a stiffener to transmit a c
centrate force to a plate. Melan further considers the case o
infinite edge-stiffener glued to the boundary of a semi-infin
sheet, but this problem gives rise to the same mathematical
mulation as the former.

The pioneering work of Melan was successively reconside
and extended by different authors, especially as a consequen
its importance in the field of reinforcing aircraft structures an
later, in the field of fibro-reinforced composites. Koiter@3# ob-
tained a very involved solution for the case of a semi-infinite fib
attached to an infinite and to a semi-infinite sheet, a prob
previously treated by Buell@4#. Benscoter@5# and Erdogan and
Gupta@6# studied the case of finite-length fiber, the first when it
glued to an infinite shell and the second when it adheres to
boundary of a semi-infinite sheet. Lee and Klang@7# extend the
work of Erdogan and Gupta, considering the presence of a circ
hole within the plate.

The hypothesis of one-dimensional behavior for the string w
removed by Muki and Sternberg@8# ~infinite stiffener! and by
Shield and Kim@9# ~finite-length fiber!, who consider the flexura
stiffness of the fiber, and by Bufler@10# and by Muki and Stern-
berg @8#, who, in the framework of two-dimensional elasticit
model the stiffener as an infinite strip attached to the boundar
a semi-infinite plate.

A geometrically different problem was analyzed by Reiss
@11# and by Goodier and Hsu@12#, who consider the case of th
stiffener perpendicular, rather than parallel, to the boundary of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, No
18, 1997; final revision, Oct. 12, 1999. Associate Technical Editor: M. M. Carr
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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semi-infinite plate. Their works are based on the hypothesis
line contact between the bodies, a hypothesis removed initially
LeFevre et al.@13# and successively by Muki and Sternberg@14#
by considering an area contact model.

The numerous contributions of the Russian school, someti
overlapping with the previously cited works, are summarized
Grigolyuk and Tolkachev@15# ~Section 3.2!.

So far, all the authors have considered perfect adherence
tween the plate and the string. Budiansky and Wu@16# and Ryba-
kov and Cherepanov@17# remove this hypothesis by considerin
the case where the stiffener is riveted to the plate at discrete po
with a constant spacing, while Rybakov@18# studied the same
case but with a broken stringer.

Another different interface is that with friction. This case h
been analyzed, for example, by Antipov and Arutyunyan@19#,
who consider the simultaneous presence of Coulomb friction
perfect adherence.

By experience, apart from perfect bonding, riveted contact,
friction, another transmission condition is suggested. In fact, w
the stiffener is glued to the sheet by an adhesive~a third material!,
a jump in displacement proportional to the transmission stres
observed, although the continuity of the tensions is maintained
equilibrium. In the framework of linearized elasticity, a natur
way to model such a situation consists by assuming that the tr
mission stress linearly depends on the jump of displacement

t5k~ufiber2usheet!. (1)

Equation~1! is a particular case of a more general theory aimed
describing the mechanical properties of interphases, which
initially developed by Goland and Reissner@20# and by Gilibert
and Rigolot@21# and which was successively studied by Klarbrin
@22# and by Geymonat et al.@23#. In ~1!, the parameterk summa-
rizes the mechanical characteristics of the interface, and it ca
computed from the elastic moduli of the interphase on the basi
the formulas reported in@23#. Equation~1! is called aweak inter-
face transmission condition, and it describes also the behavio
adhesives and of many kinds of nonperfect bonding~fractured,
damaged etc.!.

The interface which allows jump in the displacement is som
times appositely designed. In fact, it has at least two advanta
which may be very useful in applications. The first is that it avo
the singularity of the stresses in the presence of a concen
force. Secondly, it relaxes the peaks of the interface stress, gi
a better redistribution of the applied load. These facts, in gene
considerably reduce the probability of failure of the assembl
and increase its ductility.
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In this paper Melan’s problem is reconsidered~Section 3! by
supposing that the interaction between the fiber and the she
governed by Eq.~1! and by the continuity of stresses. The plate
supposed to be in a generalized plane-stress state and the fibe
uniform uniaxial bar. We further assume that the fiber is so n
row the hypothesis of line contact holds.

In the second part~Section 4!, we study the case of a broke
fiber embedded in the matrix, a problem which is common
fibro-reinforced materials and which is a nonclassical Mela
problem. First we study the case of a single broken fiber, and
we analyze the reinforcing effects of the nearby fibers. We sh
how the interface stiffness can be used as a design parame
optimize the response of the composite with respect to the dam
due to the rupture of a fiber.

The previous solutions are particular cases of a more gen
elastic solution, admitting force as well as distortion loads on
fiber, which has been obtained in Section 2 and which can als
used to solve other situations.

2 The General Solution
Let us consider an infinite sheet of a constant widthh51, sup-

posing that it is homogeneous, isotropic linearly elastic with La´
constantsl andm, and that it is subject to a state of generaliz
plane stress~Fig. 1!. If a ~averaged! distribution of tangential
stressestx(x)5t(x) is applied to the matrix on thex-axis, then
the ~averaged! displacement on the same axis is given by@2#
~Article 148!,

u~x!52
1

16pm

5l16m

l1m E
2`

`

t~ t !lnut2xudt. (2)

In ~2! t(x) is positive if directed as thex axis. Considering the
Fourier transformsf̂ (s)5*2`

` f (x)eisxdx of the displacement and
of the t(x), Eq. ~2! can be rewritten as@15# ~Section 3.4!

û~s!5
1

16m

5l16m

l1m

t̂~s!

usu
. (3)

We suppose that, along thex-axis, a uniform string is attached t
the sheet and we suppose that the interface is governed by~1!.
Denoting byU(x) the axial displacement of the fiber, and assu
ing that the interface stiffnessk is constant, Eq.~1! can be ex-
pressed in terms of Fourier transforms as

t̂~s!5k@Û~s!2û~s!#. (4)

Apart from the reactiont(x) of the sheet, the string is subjected
an external normal force per unit lengthp(x) ~positive if directed
as thex-axis! and to an axial distortion per unit length«* (x)
~positive if it produces compression on the fiber!. Assuming its
axial stiffness isEA, the equilibrium equation is

d2U~x!

dx2 2
d«* ~x!

dx
1

p~x!

EA
2

t~x!

EA
50, (5)

namely,

Fig. 1 The infinite sheet with a stiffener loaded by a single
force
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2s2Û~s!1 is«̂* ~s!1
p̂~s!

EA
2

t̂~s!

EA
50. (6)

Equations~3!, ~4!, and~6! constitute an algebraic system of thre
equations in the three unknownst̂(s), û(s), andÛ(s). We there-
fore obtain

t̂~s!5

is«̂* ~s!1
p̂~s!

EA

1

k
s21

1

16m

5l16m

l1m
usu1

1

EA

,

û~s!5
1

16m

5l16m

l1m

1

usu

is«̂* ~s!1
p̂~s!

EA

1

k
s21

1

16m

5l16m

l1m
usu1

1

EA

, (7)

Û~s!5S 1

k
1

1

16m

5l16m

l1m

1

usu D
is«̂* ~s!1

p̂~s!

EA

1

k
s21

1

16m

5l16m

l1m
usu1

1

EA

.

Given the external ‘‘loads’’p(x) and«* (x), the general solu-
tion of Melan’s problem with weak interface can be obtained fro
~7! by using the inverse Fourier transform f (x)
5(1/2p)*2`

` f̂ (s)e2 isxds.

Remark 1. The case of a stiffener glued to the boundary o
semi-infinite sheet can be solved in the same manner. In fact~4!
and ~6! are still valid, while~3! is replaced by@15# ~Section 3.4!

û~s!5
1

m1

2l112m1

3l112m1

t̂~s!

usu
, (8)

which is equal to~3!, assuming

m5m1 , l52m1

14l1120m1

17l1122m1
(9)

in ~3!. Therefore, the solution of this problem is~7! with m andl
given by ~9!.

Remark 2. We consider only problems symmetric with re
spect to thex-axis and with in-plane loads. Thus, the bendi
stiffness of the fiber and of the sheet are not involved in
analysis. This does not mean that we disregard them. We sup
that they are as large as required to avoid instability phenomen
the compressed zones.

Remark 3. All solutions obtained in the following sections ar
odd or even functions ofx. Therefore, in order to simplify the
exposition, we will report only the formulas valid forx.0. The
extension to the negative part of thex-axis can be easily obtaine
by symmetry.

3 The Single Force on the Fiber
When a concentrated force acts on the fiber at, say,x50, we

havep(x)5Pd(x) ~d(x) is the Dirac delta! and«* (x)50. In this
casep̂(s)5P, «̂* (s)50, and the solution can be expressed
terms of known functions. In fact,~7! furnishes

t̂~s!5
P

EA

1

1

k
s21

1

16m

5l16m

l1m
usu1

1

EA

(10)

and therefore
MARCH 2000, Vol. 67 Õ 23
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t~x!5
1

p

Pk

EA E0

` cos~sx!

s212as1b
ds, (11)

where we have assumeda5(k/32m) (5l16m)/(l1m), b
5k/EA. Let us further definea15a2Aa22b and a25a
1Aa22b. These relations assure that

t~x!5
1

p

Pk

EA

1

2Aa22b S E
0

` cos~sx!

s1a1
ds2E

0

` cos~sx!

s1a2
dsD .

(12)

The integrals which appear in~12! can be computed explicitly
@24# ~formula 3.722.3!:

E
0

` cos~sx!

s1a
ds5g~xa!, a.0, (13)

where@25# ~Section 5.2!

g~z!52sin~z!si~z!2cos~z!ci~z!,
(14)

si~z!52E
z

` sin~ t !

t
dt, ci~z!52E

z

` cos~ t !

t
dt.

Therefore,

t~x!5
P

p

b

2Aa22b
@g~xa1!2g~xa2!#. (15)

Before discussing Eq.~15!, we wish to show the behavior of th
previous solution when the interface becomes rigid. From

lim
k→`

a1516m
l1m

5l16m

1

EA
5ā1 ,

(16)

lim
k→`

a25`, lim
k→`

b

2Aa22b
5ā1 , lim

z→`

g~z!50,

we obtain

lim
k→`

t~x!5
Pā1

p
g~xā1!, (17)

which, in different notation, is Melan’s solution, valid in the ca
of perfect bonding.

In the positive part of thex-axis, the transmission stresst(x) is
a decreasing function vanishing forx→`. Its maximum value is
thereforetmax5t(0). To calculate this stress, let us observe th
for x→0, ci(x)>g1 ln(x)1 . . . , whereg50.577 . . . is the Eu-
ler constant. Using this relation, we obtain

tmax5
P

p

b

Aa22b
arccoshS a

Ab
D , (18)

where we have used the identity ln@(a1Aa22b)/(a2Aa22b)#
52 arccosh(a/Ab), a,b.0. Equation~18! shows that, contrary to
the case of perfect bonding, the maximum interface shea
bounded everywhere. This is one of the practical advantage
having weak bonding between the fiber and the sheet.

The axial force in the stiffener can be computed integrating
t(x). To compute this integral, we observe that

g~z!52
d f~z!

dz
, f ~z!5sin~z!ci~z!2cos~z!si~z!. (19)

Equation~19! permits us to conclude

N~x!5
Pb

2Aa22b
F2

f ~xa1!

a1
1

f ~xa2!

a2
G . (20)
24 Õ Vol. 67, MARCH 2000
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To measure the region where the effects of the applied l
vanish, we define the ‘‘zone of influence’’ as the part of the fib
which satisfies

N~x!

N~01!
>0.10. (21)

Thus, because in this caseN(01)5P/2, we assume that the effec
of the concentrated force can be neglected when the axial forc
the fiber is less than five percent ofP. Considering the equality in
~21!, we obtain an equation in the semi-lengthx̄ of the zone of
influence, and the results of the numerical solution are depicte
Fig. 2.

Figure 2 shows that a fairly good approximation of the tr
curve is the bilinear function.

log10~ x̄Ab!>0.362, if log10~a/Ab!,20.724,
(22)

log10~ x̄Ab!>1.0861 log10~a/Ab!,

if log10~a/Ab!.20.724.

In terms of the original variables,~22! can be expressed in th
form

x̄>2.301AEA

k
, if k,kcr ,

(23)

x̄>0.381
5l16m

l1m

EA

m
, if k.kcr ,

where kcr536.5(m2/EA)((l1m)/(5l16m))2. If k is greater
thankcr , the zone of influence no longer depends on the stiffn
of the interface and it is the same as in the perfect bonding c
Thus, from a practical point of view and in the case of a sin
force applied to the fiber, we may consider conditionk.kcr as the
definition of rigid interfaces.

The Fourier transform of the displacementu(x) is

û~s!5P
2a

EA

1

usu312as21busu
, (24)

which gives

u~x!2u~0!5
P

p

2a

EA E0

` cos~sx!21

s312as21bs
ds. (25)

Using the relations

1

s312as21bs
5

1

2bAa22b
S a2

s
2

a1

s
2

a2

s1a1
1

a1

s1a2
D ,

(26)

E
0

` cos~sx!21

s
ds2E

0

` cos~sx!21

s1a
ds

52g2 ln~xa!2g~xa!, a.0,

permits us to obtain

Fig. 2 The semi-length of the zone of influence
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u~x!2u~0!5
P

pEA

a

bAa22b
$a1@g1 ln~xa2!1g~xa2!#

2a2@g1 ln~xa1!1g~xa1!#%. (27)

The displacement is unbounded forx→`. In particular, it as-
sumes the form

u~x!2u~0!>P const. ln~x!1¯ . (28)

This is due to the fact that the sum of the forces applied to
sheet is not zero. Equation~28! agrees with the general predictio
of Muskhelishvili @26# ~Section 36!.

3.1 A String Loaded by Two Forces. The property ex-
pressed by~28! is unsatisfactory from a practical point of view
though it is exact within the framework of two-dimensional ela
ticity. To overcome this difficulty, we consider the case of a fib
loaded by two aligned, equal, and opposite concentrate force
fact, in a neighborhood of the force application point, the follo
ing solution has all the features of the one in Section 3, but it
a more suitable—and realistic—behavior at infinity.

The problem analyzed in this section may also deserve an
dependent interest. In fact, when a load must be transferred
a pointA to a pointB on a sheet, it is convenient to reinforce th
plate by inserting a string along the lineAB. The solution of this
problem is required to design the strengthening, because it is
essary to know the part of the load carried by the string and
part of the load carried by the sheet. We will show that this int
action strongly depends on the properties of the interface, an
the distance between the forces as well.

The Fourier transform of two equal and opposite forcesP act-
ing on the x-axis at the pointsx52d and x51d is p̂(s)
52iP sin(sd). Inserting this expression and«̂* (s)50 in ~7!
yields

t̂~s!5
2iPk

EA

sin~sd!

s212ausu1b
. (29)

Inverting ~29! with the same procedure used in the previous s
tions, we obtain

t~x!5
P

p

b

2Aa22b
$g~ ux2dua1!2g~ ux2dua2!2g@~x1d!a1#

1g@~x1d!a2#%, (30)

which is an odd function, vanishing forx→` and with~absolute!
maximum value

tmax5
P

p

b

Aa22b
FarccoshS a

Ab
D 1

g~2da2!2g~2da1!

2 G .

(31)

Comparing~31! with ~18! it is possible to see how the presen
of the second force reducestmax. In fact, the difference is given
by the second term in the square brackets of~31!. However, when
d is sufficiently large, this term is negligible and we have the sa
maximum interface shear.

To obtain the expression of the axial loadN(x), we integrate
~30! obtaining

N~x!5
2bP

2pAa22b
H f @~x2d!a2#

a2
2

f @~x2d!a1#

a1
2

f @~x1d!a2#

a2

1
f @~x1d!a1#

a1
J , x.d,
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N~x!5
2bP

2pAa22b
H f @~d2x!a2#

a2
2

f @~d2x!a1#

a1
1

f @~x1d!a2#

a2

2
f @~x1d!a1#

a1
J , x,d, (32)

For a51.25k31024, b51.76k31025, andd5100, we have the
curves depicted in Fig. 3. When the interface is ‘‘soft’’ (k50.1)
the load is carried almost entirely by the fiber, while, on the co
trary, for ‘‘strong’’ interface (k51000) is the sheet that assure
the transmission of force between the two points. A quantitat
measure of the reciprocal participation in carryingP can be ob-
tained by considering the axial load in the fiber in the point
symmetryx 5 0, given by

N~0!5
bP

pAa22b
H f ~da1!

a1
2

f ~da2!

a2
J . (33)

N(0) varies fromP, whend50, to 0, whend→`. On the other
hand, limk→0 N(0)5P while limk→`N(0)5(2P/p) f (dā1).

Finally, the expression of the displacement of the sheet is
tained by inverting

û~s!5P
4ia

EA

sin~sd!

usu312as21busu
, (34)

and it is

u~x!5
P

16pm

5l16m

l1m
ln Ux1d

x2dU
1

P

pk

a

Aa22b
$a1@g~x2dua2!2g~ ux1dua2!#

2a2@g~ ux2dua1!2g~ ux1dua1# !#%. (35)

The displacement is everywhere bounded and tends to zero
x→`. It is worth remarking that in Eq.~35!, the first term is the
displacement without the reinforcement, while the second is
to the presence of the fiber. Thus, the effect of the strengthenin
immediately recognized.

4 The Broken Fiber
One common failure of composites, in particular fibr

reinforced with polymeric matrix, is related to the breaking of t
fibers. In fact, when one fiber breaks, its axial force is transfer
to the matrix, which increases its prebreaking maximum stres
the sheet has no extra strength, it fails, with the consequence
rupture of a single fiber causes the failure of the whole bo
Therefore, it is necessary to calculate the effects of the bro
fiber in the surrounding matrix and, if possible, it is useful
design the composite which minimizes the stress increment. T
problem is addressed in this section.

Fig. 3 The axial load in the fiber
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Initially we study the rupture of a single fiber embedded in t
sheet. The reinforcing effects of nearby fibers~if any! will be
analyzed in the next section. Furthermore, we suppose tha
load is applied far from the breaking point. Thus, the simplifi
problem of an infinite sheet with a single broken fiber wea
attached to the plate can be considered.

The plate is supposed to be loaded by«xx5 «̃, syy5sxy50 at
infinity. However, by the superposition principle, we can direc
consider the case of a fiber open by a concentrated distortion
thatU(01)2U(02)5D and the strain~and the stress! vanishes at
infinity ~Fig. 4!. This action furnishes a nonzero compress
force N(01)5N(02)52N(D). EquatingN(D) with «̃EA ~the
axial force in the uniform case! we obtainD5D( «̃), which, added
to the constant strain solution, gives the solution in terms of
applied strain«̃.

The situation of Fig. 4 is a nonclassical Melan’s proble
which can be solved on the basis of~7!. In fact, in this case
p̂(s)50 and«̂* (s)5D and we have

t̂~s!5
iskD

s212ausu1b
. (36)

Inverting and rearranging as in Section 3, gives

t~x!5
Dk

2pAa22b S 2a1E
0

` sin~sx!

s1a1
ds1a2E

0

` sin~sx!

s1a2
dsD .

(37)

Computing the integrals of~37! by means of formula 3.722.1 o
@24# ~see~19! for the definition off (z)!, we obtain

t~x!5
Dk

2pAa22b
@2a1f ~xa1!1a2f ~xa2!#. (38)

On x.0, the interface shear stress is a decreasing function
ishing for x→` and tmax5t(0)5Dk/2. Therefore, the maximum
transmission stress is again proportional tok and using soft adhe
sives permits relaxing the peak of the extra stress due to the br
ing of the fiber.

Integrating the equilibrium equation gives the expression of
axial load

N~x!5
Dk

2pAa22b
@2g~xa1!1g~xa2!#. (39)

Therefore,

N~01!52
Dk

2pAa22b
arccoshS a

Ab
D (40)

and

D~«̃!5 «̃
pAa22b

b arccosh~a/Ab!
. (41)

Fig. 4 The sheet with a broken fiber
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Adopting the same definition~21! for the zone of influence, we
obtain the curve plotted in Fig. 5. Qualitatively, this curve is sim
lar to that of Fig. 2, and can be approximated by the biline
function

log10~ x̄Ab!>0.362, if log10~a/Ab!,0.347,
(42)

log10~ x̄Ab!>0.08910.787 log10~a/Ab!,

if log10~a/Ab!.0.347,

or, in terms of the original variables,

x̄>2.301AEA

k
, if k, k̃,

(43)

x̄>
0.080

k0.106 S 5l16m

l1m

1

m D 0.787

EA0.893, if k. k̃,

wherek̃55059(m2/EA)((l1m)/(5l16m))2. In this casex̄ is no
longer constant fork. k̃, and it is not possible to give a practica
definition of perfect bonding.

From ~7b! and p̂(s)50, «̂* (s)5D, it follows

û~s!5
iD2a sign~s!

s212ausu1b
(44)

and, inverting,

u~x!5
Da

pAa22b
@ f ~xa1!2 f ~xa2!#. (45)

4.1 The Effect of Nearby Fibers. The successive step con
sists in analyzing the reinforcing effects of the nearby fibers.
fact, unidirectional fibro-reinforced materials have an array of p
allel, equally spaced, and identical fibers embedded in the sh
When one of these breaks, not all the extra load is transferre
the plate, but only a part which depends on the properties of
composite. If the fibro-reinforced material is correctly design
this extra load is modest and does not induce rupture in the s
or in the adjacent fiber as well.

The reinforcing effects of the fibers decrease by increasing
distance from the broken fiber, so that, in the first approximati
it is reasonable to consider only the case of the sheet with th
fibers, two reinforcing and the broken one. Therefore, let us c
sider the sheet of Section 2 and let us suppose that on the liy
51d is applied a line loadt1(x), on the liney50 is applied a
line load t2(x), and on the liney52d is applied a line load
t3(x)5t1(x) ~for symmetry with respect to the liney50!. Both
t1(x) andt2(x) are parallel to thex-axis and positive if directed
accordingly. Then

Fig. 5 The semi-length of the zone of influence
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u~x,1d!5u1~x!52
1

16pm

5l16m

l1m E
2`

`

t1~ t !lnut2xudt

2
1

16pm

5l16m

l1m E
2`

`

t2~ t !ln A~ t2x!21d2 dt

2
1

16pm

3l12m

l1m E
2`

` t2~ t !d2

~ t2x!21d2 dt

2
1

16pm

5l16m

l1m E
2`

`

t1~ t !ln A~ t2x!214d2dt

2
1

16pm

3l12m

l1m E
2`

` t1~ t !4d2

~ t2x!214d2 dt,

(46)

u~x,0!5u2~x!52
1

16pm

5l16m

l1m E
2`

`

t2~ t !lnut2xudt

2
2

16pm

5l16m

l1m E
2`

`

t1~ t !ln A~ t2x!21d2dt

2
2

16pm

3l12m

l1m E
2`

` t1~ t !d2

~ t2x!21d2 dt.

The Fourier transforms of~46! are

û1~s!5
11e22dusu

16m

5l16m

l1m

t̂1~s!

usu
2

2de22dusu

16m

3l12m

l1m
t̂1~s!

1
e2dusu

16m

5l16m

l1m

t̂2~s!

usu
2

de2dusu

16m

3l12m

l1m
t̂2~s!,

(47)

û2~s!5
1

16m

5l16m

l1m

t̂2~s!

usu
1

2e2dusu

16m

5l16m

l1m

t̂1~s!

usu

2
de2dusu

16m

3l12m

l1m
t̂1~s!.

Associated with~47! there are the interface equations~see~4!!

t̂1~s!5k@Û1~s!2û1~s!#, t̂2~s!5k@Û2~s!2û2~s!#, (48)

and the equilibrium equations of the fibers~see~6!!

2s2Û1~s!2
t̂1~s!

EA
50,

(49)

2s2Û2~s!1 is«̂* ~s!1
p̂~s!

EA
2

t̂2~s!

EA
50.

Note that we have supposed that all the fibers are uniform
identical and that the reinforcing fibers are not loaded. Also
three interfaces are uniform and identical.

Eliminating Û1(s) andÛ2(s) from ~48! and ~49! we have

û1~s!52 t̂1~s!S 1

k
1

1

EAs2D ,
(50)

û2~s!52 t̂2~s!S 1

k
1

1

EAs2D1
i «̂* ~s!

s
1

p̂~s!

EAs2 .

Inserting these expressions in~47! we obtain a system of two
equations in the two unknownst̂1(s) and t̂2(s), the solution of
which is

t̂1~s!52 t̂2~s!
B~s!

A~s!
,

(51)

t̂2~s!5S i «̂* ~s!

s
1

p̂~s!

EAs2D A~s!

A~s!C~s!22B~s!2 ,
Journal of Applied Mechanics
and
he

where

A~s!5
11e22dusu

16musu
5l16m

l1m
2

2de22dusu

16m

3l12m

l1m
1

1

k
1

1

EAs2 ,

B~s!5
e2dusu

16musu
5l16m

l1m
2

de2dusu

16m

3l12m

l1m
, (52)

C~s!5
1

16musu
5l16m

l1m
1

1

k
1

1

EAs2 .

The general solution of the problem can be obtained invert
~50! and~51! with p̂(s)50 and«̂* (s)5D. It is given in terms of
definite integrals, which cannot be expressed in terms of kno
functions, but which can be easily computed numerically.

Usually, in fibro-reinforced composites the space between
fibers is very narrow~it is the same order of the fibers diamete!
andd is a very small number. Therefore, it makes sense to st
the limit cased50 and to suppose that it represents a good
proximation of the actual configuration. Assumingd50 ~p̂(s)
50 and«̂* (s)5D! we have, after some simplifications,

t̂2~s!5 iDk
s314asusu1bs

s416ausu312bs216abusu1b2 , (53)

and therefore

t2~x!5
Dk

p E
0

` ~s314as21bs!sin~sx!

s416as312bs216abs1b2 ds. (54)

Expressing the integrand in the sum

s314as21bs

s416as312bs216abs1b2 5
2s

3~s21b!
1

s

3~s216as1b!
,

(55)

recalling the formula @24# ~formula 3.723.3! *0
`(sin(sx)s)/(s2

1b)ds5(p/2)e2xAb, and calculating the second integral as in Se
tion 3, we obtain the final expression for the interfacial shear

t2~x!5
Dk

2 F2

3
e2xAb1

2b1f ~xb1!1b2f ~xb2!

3pA9a22b
G , (56)

whereb153a2A9a22b and b253a1A9a22b. There are no
qualitative differences between~56! and ~38!, corresponding to
the case of only one fiber: on the positive part of thex-axis,t2(x)
is a decreasing function ofx, vanishing forx→` and with maxi-
mum valuetmax5t2(0

1)5Dk/2.
Integratingt2(x) we obtain the axial load in the broken fiber

N2~x!52
Dk

2 F2

3

e2xAb

Ab
1

g~xb1!2g~xb2!

3pA9a22b
G . (57)

From ~57! we can compute

N2~0!52DkF 1

3Ab
1

arccosh~3a/Ab!

3pA9a22b
G (58)

that with the equation2N2(0)5 «̃EA, furnishes the fiber gapD
as a function of the applied load«̃:

D~«̃!5 «̃
3

Ab1
b

pA9a22b
arccosh~3a/Ab!

. (59)

On the reinforcing fibers we have~see~51!!

t̂1~s!52 iDk
2asusu

s416ausu312bs216abusu1b2 , (60)

so that
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t1~x!52
Dk

p E
0

` 2as2 sin~sx!

s416as312bs216abs1b2 ds. (61)

By the same integral used for computingt2(x), ~61! can be rear-
ranged as

t1~x!52
Dk

2 F1

3
e2xAb2

2b1f ~xb1!1b2f ~xb2!

3pA9a22b
G . (62)

It remains to compute the axial load in the reinforcing fibe
which is obtained integrating~62!, and is given by

N1~x!5
Dk

2 F1

3

e2xAb

Ab
2

g~xb1!2g~xb2!

3pA9a22b
G . (63)

The maximum value is attained in correspondence of the sym
try axis x50 and it has the following expression:

N1~0!5DkF 1

6Ab
2

arccosh~3a/Ab!

3pA9a22b
G . (64)

Using ~59!, we have the axial force as a function of the appli
load «̃. To obtain the actual axial forceÑ1(0) of the reinforcing
fibers, by the superposition we must add to~64! the term«̃EA, the
axial force corresponding to the constant strain solution.

To have a quantitative measure of the increasing of the a
force in the reinforcing fibers as a consequence of the breakin
the middle one, let us compareÑ1(0) with its prebreaking values
obviously given byÑ1(0)p.b.5 «̃EA. We have

Ñ1~0!

Ñ1~0!p.b.

5
3

2

1

11
arccosh~3a/Ab!

3A9a2/b21

. (65)

In the limit case of strong interface limk→` Ñ1(0)/Ñ1(0)p.b.
51.5, which shows that each reinforcing fiber carries one hal
the force previously carried by the broken fiber. In this case, th
is no extra load on the sheet. In the other limit case of very s
interface, on the other hand, limk→0 Ñ1(0)/Ñ1(0)p.b.51 and
therefore the extra load is carried entirely by the plate.

Based on the previous observations, we can solve the follow
design problem: How does one choose the stiffness of the in
face in order to have a given redistribution of the load previou
carried by the broken fiber? In fact, it is sufficient to fix the pe
cents which must be carried by the reinforcing fibers and,
inverting ~65!, the optimal value ofk is obtained. For example, i
we want the extra load carried in equal parts by the sheet
by the reinforcing fibers, we solveÑ1(0)/Ñ1(0)p.b.51.25 and
we obtain a/Ab50.9845, or k5992.5(m2/EA)((l1m)/(5l
16m))2. Note how, in this way, the interface stiffness can
used as a design parameter to optimize the behavior of the c
posite subjected to the rupture of a fiber.
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Ill-Posedness in a
Thermomechanically Consistent
Constrained Theory for Materials
With Prescribed Temperature-
Dependent Density
We examine the local dynamics of nonisothermal viscous flows in the neighborhood
constant equilibria using the thermomechanically consistent constrained theory for
terials with prescribed temperature-dependent density developed by Cao et al.. W
cover that the linearized growth rate of small length scale, infinitesimal disturbances
the equilibria is proportional to the reciprocal of their wave length, a classical pheno
enon known as the Hadamard instability, indicating the local ill-posedness of the
strained theory. Therefore, the use of the theory to model transient flow phenomen
not advised.@S0021-8936~00!01901-2#
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1 Introduction
Cao et al.@1# developed a thermomechanically consistent c

strained theory for materials with prescribed temperatu
dependent density. This theory successfully captures the ex
sion cooling phenomenon observed in nonisothermal steady-
Poiseuille flows of viscous fluids~@1,2#! while the ad hoc theories
~@3–5#! where a temperature-dependent density is a posterior
serted into the classical theory for incompressible materials~@6#!,
fail. In this regard, the constrained theory of Cao et al.’s mark
notable theoretical advance in modeling steady-state noniso
mal flows.

When applied to transient flow problems, however, the the
is found to be pathological in that not only the constant equilib
are unstable at any experimentally attainable temperature, but
infinitesimal disturbances of small length scales near the equ
rium grow proportionally to the reciprocal of their wave lengt
This catastrophic phenomenon has been referred to as the cla
Hadamard instability~@7#!.

Examples of mathematical models exhibiting Hadamard in
bilities include the ‘‘transient’’ Laplace equation, in which one
the independent variables is treated as time-like, incompress
fluid models for inviscid interfacial flows~Kelvin-Helmholtz,
Rayleigh-Taylor instability, etc.! ~@8#! and some models~interpo-
lated Maxwell model, etc.! for non-Newtonian fluids~@7,9#!. The
emergence of the instability in the models is often an indication
their failure to model the underlying physics~@7,9#! or onset of
catastrophies. Regularization of the models is thus necess
sometimes, the regularization is done numerically. In most ev
tionary equations, where Hadamard instabilities are observe
any constant equilibrium, the corresponding initial or initi
boundary value problem does not have a solution except tha
initial data are analytical. Evolutionary equations exhibiting th
behavior are often said to be locally ill-posed~@7#!. The con-
strained theory of Cao et al.~@1#! is thus locally ill-posed.

The ‘‘unconstrained’’~compressible! theory for nonisotherma

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
7, 1998; final revision, June 25, 1999. Associate Technical Editor: D. A. Sigi
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
n-
re-
an-
tate

in-

s a
her-

ry
ria
also
lib-
.
sical

ta-
f
ible

of

ary;
lu-

d at
l
the
is

viscous fluids is known to be well-posed, i.e., all the const
equilibria are stable. A general proof can be found in@10# for
thermomechanical processes satisfying the Gibbs condit
~@11,12#!. The local ill-posedness of the constrained theory~@1#!
found in this study certainly contradicts both the unconstrain
theory and the common experience with nonisothermal visc
fluids. Consequently, its direct use in transient flow phenome
is not advised.

In the remaining parts of the paper, we detail our ne
equilibrium dynamical analysis for nonisothermal viscous flo
using the thermomechanically consistent constrained the
which leads to our discovery of the catastrophic instability in t
theory and so its ill-posedness, following a brief review of t
constrained theory.

2 Near Equilibrium Dynamics in the Thermomechani-
cally Consistent Constrained Theory

First, we briefly review the thermomechanically consistent co
strained theory for materials with prescribed temperatu
dependent density developed by Cao et al.@1#. Then, we study the
dynamical behavior of the theory near constant equilibria f
lowed by a brief discussion about a more general constraint.

2.1 Thermomechanically Consistent Constrained Theory
for Materials With Temperature-Dependent Density. In the
constrained theory of Cao et al.@1#, the density of the materialr is
assumed a given function of the absolute temperatureu:

r5r~u!. (1)

With the prescribed density, the conservation of mass acts ef
tively as a thermomechanical constraint:

div v1
r8~u!

r~u!
u̇5I•D1

r8~u!

r~u!
u̇50, (2)

whereD5
1
2(¹v1¹vT) is the rate-of-strain tensor,v is the veloc-

ity vector, I is the second-order isotropic tensor. The constrain
responses for the stress, free energy, entropy, and heat flux
derived subject to constraint~2! in @1#. It is shown that the con-
straint response in the entropy is given byp(r8/r2) and that the
stress is given by2pI , wherep is a Lagrange multiplier corre-
sponding to the constraint recognized as the pressure, wherea
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free energy and heat flux are not affected by the constraint a
With the constraint responses, the total stress, free energy
tropy, and heat flux are expressed as

T5T̂2pI , c5ĉ, h5ĥ1p
r8~u!

r~u!2
, q5q̂, (3)

where T̂, ĉ, ĥ, q̂ represent the constitutive part of the physic
variables to be determined by the material properties. Acco
ingly, the total internal energy is given by

e5 ê1uĥ1up
r8~u!

r~u!
. (4)

Substituting~3! and ~4! into the energy balance

rė5T•D1rg2div q, (5)

whereg is the internal heat per unit mass, Cao et al. arrived a

Frc~u!1
pu

r S r922
r82

r
D G u̇1

r8

r
u ṗ5T̂•D1rg2div q̂. (6)

In the derivation, an increase in the constitutive part of the inter
energy is assumed due exclusively to the increase of tempera

dê5c~u!du, (7)

wherec(u) is the specific heat~a prescribed function ofu! corre-
sponding to the constitutive part of the internal energy.

Equations~2!, ~6!, and the conservation of linear momentum

r v̇5div T̂2gradp1g, (8)

where g is the external force per unit volume, along with th
constitutive equations for the extra stressT̂ and heat fluxq̂ con-
stitute the thermomechanically consistent constrained theory
materials with prescribed temperature-dependent density~@1#!.
t
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2.2 Linearized Stability Around Constant Flow Equilibria
of Nonisothermal Viscous Fluids Using the Constrained
Theory. For a nonisothermal viscous fluid, the constitutive p
of the extra stress, satisfying the Clausius-Duhem inequality
given by

T̂5l~u!tr ~D!12m~u!D, (9)

wherel~u!, m~u! are prescribed temperature-dependent bulk v
cosity and viscosity, respectively, withl1

2
3m>0 andm>0 and

tr~D! is the trace ofD. We note that the first term was not in
cluded in the original derivation of Cao et al.@1#.

In consistence with the second law of thermodynamics,
adopt the Fourier law for the heat flux,

q̂52K~u!¹u, (10)

where K(u) is the heat conductivity, a prescribed function
temperature.

When the external force and the specific heat effect are
glected, the governing system of equations for nonisothermal
cous flows, consisting of Eqs.~2!, ~6!, ~8!, ~9!, and~10!, admits a
constant solution~flow equilibrium!

v5v0 , p5p0 , u5u0 , (11)

wherev0 is an arbitrary constant vector,p0 an arbitrary constant,
andu0 an arbitrary positive constant.

We are interested in the local dynamics of the governing sys
of equations near the equilibrium. So, we linearize the govern
Eqs.~2!, ~6!, ~8!–~10! about the equilibrium~11!, yielding a con-
stant coefficient partial differential equation system. We then s
solutions of the linearized equations in forms of plane waves:

~•!~x,t !5eat2 in•xd~•!, (12)

where (•) represents the perturbations of the physical variablev
5(v1 ,v2 ,v3),p,u, x5(x1 ,x2 ,x3) is the position vector in the
Cartesian coordinate (x1 ,x2 ,x3), n5(n1 ,n2 ,n3) is the wave vec-
tor, and the real part ofa gives the growth rate.

Without loss of generality, we proceed withv050 and n
5(n,0,0). After some algebraic manipulations, we transform
linearized partial differential equation system into the followin
algebraic equation system fora and the perturbations
5
2 indv11a

r~u0!

r~u0!
du50,

ar~u0!dv15 indp2n2~2m~u0!1l~u0!!dv1 ,

aH Fr~u0!c~u0!1
p0u0

r~u0!
S r9~u0!22

r82~u0!

r~u0!
D Gdu1

r8~u0!

r~u0!
u0dpJ 52n2K~u0!du.

(13)
h
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The dispersion equation of the linearized equation system is
obtained as follows:

n2FaS r~u0!c~u0!1
p0u0

r~u0!
S r9~u0!2

2~r8~u0!!2

r~u0!
D D 1K~u0!n2G

2S r8~u0!

r~u0!
D 2

u0a2@r~u0!a1~2m1l!n2#50. (14)

This is a cubic equation fora. Although its roots can be expresse
explicitly in algebraic formulas, their expressions are tedious
not illuminating. Instead, we seek their asymptotic representat
in the range of largeunu@1. The leading terms in the three roo
of the cubic dispersion equation are found either linear or q
dratic in wave numbern, provided 2m(u0)1l(u0).0,
hen

d
nd

ons
s
ua-

5 a1;2
2m~u0!1l~u0!

r~u0!
n2,

a6;6A K~u0!

~2m~u0!1l~u0!!u0
U r~u0!

r8~u0!
nU . (15)

The expression fora1 indicates that there is a positive growt
rate proportional to the magnitude of the wave vector in the sh
wave limit (unu@1). Namely, the disturbance grows in proportio
to the reciprocal of its wave length. The indication of this is th
the smaller the spatial length scale is in the disturbance, the fa
it grows. This phenomenon is known as the classical Hadam
instability ~@7#!. Its existence at any constant equilibrium implie
that the governing system in the theory is locally ill-posed as
evolutionary equation system so that it cannot be applied dire
Transactions of the ASME
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to transient problems. In fact, its usefulness in steady states is
questionable since all steady states are achieved through tran
processes.

If 2m(u0)1l(u0)50, the leading terms of the three roots
the dispersion equation are

a j 11
2 ;Fr~u0!K~u0!n4

r8~u0!2u0
G 1/3

e~2p i j /3!, j 50,1,2. (16)
a
a

m

a

t
e

s
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The real part ofa2
2 , a3

2 are negative corresponding to decay
but the real part ofa1

2 is positive yielding a growth rate propor
tional ton4/3. Therefore, Hadamard instability persists and so d
the local ill-posedness in the theory.

The ‘‘eigenfunctions’’ of the linearized system~13! give
the directions of growth corresponding to the three growth ra
~15!. Their leading order terms for largeunu@1 are given by
H a1⇔dv151, dp50, du50,

a6⇔dv151, dp52 in~l~u0!12m~u0!!, du5 in
r~u0!

r8~u0!a6

.
(17)
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So the disturbance in the direction dominated bydp grows the
most for largeunu@1 in time corresponding toa1 .

Now that the constrained theory is locally ill-posed at any co
stant equilibrium, we must regularize the theory before it is
plied to nonisothermal viscous fluids. Next, we report our
tempts to regularize the constrained theory.

2.3 Thermomechanically Consistent Constrained Theory
With a More General Constraint. Here, we adopt a more gen
eral constraint of Green et al.@13# and Trapp@14#

I•D1b•¹u1au̇50, (18)

in place of the constraint imposed by the conservation of mass~2!,
where the vectorb and scalara are independent of~u̇,¹u,D! and
the constraint is invariant under the superposed rigid-body
tions. We note that constraint~2! corresponds tob50, a
5r8(u)/r(u) here. Following the same argument outlined in C
et al.@1#, we obtain the total stress, entropy, free energy, and h
flux, including both the constrained response and constitutive p
as follows:

T5T̂2pI , h5ĥ1
pa

r
, c5ĉ, q5q̂1pub. (19)

The new constraint~18! yields a nonzero constrained response
the heat flux, entropy, and stress, respectively. The additional
~b•¹u! in constraint~18! is responsible for the constrained r
sponse in the heat flux. Using~7! and~5!, we arrive at the energy
balance for the material subject to constraint~18!:

Frc~u!1S a

r D 8
pG u̇1au ṗ5T̂•D1rg2¹•q̂2¹•~pub!.

(20)

The other governing equations in the constrained theory are~8!
and ~18! along with the constitutive equations for the stress a
heat flux.

For nonisothermal viscous flows, we repeat the linearized
bility analysis around constant equilibrium~11! and obtain three
growth rates in the range of (unu@1), provided aÞ0 and
2m(u0)1l(u0).0, given asymptotically by

5 a1* ;2
~2m~u0!1l~u0!!

r
n2,

a6* ;
b1

a
i 6A K~u0!

~2m~u0!1l~u0!!a2u0

unu,

(21)

whereb15b•e1 ande1 is the unit base vector in thex1-direction
in the Cartesian coordinate (x1,x2,x3). Analogous to~15!, there is
an unstable growth rate proportional to the magnitude of the w
vector and independent of the new termb•¹u in the constraint.
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When 2m(u0)1l(u0)50, we have analogous growth rate form
las like ~16!, which are omitted here. Hadamard instability th
persists unlessa50. If a50, the dispersion equation of the lin
earized system has only one nonzero roota, yielding a negative
growth rate~decay rate! proportional ton2 so that the equilibrium
is stable.

This analysis reveals that the additional termb•¹u in the con-
straint is not enough to regularize the thermomechanically con
tent constrained theory of Cao et al.@1#. It hints that the cata-
strophic instability may be intrinsic to the essential relati
between the density and temperature implied by the constra
~2! and~18!. We have also derived a thermomechanically cons
tent constraint theory with the density modified to the followin
form:

r5r~u!1r1~u,¹u!•¹u, (22)

where the second term is assumed invariant under the supe
posed rigid-body motions. The modified theory again fails
avoid the Hadamard instability at the constant equilibria. Furth
more, we also looked into the possibility of density as a funct
of temperature and the rate-of-strain, which is invariant under
superimposed rigid-body motions. We were unable to derive
constrained responses then. This approach therefore seems
sible. Fortunately, by taking a different approach, we have b
able to formulate a well-posed constrained theory for nonisoth
mal viscous flows.

2.4 Constrained Theory for Materials With Entropy-
Dependent Density. Recently, Rooney et al.@10#, reformulated
a constrained theory for nonisothermal viscous flows assum
density a function of entropy. The constant equilibria are shown
be stable to infinitesimal disturbances, indicating local we
posedness of the new theory near the constant equilibria. T
noticed an analogous approach had been taken by Scott@15,16#
for thermoelastic materials. Details about the new constrai
theory and local dynamical analysis are reported in@10#.

3 Conclusion
We have demonstrated analytically that the thermomech

cally consistent constrained theory for materials with prescrib
temperature dependent density derived by Cao et al.@1# is locally
ill-posed for transient problems due to the existence of the c
strophic Hadamard instability, despite its promising predictions
expansion cooling in steady-state Poiseuille flows of nonisoth
mal viscous fluids. This illustrates that a thermomechanically c
sistent constrained theory cannot be derived by simply assum
the material density a prescribed function of temperature. A
isfactory regularization of the theory within the same framewo
by allowing explicit dependence between the density and temp
ture as well as other additional thermodynamic variables rem
MARCH 2000, Vol. 67 Õ 31
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elusive. However, a well-posed thermomechanically consis
constrained theory for nonisothermal viscous fluids has been
mulated lately by allowing the density a prescribed function
entropy. Details about the derivation and analysis of the n
theory are given in@10#.
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Combined Torsion, Circular and
Axial Shearing of a Compressible
Hyperelastic and Prestressed
Tube
In this paper, we study the combined torsion, circular and axial shearing of a comp
ible hyperelastic and prestressed tube. The analysis is carried out for a class of O
elastic material and the governing nonlinear equations are solved numerically using
Runge-Kutta method. The results reported present the effects of the torsion for dif
shearing loads on the local volume change and the circumferential stretch ratio.
effect of the second invariant-dependent behavior of polynomial materials is also i
tigated.@S0021-8936~00!01301-5#
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1 Introduction
The combined axial and torsional shearing of a circular cy

drical tube for homogeneous isotropic incompressible nonline
elastic material was first considered by Ogden et al.@1#. The as-
sumption that the material is incompressible was made in orde
simplify the mathematical analysis. After, the same problem
compressible materials was solved numerically by Mioduchow
and Haddow@2#. They have considered the case in which t
outer boundary does displace radially, and the results have
obtained for two strain energy functions~those proposed by
Levinson and Burgess@3# and by Blatz and Ko@4#!. Furthermore,
Mioduchowski and Haddow@2# have discussed an approxima
numerical solution in which the cylinder is divided into a numb
of co-axial thin-walled tubes of equal undeformed wall thickne
Distributions on the stresses and the radial stretch ratio of
current thickness to the undeformed wall thickness have been
tained. Ogden and Isherwood@5# have also presented the solutio
of some finite plane-strain problems for compressible, isotro
elastic solids by using the direct method. Carroll and Horgan@6#
have also proposed several closed-form finite strain equilibr
solution for the Blatz–Ko constitutive law. These solutions ha
been obtained by the semi-inverse method, and each of the d
mations is a nonisochoric generalization of a deformation whic
controllable for homogeneous, isotropic, incompressible ela
solids. It must be emphasized that these previous studies@5,6# did
not include the combined torsion with axial or circular shear
for a thick tube. Soon after, Tao et al.@7# studied circular shearing
and torsion in generalized power-law neo-Hookean material
the incompressible case. For certain values of the power-law
ponent, an explicit exact solution has been given and in gen
cases the equations have been solved numerically. What is m
they have shown that the equations lose ellipticity for a cert
range value of the power-law exponent. This problem of loss
lipticity has also been investigated for the generalized Blatz–
materials and for a complete discussion, we refer the reade
Knowles and Sternberg@8#, Abeyaratne and Knowles@9#, and
Horgan@10#. Clearly, the problem of a circular tube composed
compressible elastic material and subjected to combined kine
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Discussion on the paper should be addressed to the Technical Editor, Pro
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cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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ics is rather tricky. Indeed, recent papers have explored the d
culties taken into account the torsion when the circular cylinde
subjected to shearing. Hence, the combined problems of the
sion with axial shearing~@11#! or with circular shearing~@12#!
have recently been solved. However, the exact solutions have
been obtained when a class of Blatz–Ko material is conside
and the highly nonlinear coupled differential equations have b
integrated numerically. This paper is a sequel to these prev
studies and our approach is to give a solution to the combi
torsion, circular, and axial shearing problem. The cylindrical tu
is considered prestressed~@13#! and made of a polynomial com
pressible material in its most general form, taking into account
effect of the second strain invariant. The hollow’s cylinder inn
and outer surfaces are fixed radially and are allowed to rotate
the torsion and the circular shear. Furthermore, the outer surfa
allowed to displace in the longitudinal direction by the axial she
The study is carried out using a particular Ogden constitut
equation which was used by Le Tallec and Vidrascu@14# to apply
the augmented Lagrangian techniques for the numerical solu
of equilibrium problems of compressible hyperelastic bodies s
jected to large deformations. Based on a recent appro
~@11,12,15#! the coupled nonlinear differential equations gover
ing this new problem are solved by the Runge-Kutta method co
pleted with an iterative process to obtain the local volume cha
and the circumferential stretch ratio. We show the effects of
torsion when the tube is subjected to axial and circular shear
The effect of the second invariant~@16#! is also investigated.

2 Formulation and Analysis of the Combined Torsion,
Circular and Axial Shearing Problem

Consider a nonlinearly elastic sector of a circular cylinder d
fined by the angleQ0 ~Fig. 1!. Let us suppose that the tube un
dergoes two successive deformations. First, the cylinder is clo
which induces residual strains~@13#! and then it is subjected to
torsion, circular and axial shearing. The mapping is described

r 5r ~R!, u5S p

Q0
DQ1cZ1f~r !, z5Z1v~r !, (1)

where (R,Q,Z) and (r ,u,z) are, respectively, the reference an
the deformed positions of a material particle in a cylindrical s
tem. Here,c is a twist angle per unloaded length,f is an angle
which defines the circular shear, andv(r ) is an axial displace-
ment which defines the axial shear. LetRi and r i denote, respec-
tively, the inner surfaces of the cylinder in the reference state
in the deformed state~Re and r e are the outer surfaces!.
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It follows from Eq. ~1! that the physical components of the deformation gradientF, the left Cauchy-Green tensorB, and its inverse
have the following representation in a cylindrical system:

F5F ṙ 0 0

r ṙ ḟ
r

R

p

Q0
rc

ṙ v̇ 0 1

G5F l r 0 0

K1l r
lup

Q0
rc

K2l r 0 1

G , (2)

B5F l r
2 K1l r

2 K2l r
2

K1l r
2

~K1l r !
21S lu

p

Q0
D 2

1~rc!2 K1K2l r
21rc

K2l r
2 K1K2l r

21rc ~K2l r !
211

G , (3)

B215S Q0

lup D 2F 1

l r
2 S lup

Q0
D 2

1~2K11K2rc!21S K2

lup

Q0
D 2

2K11K2rc K1rc2K2F ~rc!21S lup

Q0
D 2G

2K11K2rc 1 2rc

K1rc2K2F ~rc!21S lup

Q0
D 2G 2rc ~rc!21S lup

Q0
D 2 G , (4)
ts
where the dot denotes the differentiation with respect to the arg
ment,K1 , K2 , l r , andlu are, respectively, the local shear mea
sures, the radial, and the circumferential stretch ratio.

The principal invariants ofB are

J15Tr B5l r
2~11K1

21K2
2!1S lup

Q0
D 2

1~rc!211,

J25Tr B215
1

l r
2 1S Q0

lup D 2

@11~2K11K2rc!2

1~rc!2] 111K2
2,

J35DetF5l rlu

p

Q0
. (5)

The deformation equation~1! is inhomogeneous and thus is not
possible in all compressible isotropic elastic material. For th
reason, the material of the tube is assumed to be polynomial co
pressible material@14# whose strain energy density function is
expressed as

W~J1 ,J2 ,J3!5
C1

2
~J123!1

C2

2
~J2J3

223!1a~J3
221!

2~C112C212a!Log J3 , (6)

whereC1 , C2 , anda are constant material parameters.
The constitutive equation has the form@17#

Fig. 1 Cross section of the tube in the stress-free „a…, un-
loaded „b…, and loaded configuration „c…
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s̄5
s

C1
5b̄011b̄1B1b̄21B21, (7)

wheres is the Cauchy stress tensor and1 is the identity tensor.
The elastic response functionsb̄k in the constitutive equation~7!
for the strain energy equation~6! are given by

b̄05
1

C1

]W

]J3
5aJ2J31gJ31

d

J3
, b̄15

2

C1J3

]W

]J1
5

1

J3
,

b̄2152
2

C1J3

]W

]J2
52aJ3 , (8)

where

a5
C2

C1
, g5

2a

C1

and

d52~112a1g!.

Using Eqs.~3! and ~4!, the nondimensional stress componen
from the constitutive Eq.~7! with respect to cylindrical coordi-
nates are found to be

s̄ rr 5b̄0~J2 ,J3!1J3S Q0

lup D 2

@12a~2K11K2rc!2#

2
a

J3
S lup

Q0
D 2

2aJ3K2
2,

s̄uu5b̄0~J2 ,J3!1J3S Q0

lup D 2

~K1
22a!1

1

J3
F S lup

Q0
D 2

1~rc!2G ,
s̄zz5b̄0~J2 ,J3!1J3S Q0

lup D 2FK2
22a~rc!22aS lup

Q0
D 2G1

1

J3

s̄ ru5J3S Q0

lup D 2

@~11a!K12aK2rc!],

s̄zu5J3S Q0

lup D 2

~K1K21arc!1
rc

J3
,

s̄ rz5J3S Q0

lup D 2

@K22arc~K12K2rc!#1aJ3K2 . (9)
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We user̄ 5r /Ri , R̄5R/Ri , and z̄5z/Ri as nondimensional vari
ables. From Eq.~9!, the equilibrium equations in the absence
body forces are

ds̄ rr

dr̄
1

s̄ rr 2s̄uu

r̄
50 (10)

ds̄ ru

dr̄
1

2s̄ ru

r̄
50 (11)

ds̄ rz

dr̄
1

s̄ rz

r̄
50. (12)

Equations~11! and ~12! can be solved for the circumferentia
shear stress and for the axial shear stress distributions as foll

s̄ ru5
M̄1

r̄ 2 , (13)

s̄ rz5
M̄2

r̄
, (14)

where M̄1 and M̄2 are the nondimensional moments per u
length. Then, from Eqs.~7!, ~13!, and~14!, the expressions for the
local shear measuresK1 andK2 are

K15
1

D
FA

M̄1

r̄ 2 2B
M̄2

r̄
G , K25

1

D
FC

M̄2

r̄
2B

M̄1

r̄ 2 G (15)

with D5AC2B2, whereA, B, andC are expressed in terms o
the material element volume ratioJ3 , stretch ratiolu as follows:

A5J3S Q0

lup D 2H 11aF ~ r̄ Ric!21S lup

Q0
D 2G J ,

(16)

B52aJ3S Q0

lup D 2

r̄ Ric, C5J3S Q0

lup D 2

~11a!.

Then, using Eqs.~7! and ~15!, ~11! and ~12! are automatically
satisfied because the form of the constitutive equation.

On the other hand, using equationl r5(J3 /lu)(Q0 /p) and on
substitution from Eq.~15!, the normalized Cauchy stress tens
can be written fromr̄ , J3 , and lu , and the result is noteds% .
Then, it easily follows that from Eq.~10!, we have a system o
nonlinear ordinary differential equations forlu( r̄ ) and J3( r̄ )
which can be written as

dlu

dr̄
5

lu

r̄ S 12
lu

2

J3

p

Q0
D (17)

dJ3

dr̄
5S ds% rr

dr̄
2

]s% rr

] r̄
2

]s% rr

]lu

dlu

dr̄ D S ]s% rr

]J3
D 21

(18)

where

ds% rr

dr̄
52

J3

r̄ S Q0

lup D 2H 12a~2K11K2r̄ Ric!22aS K2lup

Q0
D 2

2K1
21aJ 1

1

r̄ J3
S lup

Q0
D 2H 11a1S r̄ RicQ0

lup D 2J , (19)

]s% rr

] r̄
52aJ3S Q0

lup D 2

r̄ ~Ric!2, (20)

]s% rr

]lu
5

22J3

lu
3 S Q0

p D 2

$11a@11~ r̄ Ric!2#%, (21)

]s% rr

]J3
5

d

J3
2 1S Q0

lup D 2

@11a~11~ r̄ Ric!2#1a1g. (22)
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To complete the boundary value problem, we consider
boundary conditions such asr (Ri)5Ri and r (Re)5Re , which
imply

lu~ r̄ i !5lu~ r̄ e!51, (23)

where r̄ i51 and r̄ e5Re /Ri .
Equations~17! and ~18! subject to the conditions of Eq.~23!

form a boundary value problem forlu( r̄ ) and J3( r̄ ) where M̄1

and M̄2 are fixed. The reader should consult Wineman’s pa
@15# where a similar formulation of a related boundary value pro
lem is carried out in complete detail.

Furthermore, it is instructive to obtain the necessary and su
cient conditions on the strain energy function equation~6! for pure
kinematics without radial displacement or local volume chan
~@15,18–21#!. In these cases we havel r5lu5J351.

For pure torsion (M̄15M̄250), it follows from Eqs.~15!, ~16!,
~5!, and~8!,

K15K250, J2531~ r̄ Ric!2, b̄053a1g1d1a~ r̄ Ric!2.
(24)

Then, from Eq.~9! we obtain

s% rr 52a1g1d111a~ r̄ Ric!2,
(25)

s% uu52a1g1d111~a11!~ r̄ Ric!2.

Substituting~25! in equilibrium Eq.~10!, yields

~2a21! r̄ ~Ric!250. (26)

This is verified ifa5
1
2 for any twist anglec.

For pure circular shear (M̄25c50), it follows from Eqs.~15!,
~16!, ~5!, and~8!,

K15
M̄1

~11a! r̄ 2 , J2531F M̄1

~11a! r̄ 2G2

,
(27)

b̄053a1g1d1aF M̄1

~11a! r̄ 2G2

.

Then, from Eq.~9! we obtain

s% rr 52a1g1d11,
(28)

s% uu52a1g1d111~11a!F M̄1

~11a! r̄ 2G2

.

Substituting Eq.~28! in equilibrium Eq.~10!, yields

2
1

~11a!

M̄1
2

r̄ 5 50. (29)

This is not satisfied for any nonzero applied momentM̄1 .
For pure axial shear (M̄15c50), it follows from Eqs.~15!,

~16!, ~5!, and~8!,

K25
M̄2

~11a! r̄
, J2531F M̄2

~11a! r̄
G2

,

b̄053a1g1d1aF M̄2

~11a! r̄
G2

. (30)

Then, from Eq.~9! we obtain

s% rr 52a1g1d11, s% uu52a1g1d111aF M̄2

~11a! r̄
G2

.

(31)

Substituting Eq.~31! in equilibrium Eq.~10!, yield

2
a

~11a!2

M̄2
2

r̄ 3 50 (32)

This is verified ifa50 for any applied momentM̄2 .
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3 Results and Discussion
Equations~17! and ~18! are integrated numerically using th

fourth-order Runge-Kutta method, complete with an iterative p
cess~@15#!. Fifty-one points along the radial coordinate are us
in the numerical integration of the governing equations. First,
given values ofM̄1 andM̄2 , J( r̄ i) is estimated. Using these va
ues and the boundary conditionlu( r̄ i)51, Eqs.~17! and~18! are
integrated forr̄ 5@ r̄ i , r̄ e#. The value of the circumferential stretc
ratio is checked against the boundary conditionlu( r̄ e)51. Then,
iterations are used to adjust the estimate forJ( r̄ i) until the bound-
ary conditionlu( r̄ e)51 is satisfied. As an illustrative example
we taker̄ e52, Q05180 deg,g50, and three loading condition
(M̄1 ,M̄2)5$(1,0),(0,1),(1,1)%. We focus our attention when th
cylinder is subjected to different twisting momentsc
5$0 deg,15 deg,30 deg,45 deg%. Furthermore, we examine the in
fluence of the second invariant defined by the value of the par
etera.

To begin with, we give the results fora50.25. Figures 2 and 3
show the distribution of circumferential stretch ratio and the v
ume ratio when (M̄1 ,M̄2)5(0,1). As is made clear by the figure
an increase ofc modifies the results. For each angle of twistc,
the material element volume is decreased (J,1) at the inner sup-
port and increases with increasingr̄ ~Fig. 3!. Near the outer shell
material element volume is increased (J.1). At approximately
r̄ 5155, the material element volume is unchanged. Sincelu,1,
the cylindrical surfaces move inward which is consistent with
volume change as shown in Fig. 2. It follows from Fig. 2 that t
circumferential stretch ratio passes through a minimum. T
minimum is smaller asc is greater. Furthermore, the comple
nature of the system of Eqs.~17! and ~18! governing the equilib-
rium problem of coupled deformations does not seem to pe
one to study the existence and the uniqueness of the solution b
analytical method. However, it is worthy of note that the exam
nation of Figs. 2 and 3 shows that these distributions are
36 Õ Vol. 67, MARCH 2000
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perfectly smooth. This can be attributed to a loss of ellipticity
the governing partial differential equations as suggested by S
monds and Warne@22#. Analogous examples for this loss of e
lipticity can be found in different papers~@12,15#! and a compre-
hensive treatment of this problem may be found in the pape
Horgan@10#. On the other hand, when the loading conditions b
come (M̄1 ,M̄2)5(1,1), the results do not change qualitativel
Indeed, as is shown in Figs. 4 and 5, only the intensities of d
tributions are modified and become smaller. In that case, it
pears that the loss of ellipticity is less pronounced than in
above case when (M̄1 ,M̄2)5(0,1). Plots for (M̄1 ,M̄2)5(1,0)
are omitted for the purpose of brevity. As we have observed,
results do not change qualitatively compared to the c
(M̄1 ,M̄2)5(0,1) and the distributions lie between the above pl
~(M̄1 ,M̄2)5(0,1) and (M̄1 ,M̄2)5(1,1)!.

For the purposes of comparison, we have also studied the
a50 which corresponds to neglect the second invariant in
~6!. Figures 6 and 7 show the distribution of the circumferent
stretch ratio and the volume ratio when (M̄1 ,M̄2)5(0,1). As il-
lustrated by the figures, it may be seen that varyingc leads to a
variation of results. As a result, the above remarks whena
50.25 may also be claimed here. Note that relative to the ab
casea50.25, we have found the same results when (M̄1 ,M̄2)
5(1,0) and (M̄1 ,M̄2)5(1,1). This is plotted in Figs. 8 and 9
Moreover, in contrast to the casea50.25, whena50, the loss of
ellipticity does not occur and the distributions are always smoo
It is comparable with the results of Wineman and Waldron,
@15# when they have omitted the second invariant in the Blatz-
strain energy function. Without going into further detail of th
parametric study, it is important to point out that the results
ported here do not change significantly when varying the inten
of the momentsM̄1 andM̄2 .
Fig. 2 Circumferential stretch ratio versus radius for different angles of twist when aÄ0.25, M̄1Ä0, M̄2Ä1
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Fig. 3 Volume ratio versus radius for different angles of twist when aÄ0.25, M̄1Ä0, M̄2Ä1

Fig. 4 Circumferential stretch ratio versus radius for different angles of twist when aÄ0.25, M̄1Ä1, M̄2Ä1
rnal of Applied Mechanics MARCH 2000, Vol. 67 Õ 37
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Fig. 5 Volume ratio versus radius for different angles of twist when aÄ0.25, M̄1Ä1, M̄2Ä1

Fig. 6 Circumferential stretch ratio versus radius for different angles of twist when aÄ0, M̄1Ä0, M̄2Ä1
Õ Vol. 67, MARCH 2000 Transactions of the ASME
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Fig. 7 Volume ratio versus radius for different angles of twist when aÄ0, M̄1Ä0, M̄2Ä1

Fig. 8 Circumferential stretch ratio versus radius for different angles of twist when aÄ0, M̄1Ä1, M̄2Ä1
urnal of Applied Mechanics MARCH 2000, Vol. 67 Õ 39
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Fig. 9 Volume ratio versus radius for different angles of twist when aÄ0, M̄1Ä1, M̄2Ä1
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Modeling of Interphases in
Fiber-Reinforced Composites
Under Transverse Loading Using
the Boundary Element Method
In this paper, interphases in unidirectional fiber-reinforced composites under transv
loading are modeled by an advanced boundary element method based on the ela
theory. The interphases are regarded as elastic layers between the fiber and matr
opposed to the spring-like models in the boundary element method literature. Both
der and square unit cell models of the fiber-interphase-matrix systems are consid
The effects of varying the modulus and thickness (including nonuniform thickness)
interphases with different fiber volume fractions are investigated. Numerical results
onstrate that the developed boundary element method is very accurate and effici
determining interface stresses and effective elastic moduli of fiber-reinforced comp
with the presence of interphases of arbitrarily small thickness. Results also show th
interphase properties have significant effect on the micromechanical behaviors o
fiber-reinforced composites when the fiber volume fractions are large.
@S0021-8936~00!02501-0#
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1 Introduction
Interphases, or interfacial zones, in fiber-reinforced compo

materials are the thin layers between the fiber and matrix~Fig. 1!.
These interphases are formed due to, for example, chemical
tions between the fiber and matrix materials, or the use of pro
tive coatings on the fiber during manufacturing. The fiber, wh
is employed to reinforce the matrix material in the fiber directio
is usually much stiffer than the matrix material. Different levels
stresses and deformations can develop in the fiber and m
materials, because of this mismatch in the material properties.
the interphases that bond the fiber and matrix together to en
the desired functionality of the composite material under exte
loads. Although small in thickness, interphases can significa
affect the overall mechanical properties of the fiber-reinforc
composites, as observed in many studies~@1–9#!. It is the weakest
link in the load path, and consequently most failures in fib
reinforced composites, such as debonding, fiber pullout, and
trix cracking, occur in or near this region. Thus, it is crucial
fully understand the mechanism and effects of the interphase
fiber-reinforced composites. Numerical techniques such as th
nite element method and the boundary element method are in
pensable tools in serving this purpose.

Numerical modeling of fiber-reinforced composite materi
presents great challenges to both the finite element method
boundary element method especially for the analysis at the mi
structural level. The main issue in the micromechanics analysi
fiber-reinforced composites is to predict the interface stresses
durability assessment, and to determine the engineering pro
ties, such as the effective Young’s moduli, Poisson’s ratios,
thermal expansion coefficients needed for structural analysis.
alized models using the unit cell~or representative volume ele

1To whom correspondence should be addressed.
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ment! concept are usually employed in micromechanics analy
in which the fibers are assumed to be infinitely long and packe
a square or hexagonal pattern~see, e.g.,@10,11,12#!. Although
only one fiber and the surrounding matrix are modeled in the u
cell approach, the presence of the interphase between the fibe
matrix still makes the finite element method and boundary e
ment method modeling difficult, simply because of the thinness
the interphases which are at the micrometer level or below.

Many finite element models based on the two-dimensional e
ticity theory have been developed to study the micromechan
properties of fiber-reinforced composites under transverse loa
and with the presence of an interphase, for example, in@13,6,14#,
and @8#, and most recently in@9#. In all these finite element
method models, a layer of very fine finite elements was u
between the fiber and matrix to model the interphase. Becaus
the thinness of the interphase, a large number of small finite
ments are needed in these models, in order to avoid elements
large aspect ratios which can deteriorate the finite element me
solutions. This, in turn, causes a large number of elements in
fiber and matrix regions because of the connectivity requirem
in the finite element method. For instance, in@9#, more than 3500
finite elements were used to model onlyone quarterof the chosen
unit cell. With further smaller thickness of the interphase as co
pared with the diameter of the fiber, or nonuniform thickne
even more elements will be needed in the finite element met
model. Thus, using finite elements based on the elasticity the
for the modeling of interphases can be costly and inefficient.

The boundary element method has been demonstrated to
viable alternative to the finite element method due to its featu
of boundary-only discretization and high accuracy in stress an
sis, especially in fracture analysis~see, e.g.,@15–18#!. For the
analysis of micromechanical behaviors of fiber-reinforced co
posites using the boundary element method, there are very
publications in the literature, and all of the boundary elem
method models developed so far are two-dimensional ones b
on perfect-bonding or spring-like interface conditions. No boun
ary element method models have been attempted earlier to m
the interphases directly as an elastic region between the fiber
matrix.

Achenbach and Zhu@2# developed a two-dimensional model o
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a square unit cell using the boundary element method. To s
the effect of the interphase, the continuity of the tractions acr
the interface of fiber and matrix is maintained, while a line
relation between the displacement differences and the tract
across the interface is introduced. This simple relation represe
spring-like model of the interphase. The proportionality consta
used in this model characterize the stiffness of the interph
Based on this model, it was shown that the variations of the
terphase parameters can cause pronounced changes in the
distributions in the fiber and matrix. The initiation, propagati
and arrest of the interface cracks were also analyzed. The s
approach to the interphase modeling was extended in@3# to study
hexagonal-array fiber composites, and in@4# to study the micro-
mechanical behaviors of a cluster of fibers. Oshima and Wa
@19# calculated the transverse effective Young’s modulus usin
two-dimensional boundary element method for a square unit
model. No interphase was modeled and perfect bonding betw
the fiber and the matrix was assumed. Nevertheless, the boun
element method results using constant elements were shown
in very good agreement with the experimental data. Gulrajani
Mukherjee @20# studied the sensitivities and optimal design
composites with a hexagonal array of fibers. A two-dimensio
boundary element method model with the same spring-like in
phase model as in@2# was used. The sensitivities of stresses at
interphase were calculated and employed to optimize the valu
the stiffness of an interphase in order to minimize the possib
of failure of a composite. Most recently, Pan, Adams, and Ri
@21# developed a similar two-dimensional boundary elem
method model using the same interphase relation as in@2# to study
the perfectly bonded as well as imperfectly bonded fib
reinforced composites. A main component in this research was
development of a library of Green’s functions~or matrices of
boundary element method equations! for analyzing fiber-
reinforced composite materials, which can be used by enginee
the design of such composites. Although successful to some
tent, all the above boundary element method models of the
cells for fiber-reinforced composites with the spring-like inte
phase relations are incapable of providing other important in
mation about the properties of composites, such as effect
changes of the thickness and nonuniform distribution of the in
phases. Furthermore, in order to avoid overlapping of the fiber
matrix in the spring-like model, an iteration approach is needed
trial calculation needs to be done first to check the sign of
normal traction at the interface. If the spring is in compressi
continuity of the normal displacement is resumed and the bou
ary element method is applied again. This procedure is ineffic
and can be costly. An improved boundary element method mo
of the interphases based on elasticity theory is desirable.

Fig. 1 The interphase in a fiber-reinforced composite
42 Õ Vol. 67, MARCH 2000
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Interphases, as in fiber-reinforced composites, are thin sh
like structures. For this class of structures, there have been
major concerns in applying the boundary element method.
first concern is whether or not the conventional boundary integ
equation for elasticity can be applied successfully to thin str
tures. It is well known in the boundary integral equation/bound
element method literature that the conventional boundary inte
equation will degenerate when it is applied to cracks or thin vo
in structures because of the closeness of the two crack surf
~see, e.g.,@16# and@22#!. One of the remedies to such degenera
in the conventional boundary integral equation for crack-li
problems~exterior-likeproblems!, is to employ the hypersingula
boundary integral equation~see, e.g.,@18,23–25#!. Does this de-
generacy occur when the conventional boundary integral equa
is applied to thin structures~interior-like problems!, such as thin
shells? It was not clear in the boundary element method litera
and the boundary element method based on elasticity had
avoided in analyzing thin shell-like structures for a long time d
to this concern. Recently, it was shown in@26# and @27#, both
analytically and numerically, that the conventional boundary in
gral equation will not degenerate, contrary to the case of cra
like problems, when it is applied to thin shell-like structures if t
displacement boundary conditions are not imposed at all
boundaries. Further discussions on this nondegeneracy issu
the boundary element method applied to shell-like structures
be found in@26# and@28#. Based on these new results, the dege
eracy issue should no longer be a concern when the convent
boundary integral equation is applied to thin structures, once
second concern, that is, the numerical difficulty is addressed.

The numerical difficulty in the boundary integral equation is t
nearly singular integrals which arise in thin structures when t
parts of the boundary become close to each other. Detailed stu
on the behaviors of the nearly singular integrals and compreh
sive reviews of the earlier work in this regard can be found in@29#
and @30#. One of the most efficient and accurate approaches
deal with the nearly singular integrals in the boundary elem
method for three-dimensional problems is to transform these~sur-
face! integrals to line integrals analytically before the numeric
integration~@22,26,31#!. A similar approach can be established f
two-dimensional elasticity problems~@27#!. It has been demon-
strated in@27# that very accurate numerical solutions can be o
tained for thin structures with the thickness-to-length ratio in
micro and even nanoscales, using the newly developed boun
element method approach, without seeking refinement of
meshes as the thickness decreases.

Once the degeneracy issue for the conventional boundary
gral equation in thin structure problems has been clarified and
nearly singular integrals can be dealt with accurately and e
ciently, it is believed that the boundary element method can n
be applied to a wide range of engineering problems, includ
simulations of thin shell-like structures~@26#! thin-film, and coat-
ings in the micro or nanoscales~@27#! and in particular, the inter-
phases in fiber-reinforced composite materials.

In this paper, detailed two-dimensional models for the int
phases in fiber-reinforced composite materials have been de
oped based on the elasticity theory to study their micromechan
behaviors under transverse loading. All the regions—the fib
matrix, and interfacial zone contained in a unit cell, are mode
using the advanced two-dimensional boundary element me
with thin-body capabilities~@27#! and extended to multidomain
cases. The interphases can have uniform thickness of any
trarily small values or nonuniform thickness. Interface stresse
the interphases and effective elastic moduli in the transverse
rections are computed using this approach. This two-dimensio
model of the interphases can provide more accurate inter
stresses and therefore a more accurate account on the micr
chanical behaviors of fiber-reinforced composites than the cur
spring-like models in the boundary element method literature.
Transactions of the ASME
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2 The Boundary Element Method Formulation
For the unit cell models under transverse loading~Fig. 2!, the

following boundary integral equation for two-dimensional elast
ity problems can be applied in each material domain~index nota-
tion is used in this section, where repeated subscripts imply s
mation!:

Ci j ~P0!uj
~b!~P0!5E

S
@Ui j

~b!~P,P0!t j
~b!~P!2Ti j

~b!~P,P0!

3uj
~b!~P!#dS~P!, (1)

in which ui
(b) and t i

(b) are the displacement and traction field
respectively;Ui j

(b)(P,P0) and Ti j
(b)(P,P0) the displacement and

traction kernels~Kelvin’s solution or the fundamental solution!,
respectively;P the field point andP0 the source point; andS the
boundary of the single material domain,~Fig. 2!. Ci j (P0) is a
constant coefficient matrix depending on the smoothness of
curve S at the source pointP0 ~e.g., Ci j (P0)51/2d i j if S is
smooth at pointP0 , whered i j is the Kronecker delta!. The super-
script b on the variables in Eq.~1! signifies the dependence o
these variables on the material domains, as specified below:

b5 f : fiber domain ~S5S1!;

b5 i : interphase domain~S5S1øS2!;

b5m: matrix domain ~S5S2øS3!.

The two kernel functionsUi j
(b)(P,P0) and Ti j

(b)(P,P0) in
boundary integral equation~1! are given as follows for plane
strain problems:

Ui j
~b!~P,P0!5

1

8pm~b!~12n~b!!
F ~324n!d i j lnS 1

r D1r ,i r , j G ,
Ti j

~b!~P,P0!52
1

4p~12n~b!!

1

r
$r ,n@~122n~b!!d i j 12r ,i r , j #

1~122n~b!!~r , jni2r ,inj !%, (2)

wherem (b) is the shear modulus andn (b) the Poisson’s ratio for
the three different domains, respectively;r the distance from the
source pointP0 to the field pointP; ni the directional cosines o
the outward normaln; and (),i5]()/]xi with xi being the coor-
dinates of the field pointP.

In Eq. ~1! the integral containing theUi j
(b)(P,P0) kernel is

weakly singular, while the one containingTi j
(b)(P,P0) is strongly

singular and must be interpreted in the Cauchy principal va
sense. There is a vast body of literature on how to deal with
Cauchy principle value integrals in the boundary element met
formulations for bulky-shaped structures, either analytically
some special cases or numerically for other cases. An alterna
approach is to transform the boundary integral equation in
form of Eq.~1! into a weakly singular form by using some simp
solutions or integral identities for the fundamental soluti

Fig. 2 Two unit cell models of the fiber-interphase-matrix sys-
tem
Journal of Applied Mechanics
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~@32,33#!, before doing any numerical work. However, when t
structure becomes thin in shape, such as the interphase show
Fig. 2, both integrals in Eq.~1! are difficult to deal with when the
source point is on one side and the integration is carried out on
other side of the thin structure. These types of integrals are ca
nearly singular integrals since the distancer is very small in this
case but is still not zero. Most techniques for dealing with t
singular integrals do not work for nearly singular integrals a
special attention is needed. Recently, several techniques, inc
ing singularity subtractions, analytical integration, and nonlin
coordinate transformations have been developed for the t
dimensional elasticity boundary integral equation to calculate
nearly singular integrals arising in thin structures~@27#!. The com-
bination of these techniques is found to be extremely effective
efficient in computing the nearly singular integrals in the tw
dimensional boundary integral equation, no matter how close
source point is to the element of integration. Very accurate bou
ary element method results have been obtained using this
proach for thin structures, such as coatings on macroscale s
tures, with the coating thickness-to-length ratios in the micro
nanoscales and with a small number of boundary elements.
same approach in@27# is applied in this paper to compute th
nearly singular integrals arising in the modeling of the inte
phases.

Employing the boundary elements~line elements in two-
dimensional! on the boundary and interfacesS1 , S2 , andS3 , the
discretized equations of the three boundary integral equation
given in ~1! for the fiber, interphase, and matrix can be written
follows ~cf., e.g.,@17#!:

T1
~ f !u1

~ f !5U1
~ f !t1

~ f ! , ~in fiber domain! (3)

T1
~ i !u1

~ i !1T2
~ i !u2

~ i !5U1
~ i !t1

~ i !1U2
~ i !t2

~ i ! , ~in interphase domain!
(4)

T2
~m!u2

~m!1T3
~m!u3

~m!5U2
~m!t2

~m!1U3
~m!t3

~m! , ~in matrix domain!
(5)

in which U and T are matrices generated from theUi j
(b)(P,P0)

and Ti j
(b)(P,P0) kernels, respectively;u and t the displacement

and traction vectors, respectively. The superscripts indicate
material domain, while the subscripts indicate the interface
boundary (S1 , S2 , or S3) on which the integration is performed

Assuming perfect bonding at the fiber/interphase (S1) and
interphase/matrix (S2) interfaces, one can write the following in
terface conditions:

On S1 : u1
~ f !5u1

~ i ![u1 , ~continuity! (6)

t1
~ f !52t1

~ i ![t1 , ~equilibrium! (7)

On S2 : u2
~ i !5u2

~m![u2 , ~continuity! (8)

t2
~ i !52t2

~m![t2 , ~equilibrium! (9)

whereu1 , t1 , u2 , andt2 are defined as the interface displaceme
or traction vectors.

Applying the interface conditions~6!–~9! in Eqs. ~3!–~5!, one
obtains the following system:

F T1
~ f ! 0 0

T1
~ i ! T2

~ i ! 0

0 T2
~m! T3

~m!
G H u1

u2

u3

J 5F U1
~ f ! 0 0

2U1
~ i ! U2

~ i ! 0

0 2U2
~m! U3

~m!
G H t1

t2

t3

J ,

whereu3[u3
(m) and t3[t3

(m) have been used for simplicity. Rea
ranging the columns and moving all the~unknown! interface vari-
ables to the left-hand side, one finally arrives at
MARCH 2000, Vol. 67 Õ 43



r

o

B
s
n

o

n

t

dis-
do-
r-

-

-

the
nts

. In
btle
ex-
in
ent

s. In
e
to
wn
of

t
he
F T1
~ f ! 2U1

~ f ! 0 0 0

T1
~ i ! U1

~ i ! T2
~ i ! 2U2

~ i ! 0

0 0 T2
~m! U2

~m! T3
~m!
G 5

u1

t1

u2

t2

u3

6 5F 0
0

U3
~m!

G $t3%.

(10)

The last column in the matrix on the left-hand side and the ma
on the right-hand side may need to be rearranged again acco
to the boundary conditions specified onS3 .

Equation~10! is the global system of equations for the fibe
interphase-matrix model. The system has a banded matrix du
the multidomain nature of the problem. This system of equati
satisfies both the continuity and equilibrium conditions at the
terfaces explicitly, which is an advantage of the boundary elem
method approach over the finite element method in which only
continuity of displacement fields can be satisfied explicitly.
solving Eq.~10!, one can obtain the displacements and traction
the two interfaces and the boundary, and then calculate the i
face stresses based on the traction and displacement fields.

3 Two Unit Cell Models With the Interphase
Two unit cell models are used in this paper, namely, the c

centric cylinder model and the square model~see, e.g.,@12#! both
of which include the interphase~Fig. 2!. For the cylinder model,
analytical solutions are obtained for the displacement and st
fields, which can be employed to validate the boundary elem
method results. For the square model, many finite element
boundary element solutions are available in the literature for
effective elastic moduli which will be compared with the da
from the present boundary element method approach.

3.1 Concentric Cylinder Model. For the concentric cylin-
der model, Fig. 3, the response of the composite in thex-y plane
is axisymmetric if the applied load or displacement on the bou
ary S3 is also axisymmetric. Here it is assumed that a radial d
placementd is given onS3 ~at r 5c, Fig. 3!. Applying the theory
of elasticity for plane strain case in the polar coordinate sys
(r ,u), one can derive the following expressions for the rad
displacement and stress fields in the fiber, interphase, and ma
respectively~see the Appendix for details!:

u~ f !~r !5A~ f !r , ~0<r<a!

u~ i !~r !5A~ i !r 1
B~ i !

r
, ~a<r<b!

u~m!~r !5A~m!r 1
B~m!

r
, ~b<r<c! (11)

and

Fig. 3 Concentric cylindrical model
44 Õ Vol. 67, MARCH 2000
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s r
~ f !5su

~ f !5k~ f !A~ f !, ~0<r<a!

s r
~ i !5k~ i !FA~ i !2~122n~ i !!

B~ i !

r 2 G ,
su

~ i !5k~ i !FA~ i !1~122n~ i !!
B~ i !

r 2 G , ~a<r<b! (12)

s r
~m!5k~m!FA~m!2~122n~m!!

B~m!

r 2 G ,
su

~m!5k~m!FA~m!1~122n~m!!
B~m!

r 2 G , ~b<r<c!

where the constantsA(b), B(b), andk(b) (b5 f , i andm! are given
in the Appendix.

From the above expressions, one can compute the radial
placement and stress components at any point in the three
mains within the cylinder model for any small values of the inte
phase thickness.

3.2 Square Model. As shown in Fig. 4, the boundary con
ditions for the square model undertensionare

along AB: ux5d, ty50;

along BC: uy52C0 , tx50;

along CD: ux50, ty50, (13)

except at y50 where ux5uy50;

along DA: uy5C0 , tx50;

whereux , uy , tx , andty are the displacement and traction com
ponents, respectively;d the given displacement~Fig. 4!; and C0
an unknown constant. This unknown constant is meant to keep
edges BC and DA straight after the deformation. This represe
the constraint of the neighboring cells to the one under study
the literature, there are several ways in dealing with these su
boundary conditions along the top and bottom edges. For
ample, in @9# C0 is chosen as zero in one case and nonzero
another case. This is equivalent to another given displacem
condition besides the one imposed along the two vertical edge
@2# and recently in@21#, C0 is regarded as an unknown and th
condition *2L

L sydx50 along the top or bottom edges is used
provide the additional equation needed for solving this unkno
together with other unknown boundary variables. Discretization
this simple equation using shape functions is needed. In@19#,
however, this straight-line constraint is totally ignored, andtx
5ty50 ~traction-free conditions! are assumed. It is found tha
results for the unit cell model is not very sensitive to all t
different techniques mentioned above. In this paper,C0 is as-

Fig. 4 Square model under tension
Transactions of the ASME
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sumed to be unknown, but a different approach is employed
enforce the straight-line condition, instead of solving for this u
known constant with additional equations. Here the pena
method used in the finite element method for multipoint co
straints ~see, e.g.,@34#! is introduced in the boundary eleme
method equations to enforce that all the nodes along edges
and DA remain along straight lines after deformation. To imp
ment this penalty method in the boundary element method e
tions a very large number~penalty! with a proper sign is placed in
the locations in the matrix corresponding to the related displa
ment components. Then these displacement components will
the same value after the system of equations is solved. It is
easy to implement this penalty method in the boundary elem
method equations and no additional equation is needed.

Once stresses on the boundary are determined, the averag
sile stress along the edge AB is evaluated by

sx5
1

2L E2L

L

sx~L,y!dy. (14)

The effective Young’s modulus in the transverse direction a
under theplane-straincondition is thus determined by

Ex85
sx

«x

5
*2L

L sx~L,y!dy

d
, (15)

whereex5d/2L is the average tensile strain. The effective Po
son’s ratio under theplane-straincondition can be determined b

vxy8 52
«y

«x
, (16)

in which «y is the average strain in they-direction.
For the square model undershear deformation, Fig. 5, the

boundary conditions are

Fig. 5 Square model under shear deformation
Journal of Applied Mechanics
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along AB: ux50, uy5h;

along BC: ux50, ty50;

along CD: ux50, uy50;

along DA: ux50, ty50. (17)

The average shear stress along edge AB can be evaluated b

txy5
1

2L E2L

L

txy~L,y!dy, (18)

and the effective shear modulus in the transverse plane and u
the plane-straincondition is

Gxy8 5
txy

gxy
5

*2L
L txy~L,y!dy

h
, (19)

wheregxy5h/2L is the average shear strain.
Finally, one recognizes that the material constantsEx8 , nxy8 , and

Gxy8 given in Eqs.~15!, ~16!, and ~19!, respectively, are deter
mined under theplane-straincondition which accounts for the
constraint in thez-direction («z50). These constants are relate
to the intrinsic material properties by the following relations~cf.,
e.g.,@35# and @21#!:

Ex5
112nxy8

~11nxy8 !2 Ex8 , nxy5
nxy8

11nxy8
, Gxy5Gxy8 , (20)

which are the effective Young’s modulus, Poisson’s ratio, a
shear modulus, respectively, in the transverse direction for
composite.

4 Numerical Examples

4.1 Cylinder Model. The cylinder model~Fig. 3! is studied
first to validate the developed boundary element method form
tion and the solution strategy, since for this idealized geometry
analytical solutions are available~see Eqs.~11!–~12! and the Ap-
pendix!. The specified radial displacement on the boundary~at r
5c) is d. The following material constants for a glass/epoxy co
posite are used:

for fiber: E~ f !572.4 GPa~10.53106 psi), n~ f !50.22;

for interphase: E~ i !536.2 GPa~5.253106 psi), n~ i !50.30;

for matrix: E~m!53.45 GPa~0.53106 psi), n~m!50.35;

where the Young’s modulus of the interphase has been take
half of that of the fiber; and the dimensions used are

a5c/2, b5a1h,

with h being the thickness of the interphase, which is varying
Quadratic line elements are employed in the discretization

two meshes are tested, one with 24 elements~eight on each circle!
and another one with 48 elements~16 on each circle!. Differences
Table 1 Results of the radial displacement u „Ã10À2d… for the cylinder
model
MARCH 2000, Vol. 67 Õ 45
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Table 2 Results of the radial stress s r„ÃE „m …dÕc … for the cylinder model
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in the results from the two meshes are less than five percent
the results from the refined mesh~48 elements! are reported. The
radial displacements and stresses at selected points~Fig. 3! are
given in Table 1 and Table 2, respectively. It is observed that
maximum errors of the displacement and stress using the de
oped boundary element method are less than 0.05 percent i
the cases with different thickness of the interphase. These re
demonstrate that the developed boundary element method
proach is extremely accurate and effective in modeling the in
phases with any small thickness, as has been confirmed in
context of single material problems~@27#!.

4.2 Square Model

(a) Calculation of Effective Young’s Modulus With Varyin
Interphase Property. First, the square model under a stretch
the x-direction is considered~Fig. 4!. The properties of the con
stituent materials considered are

for fiber: E~ f !584.0 GPa, n~ f !50.22;

for interphase: E~ i !54.0;12.0 GPa, n~ i !50.34;

for matrix: E~m!54.0 GPa, n~m!50.34;

and,a58.5mm, b5a1h, 2L521.31mm ~fiber volume fraction
Vf550 percent). Young’s modulus for the interphase is chang
in the range between 4.0 and 12.0 GPa. The effect of the va
tions in the interphase material on the effective Young’s modu
of the composite is of the primary interest here. A total of
quadratic boundary elements are used, with 16 elements on
of the two circular interfaces and 32 elements on the outer bou
ary. Table 3 shows the effective Young’s moduli obtained fro
the boundary element method stress data using Eq.~15! and then
Eq. ~20!, and compared with those from the finite element meth
quarter model with 3518 linear triangular elements in@9# for the
thicknessh51.0mm. The boundary element method results a
slightly lower than those from the finite element method da
This may be caused by the use of linear triangular element in
finite element method which tends to overestimate the stiffnes
the structure. It is noticed that the different boundary conditio
along the top and bottom edges of the square model~free-traction
or straight-line conditions! have very little influences on the fina
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effective Young’s modulus. It should also be pointed out that
the finite element results in@9#, the only thickness considered i
h51.0mm which is relatively large compared with the fiber r
dius (a58.5mm). If a smaller thickness were used in the fini
element model, a much larger number of elements would h
been needed in order to avoid large aspect ratios in the fi
element mesh, as demonstrated in a similar study~see@27#!. How-
ever, for the boundary element method employed here, the s
number of elements can be used no matter how small the th
ness of the interphase is.

(b) Effect of the Interphase Thickness.Figure 6 shows the
effect of different interphase thicknesses to the effective Youn
modulus. In order to compare with the data in@21# and @19#, the
same material constants as listed in Section 4.1~for the cylinder
model! are used. It is found that the effect of the thickness is
significant on the effective Young’s moduli when the fiber volum
fraction Vf is small ~50 percent and less!, while significant effect
is observed whenVf is large~70 percent!. This may be due to the
fact that the effective elastic moduli are obtained by evaluating
average stress on the outer boundary of the matrix~edge AB, Fig.
4!. When the fiber volume fraction is small, the interphase is aw
from the matrix outer boundary and thus changing the interph
thickness does not considerably affect the stresses on the
AB. This will change if the fiber volume fraction is large~e.g., 70
percent! when the interphase becomes closer to the outer bou
ary of the matrix. It should also be pointed out that when the fi
volume fraction is large, it will present additional difficulty in th
modeling using the finite element method and earlier bound
element method formulation, because of the thinness of the ma
region. However, for the current boundary element method
mulation, this additional thinness of the matrix domain does
present any problem.

(c) Effect of Nonuniform Thickness.Next, the effect of non-
uniform thickness of the interphase on the interface stresses
effective elastic moduli is investigated. The starting model~Fig.
4! is the same as the one used for Table 3 with the mate
constants listed at the beginning of this subsection~with E( i )

542.0 GPa). To form the nonuniform distribution of the inte
phase, the outer boundary of the interphase is shifted to the
Table 3 Effective transverse elastic modulus „GPa… using the square unit cell
model
Transactions of the ASME



Fig. 6 Influence of the thickness on the effective Young’s modulus
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slightly ~see Fig. 7!. When the offsetD is close toh ~the initial,
uniform thickness!, the change of the interphase thickness in
x-direction is the largest (D50 corresponds to the uniform inter
phase!. The interface normal stresses at points 1 and 2~Fig. 7!,
normalized by those in the uniform case, are plotted in Fig. 8. D
to the misalignment of the fiber and interphase centers, the in

Fig. 7 The interphase with nonuniform thickness
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he
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face stress at point 1~which is the maximum interface norma
stress! increases for about 50 percent while the stress at poin
~the second largest interface stress! increases for about 30 percen
However, the effect of the nonuniform thickness of the interph
on the effective Young’s modulus is found to be less than th
percent. This, again, is largely due to the averaging process on
edge AB which is away from the interphase.

(d) Calculation of Shear Modulus With Varying Interpha
Thickness. Finally, the effective shear modulus in the transver
direction is calculated using the square unit cell model shown
Fig. 5. The boundary conditions applied are listed in~17! and Eqs.
~19!–~20! are used to compute the shear modulus. In order
compare the results with those in the literature, the following m
terials properties for a Kevlar/epoxy composite are used in
current boundary element method calculation:

for fiber: E~ f !57.0 GPa, n~ f !50.30;

for interphase: E~ i !55.0 GPa, n~ i !50.35;

for matrix: E~m!53.0 GPa, n~m!50.35.

Table 4 shows the results of the effective shear modulus by
current boundary element method with and without the prese
of the interphase. The data without the interphase (h50) agrees
very well with the results from the finite element method~@6#! and
Fig. 8 Effect of nonuniform thickness on the interface stress
MARCH 2000, Vol. 67 Õ 47
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the other boundary element method~@21#! both of which used the
perfect bonding condition and did not model the interphase. W
the increase of the thickness of the interphase, the shear mod
deviates from the perfect bonding case slightly, with the larg
change~about eight percent! occurring at the fiber volume fraction
Vf50.6, for the interphase property considered. WhenVf50.7
and h50.1a, the interphase will be outside the boundary of t
unit cell. This is not permissible and thus no boundary elem
method data are generated.

5 Conclusion
The advanced boundary element method formulation with th

body capabilities for elastostatic problems has been extende
multidomain problems and applied to model the interphase
fiber-reinforced composites under transverse loading. Comp
with the current spring-like models for the interphases in
boundary element method literature, this new interphase mod
based on the elasticity theory and thus provides a more accu
account of the interphases in fiber-reinforced composites wi
the linear theory. The developed boundary element code using
object-oriented programming language~C11! can be utilized in
analyzing the micromechanical properties of fiber-reinforced co
posites with the presence of interphases of any arbitrarily sm
thickness~uniform or nonuniform!. The approach is very accurat
as is validated using the concentric cylinder model for which
analytical solution has been derived. It is also very efficient
only a small number~less than one hundred! of boundary ele-
ments are needed to model awhole unit cell for the boundary
element analysis, compared with the large number~more than a
few thousands! of finite elements often needed for aquarter
model in the finite element method analysis. The approach
vides a greater flexibility in parametric study of the interphases
well, since the geometry, size, or material property of the int
phases can be changed very easily to investigate their effect o
micromechanical behaviors of the fiber-reinforced composites

Numerical studies in this paper show that the thickness, n
uniform distribution, and material property of the interphase c
have significant influences on the micromechanical behavior
the composites, such as effective elastic moduli and interf
stresses, especially when the fiber volume fractions are la
These observations are consistent with the findings in both
finite element method and boundary element method literature
this subject.

Considerations of interface cracks in the present boundary
ment model and extension of the boundary element code to t
dimensions to study the fiber-pullout failure modes will be int
esting and challenging next steps, both of which will further de
onstrate the robustness of the developed boundary elem
method approach as compared with the finite element metho
previous boundary element method approaches to the micro
chanical analysis of fiber-reinforced composites.

Table 4 Effective transverse shear modulus „GPA…
48 Õ Vol. 67, MARCH 2000
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Appendix

Analytical Solution for the Concentric Cylinder Model.
Here the analytical solution for the concentric cylinder mod
used to validate the boundary element method results is deri
For the concentric cylinders, the response of the composit
axisymmetric. Thus the equilibrium equation for two-dimension
elasticity in the polar coordinate system reduces to

ds r

dr
1

1

r
~s r2su!50, (A1)

where the stress components (s r ,su) are functions ofr only, and
the shearing stresst ru is zero. The stress-strain relations for th
plane-strain case are

s r5
E

~11n!~122n!
@~12n!« r1n«u#,

su5
E

~11n!~122n!
@~12n!«u1n« r #. (A2)

The strain-displacement relations are

«u5
u

r
, « r5

du

dr
. (A3)

Equations~A1!, ~A2!, and~A3! lead to the following equation for
the radial displacement:

d2u

dr2 1
1

r

du

dr
2

u

r 2 50, (A4)

whereu is the displacement in the radial direction.
The solution of the above equation has the following form:

u~r !5Ar1
B

r
, (A5)

in which A andB are determined by the applied boundary con
tions. The above form of the solution is the general form wh
valid for the fiber, interphase, and matrix. Thus for the three
mains, one has

u~ f !~r !5A~ f !r , ~assumeB~ f !50! ~0<r<a!

u~ i !~r !5A~ i !r 1
B~ i !

r
, ~a<r<b!

u~m!~r !5A~m!r 1
B~m!

r
, ~b<r<c!. (A6)

If B( f )Þ0, then atr 50, the displacementu( f )(0) will approach
infinity, which is not warranted.

Boundary and interface conditions are

at r 5c, u~m!~c!5d,

at r 5b, u~ i !~b!5u~m!~b!, (A7)

s r
~ i !~b!5s r

~m!~b!,

at r 5a, u~ i !~a!5u~ f !~a!,

s r
~ i !~a!5s r

~ f !~a!,

whered is the displacement applied on the outer boundary of
matrix.
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Applying the relations~A2!, ~A3!, and ~A6! in the above five
equations in~A7! from the boundary and interface conditions, o
can find the five constants to be

A~m!5

cdF ~122n~m!!2
k~ i !

k~m! M G
b21~122n~m!!c21

k~ i !

k~m! ~b22c2!M

,

B~m!5cd2A~m!c2,

and k~ f !5
E~ f !

~11n~ f !!~122n~ f !!
, k~ i !5

E~ i !

~11n~ i !!~122n~ i !!
,

k~m!5
E~m!

~11n~m!!~122n~m!!
,

M5
a2~122n~ i !!~k~ f !2k~ i !!1b2@k~ f !1~122n~ i !!k~ i !#

a2~k~ f !2k~ i !!2b2@k~ f !1~122n~ i !!k~ i !#
,

B~ i !5
~b22c2!A~m!1cd

12
b2

a2

k~ f !1k~ i !~122n~ i !!

k~ f !2k~ i !

,

A~ i !52
B~ i !

a2

k~ f !1~122n~ i !!k~ i !

k~ f !2k~ i ! ,

A~ f !5A~ i !1
B~ i !

a2 . (A8)

These results, together with Eqs.~11!–~12!, provide the analytical
solutions of the displacement and stress for the cylinder mo
Note that the solution is valid for any arbitrarily small thickness
the interphase and thus is very useful in validating the bound
element solutions. This solution can also be applied to other
ered structures of cylindrical shapes, such as cables.
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Analysis of a Sector Crack in a
Three-Dimensional Voronoi
Polycrystal With Microstructural
Stresses
The Mode I stress intensity factor of a sector crack in a three-dimensional Vor
polycrystal is computed by the body force technique. Microstructural stresses ar
from the elastic anisotropy of grains (cubic and hexagonal) and the random grain o
tations are estimated using the Eshelby procedure and incorporated in the stress int
factor calculations. For metallic polycrystals, it is shown that the stress intensity fa
depends significantly on the elastic anisotropy ratio, the grain orientations, the rem
stress state, and the microstructural stresses.@S0021-8936~00!03401-2#
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1 Introduction
Microstructural stress distributions can be generated in a p

crystalline aggregate due to the elastic anisotropy or thermal
pansion anisotropy mismatch between the constituent grains.
instance, cooling from the processing temperature gives ris
residual microstructural stresses in ceramic materials due to
mal expansion anisotropy and can result in spontaneous g
boundary cracks~@1,2#!. Grain boundary misorientation, whic
gives rise to stress concentrations due to the different orientat
of elastically anisotropic grain neighbors, is also known to ha
an influence on corrosion~@3#! and intergranular stress corrosio
cracking of metallic alloys~@4,5#!.

There exists a large body of literature on estimating microstr
tural stresses due to thermal expansion and elastic anisotr
Evans @2# computed the thermal stresses in a two-dimensio
polycrystal of regular hexagonal grains by the procedure of c
ting, straining, and welding~@6#!. Assuming that the grains ar
elastically isotropic and thermally anisotropic, the complete str
distribution was shown to be logarithmically singular at the trip
junctions. Evans@7# simplified these calculations by extractin
from the complete stress distribution the constant compon
which is dominant over the major portion of the grain bounda
In this latter work, the stress singularity was neglected in
calculations of the stress intensity factors of the triple junct
cracks. Subsequently, Laws and Lee@8# obtained the microstruc
tural stress field in a polycrystal of regular hexagons using
complex potentials of elasticity and on the same assumption
thermally anisotropic but elastically isotropic grains. They show
that about 200 grains surrounding a point of interest are neces
for accurate estimation of the stress at that point. They a
showed that the stress intensity factors of grain boundary cra
are sensitive to the orientations of the surrounding grains.

Investigations of microcracking in ceramics using a polycrys
of regular hexagons while taking into account elastic and ther
expansion anisotropy were pursued by Tvergaard and Hutchin
@9# using the finite element method. Planar orthotropic and cu
crystals were considered. The order of the stress singularity a
triple junctions, taken to be of the power-law type, was compu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
21, 1999; final revision, Sept. 15, 1999. Associate Technical Editor: M. Ortiz. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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as a function of grain orientation and the degree of elastic ani
ropy. For cubic crystals, the degree of elastic anisotropy is m
sured by R5(C1212C44)/C11 and Q52C44/C12, where
Ci j ( i , j 51,2, . . . ,6) are theelastic constants of a cubic crysta
For Q51, theJ-integral associated with a triple junction crack
a material under uniaxial plane strain was shown to be less
the value for the isotropic case ifR.1 and more than it ifR
,1. Subsequently, the probability density functions of the
sidual stresses in ceramic materials due to elastic anisotropy,
mal anisotropy, and microcracking were shown to be Gauss
~@10#!. The computations were carried out by the finite elem
method on planar hexagonal grains. It was also shown that
Gaussian nature of the distributions and the magnitude of the
sidual stresses were not affected by random distortions of
hexagonal grains.

A two-dimensional polycrystal modeled by the Poisso
Voronoi ~or simply Voronoi! tessellation was used by Wu and N
@11# to investigate microstructural stresses in polycrystalline
ice with hexagonal structure~S2 refers to a type of ice withc-axes
randomly distributed and confined within planes perpendicula
the growth direction!. Using the Eshelby procedure, they show
that the microstructural stresses due to elastic or thermal an
ropy are Gaussian with zero means. Also, the standard devia
are dependent on the components of the microstructural stress
on positions on the grain boundary. Furthermore, stable cra
nucleated under multiple dislocation pileups have a positiv
skewed length probability density function, i.e., the mode is l
than the mean. Subsequently, Wu and He@12# studied crack sta-
tistics under the same mechanism in polycrystalline alumin
using a two-dimensional Voronoi polycrystal, but without cons
ering the microstructural stresses. The focus in that paper is
interaction between the pile ups of grain boundary dislocations
intersecting grain boundaries and the nucleating crack. This w
accounts for redistribution of stress acting on the site of the cr
prior to its formation. It was found that the probability densi
functions of the stable and unstable crack lengths are positi
and negatively skewed, respectively.

In several recent works, microstructural stresses due to ela
anisotropy in three-dimensional Voronoi polycrystals were co
puted by the finite element method. For instance, Kozaczek e
@13# analyzed the distributions of microstructural stress measu
i.e., the von Mises stress and the hydrostatic stress, as a fun
of grain orientations, microstructure, and loading conditions.
to 500 three-dimensional grains were analyzed. The grain sh
size, and orientation were found to have a more pronounced e
on the distributions than the loading conditions. The hydrosta
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stress showed greater dependence on the disorientation angle
the von Mises stress. Also, Kumar et al.@14# studied the depen
dence of several micrcstructural stress measures on the e
anisotropy of fourteen cubic materials, as characterized by
Zener anisotropy parameterA52C44/(C112C12). Their calcula-
tions were based on the use of the finite element method o
three-dimensional polycrystal with 200 grains. For 0.25,A,9,
stress measures such as the average principal stress and the
age von Mises stress were shown to be dependent onA with a
minimum just beyondA51. The largest values of the averag
maximum principal stress and the average maximum von M
stress occur at the largest value ofA considered, and are abou
1.05 and 1.30 times the applied stress, respectively.

Investigations of a crack within a three-dimensional polycrys
with microstructural stresses due to elastic or thermal expan
anisotropy are limited. Ghahremani and Hutchinson@15# investi-
gated the exponent of the stress singularity at conical wedge
tices with consideration of elastic as well as thermal expans
anisotropy. Super singularities with exponents greater than
classical crack singularity of 1/2 were found. They also stud
the energy release rate of an axisymmetric conical crack,
concluded that the nucleated crack is highly stable and its siz
typically a small fraction of the grain diameter. In this paper, t
effects of elastic anisotropy and random grain orientation o
planar crack in a random and topologically accurate polycry
model are analyzed. A three-dimensional Voronoi polycrysta
1139 grains is constructed, out of which the central 300 grains
used to determine the microstructural stress distribution at the
of an interface crack. The microstructural stresses are estim
by the Eshelby procedure and used in the calculation of the M
I stress intensity factor of the crack. The crack is assumed to
sector of a penny-shaped crack, i.e., a crack bounded by
edges of a grain face and a circular front. The body force met
is used to compute the stress intensity factor. The dependen
the stress intensity factor on the elastic anisotropy, the grain
entations, the remote stress state, and the microstructural str
is investigated for metallic materials with cubic and hexago
structures.

The paper is organized as follows. In Section 2, the algorit
for generating a three-dimensional Voronoi polycrystal is o
lined. In Section 3, the method of estimating the microstructu
stress is described. In Section 4, the fundamental equations
three-dimensional sector crack modeled by body force dens
are summarized. The numerical results are presented in Secti
and the conclusions are given in Section 6.

2 Generation of Three-Dimensional Voronoi Polycrys-
tal

The three-dimensional Voronoi tessellation is topologica
equivalent to the microstructure of real metals and ceramics. It
the following main characteristics: All grain nuclei appear at t
same instant of time at random spatial positions which rem
fixed in time, and the growth rate of each grain is the same in
directions. Voronoi grains satisfy the following basic proper
All points closer to a given nucleus belong to the grain with th
nucleus. Points on grain faces, edges, and vertices are shar
two, three, and four grains, respectively. The grains are con
polyhedral cells with planar faces. Kumar et al.@16# have devel-
oped an algorithm for generating a three-dimensional Voro
polycrystal containing several hundred thousand grains. In
paper, a simple algorithm based on the basic property is de
oped. It can be used to produce several thousand grains with
The algorithm is based on finding the vertices of a grain ass
ated with a nucleus, from which the faces and then the edges
determined by post-processing. The algorithm is outlined in
following:

1 Define a unit cube containingM randomly distributed nuclei.
The nuclei positions are assigned by a random number gener
Journal of Applied Mechanics
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2 Select theith nucleusNi , i 51,2, . . . ,M .
3 Select a spherical regionSof radiusr aroundNi . Denote by

Mi the number of nuclei withinS.
4 Within S, draw a straight line betweenNi and Nj , j

51,2, . . . ,Mi ; j Þ i . This yields a set ofMi21 lines.
5 Construct theMi21 planes perpendicular to and which b

sect the above lines.
6 Determine the coordinates of theMi21C3 intersection points

I k , k51,2, . . . ,Mi21C3 of groups of three planes generated fro
Step 5.

7 Compare the distancedik betweenNi and I k with all other
distancesdjk betweenNj and I k in S. If dik<djk ; j Þ i , I k is a
vertex associated with theith nucleus and the three associat
grain planes are infinite planes containing the grain faces.
vertices and grain planes for theith grain are determined in this
manner. LetV andF be the number of vertices and distinct fac
of the ith grain, respectively.

8 Repeat Steps 3–7 for differentNi ’s so that vertices and
planes of allM grains are determined.

9 An infinite grain plane becomes a finite grain face when
limited by the vertices lying on it. It is a simple matter to dete
mine which of those previously found vertices of theith grain
satisfy the equation of a specific grain plane. In this manner, aF
grain faces are exactly determined.

10 To determine if two vertices of a grain face should be co
nected to from a grain edge, check if these two vertices belon
another face of the same grain. If they do, they must connec
form an edge and these two faces must share this edge. In
manner, all edges of a particular grain face are exactly de
mined. Avoiding repeat counting, the total number of edges fo
given grain can then be determined and denoted byE.

For each grain, the topological constraints given by Eule
relationV1F2E52 and the relationV52F24 ~@17#! are veri-
fied. Grains that do not satisfy these relations are typically th
lying at the edges of the cube. Occasionally, one or two grain
the central region of the cube may not satisfy these relations
to inaccuracies in comparing distances. This is resolved by re
sitioning the associated nuclei randomly within a small rad
around their original locations. Also, the purpose of the spherS
with radius r is to limit the number of searches around anyith
nucleus to within reasonable computation times. A value or
50.2 is found to be sufficient for generating 1139 complete gra
from a total of 1500 nuclei.

Figure 1 shows a typical grain generated by the algorithm. T
number of faces, vertices and edges is given byF517, V530,
andE545. Based on the sample of 1139 grains, the probability
the number of faces of a grain is shown in Fig. 2~a!. The mean is
14.9043, compared to the value of 15.5355 obtained by a sim
tion study of 358,000 grains~@16#!. The maximum number of
faces is 27 and the minimum is 7. By the topological constrain
the mean number of vertices and mean number of edges of a g
are 25.8086 and 38.7129, respectively, compared to the value
27.0710 and 40.6065~based onF515.5355!. Furthermore, the

Fig. 1 A typical Voronoi grain generated by the algorithm de-
scribed in Section 2
MARCH 2000, Vol. 67 Õ 51
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probability of the number of edges of a grain face is shown in F
2~b!. The mean is 5.195, compared to the value of 5.226~@16#!.
The maximum number of edges of a grain face is 12 and
minimum is three. These comparisons show that for the limi
sample size simulated in this study, the major statistical cha
teristics of a theoretical three-dimensional Voronoi tessellation
essentially reproduced.

3 Microstructural Stress Estimation
The microstructural stress is estimated on the assumption

the elastically anisotropic grains are randomly oriented, i.e.,
polycrystal has no texture. Thus, the polycrystal is globally i
tropic and all equations for the polycrystal are written using lin
isotropic elasticity. Anisotropy elasticity is only used for ind
vidual grains.

The Eshelby procedure of cutting, straining and welding~@6#! is
used to estimate the microstructural stress, as was also use
Evans@2# and Wu and Niu@11#. Assume that a remote stresss`

is applied to a polycrystal and the stress state at an interior poi
of interest. Figure 3~a! shows a group of grains~generated by the
algorithm! surrounding the point. A certain number (mt) of these
grains are removed from the polycrystal~cutting! and strained
freely under the remote stress~straining!, see Fig. 3~b!. The de-
formation«m in the grainsm51,2,3, . . . ,mt is therefore

«m5Sms`, (1)

whereSm is the six-by-six compliance matrix for themth grain in
the global coordinate systemX2Y2Z. The deformation in the
mth grain differs from the average deformation in the polycrys
of complianceS̃ by

Fig. 2 The probability distributions of „a… the number of faces
of a grain and „b… the number of edges of a grain face in a
three-dimensional Voronoi tessellation
52 Õ Vol. 67, MARCH 2000
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D«m5~S̃2Sm!s`. (2)

The corresponding misfit stresss om is

s om5CmD«m5~CmS̃2I !s`, (3)

whereI is the six-by-six identity matrix andCm is the six-by-six
stiffness matrix of themth grain. Each separated grain is the
subjected to the additional strainD«m so that it has the same
average strain of the polycrystal. This is done by applying tr
tions Tmn on the grain facesn51,2,3, . . . ,nt of the mth grain:

Tmn5s om
•nmn, (4)

wherenmn is the unit normal to thenth face of themth grain. In
the last step, all grains are placed back in the polycrystal and
surface tractions are removed by the application of body for
equal in magnitude but opposite in direction toTmn, see Fig. 3~c!.
The body forces2Tmn induce additional stressess r in the poly-
crystal. The total stress at the point is thus given by

s t5s`1s̃5s`1S s om1 (
m51

mt

(
n51

nt

s r D . (5)

The term within the parentheses is the microstructural stress̃
due to elastic anisotropy.

The microstructural stress averaged over space yields a
mean so that̂s t&5^s`&. This has been shown numerically b
Wu and Niu@11# for a two-dimensional polycrystal, in whichs̃ at
all positions of the same type is found to be normally distribu
with zero mean. The positions of the same type refer to, for
stance, midpoints of all grain boundaries in the sample, or po
at distances equal to a thousandth of the grain boundary len
from the triple junctions. This latter result also suggests that
stress singularities at triple junctions can be tensile or comp
sive, or that they do not exist.

To computes r , it is noted that the stress components in t
cylindrical frame r 2u2z due to a point loadP along the
z-direction in an infinite isotropic medium are~@18#!

s r5
P

8p~12n!
@~122n!z~r 21z2!23/223r 2z~r 21z2!25/2#,

(6)

su5
P

8p~12n!
~122n!z~r 21z2!23/2, (7)

sz52
P

8p~12n!
@~122n!z~r 21z2!23/213z3~r 21z2!25/2#,

(8)

s rz52
P

8p~12n!
@~122n!z~r 21z2!23/213rz2~r 21z2!25/2#,

(9)

wheren is the Poisson’s ratio. Because of axisymmetric load
about thez-axis, the above are the nonvanishing stress com
nents. To perform integration associated with body forces ac
over the entire grain face, it is expedient to work with a loc
Cartesian framex82y82z8 with z8 normal to the grain face~Fig.
4!. First, consider the case whereP is normal to the grain face. In
the local frame, letP5sNdA act at the position (p,q,0) parallel
to z8, wheredA is the elemental area over whichsN ~defined
later! acts. Suppose the stress components at another p
M (x8,y8,z8) are desired~see Fig. 4~a!!. Then, it is straightfor-
ward to show that the stress components in the local frame a

sx85s r cos2 u1su sin2 u, (10)

sy85s r sin2 u1su cos2 u, (11)

sz85sz (12)
Transactions of the ASME
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Fig. 3 The Eshelby procedure of „a… cutting, „b… straining, and „c… welding
for estimating microstructural stresses in a polycrystal
me

ined
sx8y85~s r2su!sinu cosu, (13)

sx8z85s rz cosu, (14)

sy8z85s rz sinu, (15)

Fig. 4 Point forces P acting on a grain face: „a… P is normal to
the grain face, „b… P is tangential to the grain face
anics
where the cylindrical components are given in Eqs.~6!–~9!. Also,

z5z8,r 25~x82p!21~y82q!2, (16)

sinu5
y82q

A~x82p!21~y82q!2
, cosu5

x82p

A~x82p!21~y82q!2
.

(17)

Next, consider the case where the body forceP5sTdA is tangen-
tial to the grain face, see Fig. 4~b!. The stresssT is defined later.
In this case, letx8 be perpendicular to the grain face andP be
alongz8. Also, ther-axis is now in thex82y8 plane. In the local
cylindrical frame, the stress components atM (x8,y8,z8) due toP
is still given by Eqs.~6!–~9! but with z82q replacingz and r 2

given by

r 25x821~y82p!2. (18)

In the x82y82z8 system, the stress components take the sa
form as Eqs.~10!–~15!, except that sinu and cosu are now given
by

sinu5
y82p

Ax821~y82p!2
, cosu5

x8

Ax821~y82p!2
. (19)

In the global frameX2Y2Z, which is fixed in position and ori-
entation in the polycrystal, the stress components can be obta
MARCH 2000, Vol. 67 Õ 53



e
-

o

o
n

h
n

a

b
c

d

to
ver

t a
the

as-
at
tri-
ltant

ber

ere

on

s

from the components in the local framesx82y82z8 by transfor-
mation using the direction cosines between the local axes of F
4~a! and 4~b! and the global axes.

In the above equations,sN and sT are the magnitudes of th
normal and traction vectorss N andsT determined from the nega
tive of the tractionTmn of Eq. ~4!, i.e.,

s N52~nmn
^ nmn!Tmn, sT52~ I2nmn

^ nmn!Tmn. (20)

The direction of sT determines the direction of the loca
z8-axis in Fig. 4~b!. To obtain the stress s r8
5$sx8

r ,sy8
r ,sz8

r ,sy8z8
r ,sz8x8

r ,sx8y8
r %T ~T is the transpose! in the

polycrystal due tosN andsT over a grain face, the stress comp
nents must be integrated over the polygonal faceD f , i.e.,

s r8~x8,y8,z8!5E
D f

s8~x8,y8,z8,p,q!dA, (21)

where the integrands85$sx8 ,sy8 ,sz8 ,sy8z8 ,sz8x8 ,sx8y8%
T is

the stress due to eithersN or sT ~see Eqs.~10!–~15!!. The above
area integral is computed numerically by Gauss quadrature.

4 Mode I Stress Intensity Factor of a Sector Crack
It is assumed that the crack has the shape of a sector

penny-shaped crack and is embedded between two grains o
interface. Only the Mode I stress intensity factor is considered
is calculated by the body force technique~@19,20#!, which is out-
lined in the following. The crack is interfacial, and although t
stress intensity factor of an interfacial penny-shaped crack ca
calculated by using a bimaterial model~@21#!, theoretical tech-
niques for treating a sector crack in a multigrain ensemble are
presently available. Consequently, it is assumed that the se
crack exists in an isotropic polycrystal and the anisotropy effe
are incorporated through microstructural stresses superimpose
the remote loading.

Define a Cartesian coordinate systemx2y2z having thex and
y-axes in the plane of the crack. The crack problem is then tre
as the problem of an uncracked solid subjected to remote
microstructural stresses in addition to certain body force distri
tions over the site where the crack is to form. The body for
consist of the force doublet with densityf zz(j,h) and in-plane
forces with densitiesf x(j,h) and f y(j,h) such that

f x~j,h!52
n

12n

] f zz~j,h!

]j
, f y~j,h!52

n

12n

] f zz~j,h!

]h
,

(22)

where j and h are the coordinates of the location of the bo
forces~see Fig. 5~a!!. It can be shown that the normal stresssz

B on
the crack face due to the body forces is given by the area inte
54 Õ Vol. 67, MARCH 2000
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B~x,y,0!5

H

2p F E
Dc

S 1

r 1
3 1

6z2

r 1
5 2

15z4

r 1
7 D f zz~j,h!dAG

z→0

,

(23)

where

r 15@~x2j!21~y2h!21z2#1/2, H5
122n

4~12n!2 , (24)

andDc is the region of the crack. The crack region is divided in
triangular elements, and the density of the body force doublet o
the elements is assumed to be

f zz~j,h!5
W~j,h!

H
A2c«2«2, (25)

whereW(j,h) is a weight function,c is a specific length of the
crack, and« is the shortest distance from the point~j,h! to the
crack front. The weightsWjk at thekth vertex~nodal point! of the
jth triangle are taken as unknown. The value of the weight a
point inside each element is assumed to be a linear function of
coordinates of the three vertices of the element

W~j,h!5cjj1djh1ej , (26)

wherecj , dj , andej can be expressed in terms ofWjk and the
coordinates of the three vertices.

On the crack surface, it is required that the resultant force
sociated withsz

B(x,y,0) in each subregion should compensate th
due to the remote and microstructural stresses. If the original
angular elements are taken as the subregions for these resu
force conditions, the number of equations differs from the num
of unknowns. Consequently, polygonal subregionsDp are formed
by connecting the centroids of the triangular elements and wh
necessary, the midpoints of the crack front~see Fig. 5~b!!. Assum-
ing that the crack is traction-free, the resultant force conditi
over Dp is then given by

Pz1E
Dp

sz
t ~x,y!dA50, (27)

where the integral represents thez-component of the total stres
~remote and microstructural, see Eq.~5!! acting overDp , andPz
is the resultant force overDp due to the body forces
Fig. 5 „a… Body force doublet of density f zz and body forces of densities f x
and f y acting at the point „j,h,0… within the crack plane. „b… Triangular finite
elements and polygonal regions within crack used to obtain the resultant
force boundary conditions.
Transactions of the ASME
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Dp
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5
1

2p E
Dp

F E
Dc

S 1

r 1
3 1

6z2

r 1
5 2

15z4

r 1
7 D

3W~j,h!A2c«2«2dAG
z→0

dA. (28)

Equation ~28! is a quadruple integral containing the unknow
Wjk in the expression forW(j,h). Substituting Eqs.~5! and~28!
into Eq. ~27!, a system of algebraic equations is obtained cor
sponding to all the polygonal subregionsDp . For details, refer to
Isida et al.@20#. The Mode I stress intensity factor along an arb
trary point ~j,h! can be computed from the expression

K I5W~j,h!Apc, (29)

whereW(j,h) is the weight at this point. In this investigation,c is
chosen to be the radiusa of the sector crack.

By the superposition in Eq.~27!, the redistribution of the re-
mote and microstructural stress due to the formation of the cr
is taken into account. The stress intensity factor computed sh
be more accurate than that obtained by integrating the Gre
functions due to concentrated loads over the crack surface, s
the latter method assumes that the total stress acting on the s
the crack is unperturbed by the nucleating crack.

5 Numerical Results
A polycrystal containing 300 cubic or hexagonal grains is a

lyzed. A remote stresssZ
` is applied in the globalZ-direction. The

grain orientation is defined by the three Euler anglesu, f, andk,
which are assigned to each of the 300 grains by using a ran
number generator. Using standard notation, the three indepen
elastic constants of a cubic grain areC11, C12, andC44, while
the five independent constants of a hexagonal grain areC11, C12,
C13, C33, and C44. Assuming random grain orientations, th
Laméconstantsm andl for the polycrystal are given by

m5C442
2C441C122C11

5
,

l5C122
2C441C122C11

5
, (30)

for cubic materials and

m5
1

30
~7C1125C1212C33112C4424C13!,

l5
1

15
~C111C3315C1218C1324C44!, (31)

Table 1 „a… Cubic materials „C11 , C12 , C44 , m, and E are given
in GPa …

C11 C12 C44 n m E A

Cr 350 57.8 101 0.13 121 273.46 0.69
W 521 201 160 0.278 160 408.96 1
Al 108.2 61.3 28.5 0.347 26.5 71.39 1.21
Cu 168.4 121.4 75.4 0.324 54.6 144.58 3.2

„b … Hexagonal materials „C11 , C12 , C13 , C33 , C44 , m, and E are
given in GPa …

C11 C12 C13 C33 C44 n m E Ah

Co 307 165 103 358.5 75.3 0.307 84.42 220.67 0.
Cd 121 48.1 44.2 51.3 18.5 0.368 25.14 68.78 2.
Zn 161 34.2 50.1 61.0 38.3 0.245 44.57 110.98 2.
Journal of Applied Mechanics
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for hexagonal materials. The Young’s modulus is given byE
5m(3l12m)/(m1l). For the cubic grains, the Zener ratioA
52C44/(C112C12) is used as a measure of the degree of ela
anisotropy. The value ofA51 corresponds to isotropy. For th
hexagonal grains, the simple ratioAh5C11/C33 is used instead.
Four cubic~Al, Cr, Cu, and W! and three hexagonal~Cd, Co, and
Zn! materials are considered in this paper. The values of the
terial parameters are listed in Table 1.

To determine the number of elements necessary for con
gence of the numerical stress intensity factor, simulations w
carried out for a sector crack using 54, 252, 464, and 740
ments. The crack is located in an infinite homogeneous body
has a radius ofa50.02mm and an angle of 138 deg. The crac
plane is normal to theZ-axis. Figure 6 shows an example of th
mesh pattern. Microstructural stresses are omitted in these ca
lations. A uniform stress of 1 unit is applied in theZ-direction. In
the figure, the normalized Mode I stress intensity fac
K I /sZ

`Apa is plotted against the normalized coordinatesx1 /a
andx2 /a along the straight edges, and againstx3 /a, the projected
position of a point of the circular edge onto an imaginary diame
parallel to the tangent at the midpoint of the circular edge. It c
be seen that numerical convergence is attained on both the cir
and straight edges, except near the pointx1 /a5x2 /a50 where
the straight edges meet. Also, the results for the circular edge
symmetric aboutx3 /a50, while the results for the straight edge
are approximately symmetric with respect to each other. Base
these results, a total of 252 elements are used in all subseq
calculations. Other than convergence, these results also show

Fig. 6 Convergence of the normalized Mode I stress intensity
factor along the crack edge with increase in the number of tri-
angular elements

6
6
4
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Fig. 7 Two grains used to investigate the dependence of the stress inten-
sity factor of a sector crack on crack length, elastic anisotropy, crack angle,
and remote stress state; „a… the crack plane is almost normal to the
Z-direction, „b… the crack plane is about 45 deg to the X-axis and Z-axis
i

n
k

ed
the normalized stress intensity factor has a maximum in
middle of the circular edge and decreases sharply near the e
The maximum normalized stress intensity factor is;0.51, which
is less than the value of 0.64 calculated by the same program
a circular penny-shaped crack~exact value is 0.6366 to four dec
mal places!.

Fig. 8 Variation of the Mode I stress intensity factor along the
circular edge with the projected position x 3 Õa, and depen-
dence of the stress intensity factor on the crack length
000
the
nds.

for
-

Figure 7~a! shows a Voronoi grain with the orientatio
u574.67 deg,f582.51 deg, andk599.37 deg. The sector crac
is located on a face with normal almost parallel to theZ-direction;
the direction cosines of the unit normal beingnX50.04, nY
50.06886, andnZ50.9968. The crack on this grain face is us
in most of the following investigations~Figs. 8–10!. To study the

Fig. 9 Dependence of the Mode I stress intensity factor on the
elastic anisotropy ratio „A for cubic materials and A h for hex-
agonal materials …
Transactions of the ASME
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effects of remote biaxial tension~Fig. 11!, the second grain shown
in Fig. 7~b! is used, for whichu572.46 deg,f579.32 deg, and
k5102.36 deg. The unit normal to the grain face on which t
sector crack is assumed to exist has the direction cosinesnX
50.7036,nY50.02546, andnZ50.7102. The grain face makes a
angle of about 45 deg with both theX and Z-axis. Also, both
grains are located close to the center of the sample of 300 gra
The sample lies within a cube~containing 1139 complete grains!
with edge lengths of 1mm. The average grain size, calculated
the edge length of an equivalent grain of cubic shape in a sam
of 1139 cubes, is therefore;0.1 mm.

The microstructural stress distribution on a grain face is fou
to have the following characteristics. It does not vary greatly o
the grain face, and its average magnitude depends onA. For A
51.21~aluminum!, current calculations show that the microstru
tural stress is about 2.5 percent of the applied load, but foA
50.69 ~chromium!, it is about 20 percent of the applied load
Near the corners of the grain face, it is conjectured that the st
components may or may not be singular. As shown by Wu a
Niu @11# for two-dimensional grains, the stress distributions
points very close to the triple junctions~one-thousandth of the

Fig. 10 Variation of the Mode I stress intensity factor with the
orientation k of one grain

Fig. 11 Dependence of the Mode I stress intensity factor on
the remote biaxial tension stress state. Discrepancies between
results computed with and without microstructural stresses
can be very significant.
Journal of Applied Mechanics
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grain boundary length! are normal with zero means, and hav
standard deviations two to three times larger than those of
stress distributions at the midpoints of grain boundaries. Un
this previous investigation, however, the stresses induced by
negative of the body forces of Eq.~4! are not obtained in closed
form, but their accuracy is consistent with the approximation
sociated with the Eshelby procedure as applied here to a glob
isotropic polycrystal without detailed considerations of the str
singularities between contiguous grains isolated from the s
rounding polycrystal. A further point of interest is that althoug
300 surrounding grains are used to determine the microstruc
stress, the results have converged when the sample reaches
as small as about 50 grains. The larger sample of;200 necessary
for convergence in the case of a two-dimensional polycrystal
be attributed to the decay of elastic stresses with inverse dist
in two-dimensional bodies but with inverse square distance
three-dimensional bodies.

In Figs. 8–10, the sector crack is located on the grain f
shown in Fig. 7~a!. The sector angle is;123 deg. The remote
stresssZ

`51 MPa. The polycrystal is assumed to be aluminu
with A51.21, unless otherwise specified~Fig. 9!.

Figure 8 plotsK I in MPaAm versus the projected coordina
x3 /a for a50.003, 0.015, and 0.03mm. The stress intensity fac
tors computed with and without microstructural stresses are b
shown in the figure. It can be observed thatK I along the circular
edge increases witha. The effect of microstructural stress onK I is
small for aluminum, but its effect increases for larger cra
lengths. Furthermore,K I is smaller if the microstructural stress
incorporated in the computations. This can be rationalized si
the corresponding microstructural stress is compressive for
particular site under consideration. In general, however,K I can be
either underestimated or overestimated. Also,K I is approximately
symmetric aboutx3 /a50. This is likely due to the fact that any
microstructural stress asymmetry over the very small crack
gions is not very significant.

Figure 9 shows the variation ofK I with x3 /a for four cubic and
three hexagonal materials. The crack length is 0.01mm. For the
cubic materials Cu, Al, W, and Cr withA53.21, 1.21, 1, and
0.69, respectively,K I is shown to be a strong function ofA. As A
increases from 0.69 to 3.21, the maximumK I decreases by;30
percent. For the present case, the greater~smaller! A is compared
to 1 ~isotropic case!, the more compressive~tensile! the micro-
structural stress and the smaller~larger! K I becomes. WhetherA is
greater or smaller than 1 depends on whetherC44 is larger or
smaller than (C112C12)/2. Hence, whetherK I computed without
microstructural stress is an overestimate or underestimate dep
on whether the shear resistance (C44) on a~1 0 0! plane is larger
or smaller than the shear resistance ((C112C12)/2) on a~1 1 0!
plane. For the hexagonal materials,K I for Zn (Ah52.64) or Cd
(Ah52.36) is greater than the value for the isotropic case wh
K I for Co (Ah50.86) is less than it. AsAh increases from 0.86 to
2.36, the maximumK I increases by;25 percent. For Zn and Cd
C115C22.C33, but for Co,C115C22,C33. Hence, whetherK I
is an overestimate or an underestimate depends on whethe
stiffness in the basal plane is larger or smaller than that in
perpendicular direction. It should be emphasized that these re
are obtained for a specific crack on a specific grain face
uniaxial loading. For different orientations and shapes of gra
around the crack, completely different results may be obtained
is clear, however, that the elastic anisotropy of the grains ha
strong effect on the stress intensity factor of a crack. Also, Fig
shows that negligence of microstructural stresses in the calc
tion of K I leads to serious errors. The results for W correspond
the case of isotropy and hence no microstructural stresses. If
crostructural stresses in the other six materials were not taken
account, their stress intensity factor would have the same va
as those calculated for W. Figure 9, however, shows that
maximumK I value for Zn is;150 percent of the value for Cu
when microstructural stresses are taken into consideration.
MARCH 2000, Vol. 67 Õ 57
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Figure 10 shows the influence of grain orientation. In this stu
the orientations of all grains in the sample are held fixed, exc
for the orientation of the grain containing the crack on one of
faces. For this grain,u574.64 deg,f582.51 deg, butk assumes
five different values: 0 deg, 45 deg, 90 deg, 99 deg, and 160
The case of weak anisotropyA51.21 is considered. The crac
length is again 0.01mm. It can be seen that the maximumK I
depends quite significantly on the grain orientation, although
difference diminishes near the outer ends of the circular e
front. The results fork50 deg and 90 deg are identical because
cubic symmetry. The largest difference in results, which is ab
1031026 MPaAm, occurs betweenk545 deg and 0 deg or 90
deg.

Figure 11 shows the dependence ofK I on the remote stress sta
~biaxial tension!. The crack analyzed is that shown in Fig. 7~b!.
The radius isa50.01mm and the sector angle is;125 deg. Also,
A51.21 andsZ

`51 MPa. The lateral stress assumes five valu
sX

`50, 0.25, 0.5, 0.75, 1 MPa. The results computed with a
without microstructural stresses are included in the figure. It
be seen thatK I does not increase monotonically withsX

` if micro-
structural stresses are included in the calculatio
Specifically, the maximumK I decreases substantially from
;47.531026 to ;3231026 MPaAm assX

` increases from 0 to
0.25 MPa. IfsX

` increases further until a state of equibiaxial te
sion is reached, the maximumK I reaches a value of;87.5
31026 MPaAm. In contrast,K I increases monotonically withsX

`

if microstructural stresses are neglected in the calculations.
thermore, the difference in results between computations with
without microstructural stresses is a complicated function ofsX

` .
For sX

`50, 0.5, and 1 MPa, the maximumK I computed without
microstructural stresses underestimates the value determined
microstructural stresses by the factors of;1.1, 1.05, and 1.02
respectively. ForsX

`50.25 and 0.75 MPa, it overestimates th
value computed with microstructural stresses by the factors
;1.6 and 1.35, respectively. It is also noteworthy that unlike
previous case ofsX

`50 in Fig. 8, K I computed without micro-
structural stresses is an underestimate. Comparison of Figs. 8
11 also shows the importance of the morphological and crysta
graphic details surrounding the crack: For the same uniaxial
sion and approximately the same sector angle and crack len
the maximumK I in Fig. 8 is;10531026 MPaAm, while in Fig.
11 it is only ;47.531026 MPaAm.

6 Conclusions
An approximate theoretical analysis of the Mode I stress int

sity factor of a sector crack in a three-dimensional polycrysta
presented. The analysis consists of three parts:~1! development of
an algorithm for the Voronoi tessellation,~2! estimation of the
microstructural stresses in the polycrystal by the Eshelby pro
dure of cutting, straining, and welding, and~3! computation of the
stress intensity factor using the method of body forces. The res
of the analysis for isolated sector cracks in a sample of 300 gr
can be summarized as follows.

1 The stress intensity factor depends strongly on the ela
anisotropy of the grains. For cubic grains and the particular cr
investigated, variation ofA from 0.69 to 3.21 causes the max
mum stress intensity factor on the circular crack front to cha
by ;30 percent. For hexagonal grains and the same crack, v
tion of Ah from 0.86 to 2.64 causes the maximum stress inten
factor to change by;25 percent.

2 The SIF also depends significantly on the orientations
shapes of the grains around the crack.

3 In general, the stress intensity factor depends strongly
the remote biaxial stress state (sX

` ,sZ
`). The dependence onsX

`

for a fixedsZ
` is nonmonotonous.
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4 Computing the stress intensity factor without microstru
tural stresses may lead to serious errors. The error magnitude
sign depend on the morphological and crystallographic detail
the grains around the crack as well as the remote loading.
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Effects of Mixed-Mode and Crack
Surface Convection in Rapid
Crack Growth in Coupled
Thermoelastic Solids
Two Green’s function problems for rapid two-dimensional steady-state crack gro
governed by fully coupled (dynamic) linear thermoelasticity are analyzed. In Proble
normal and in-plane shear line loads move on the insulated surfaces of a semi-in
crack growing at a subcritical speed. Problem B involves only normal line loads,
crack surface convection is allowed. Problem A involves, therefore, mixed trac
displacement boundary conditions, while Problem B also exhibits mixed thermal bo
ary conditions. Robust asymptotic forms based on exact solutions for related prob
reduce Problems A and B to coupled sets of integral equations. Both sets exhibit
Cauchy and Abel operators, but are solved exactly. The solutions show that Mo
loading couples the tangential crack face separation and discontinuity in crack-face
perature changes, while crack surface convection enhances thermal response, esp
at large distances.@S0021-8936~00!03101-9#
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Introduction
The fracture of linearly thermoelastic solids is generally~@1#!

viewed as a quasi-static process, thereby allowing the gover
equations for temperature to be uncoupled from those for lin
momentum. If, however, loading is time-dependent and cr
growth is rapid, then fracture is a dynamic process~@2#! and linear
thermoelasticity~@3,4#! fully couples the temperature and line
momentum equations. Recent studies~@5#! have found that steady
state crack growth is sensitive to coupling effects, especially
high crack speeds.

However, these studies are complicated by the inclusion
crack-edge inelasticity, yet they also treat only Mode I loadi
and assume a negligible crack surface heat flux, i.e., the c
faces are insulated. This article, therefore, extends and comb
preliminary efforts~@6–9#! and considers two Green’s functio
problems of two-dimensional steady-state crack growth wh
variously, are mixed mode and allow crack surface convection
in the work of Brock@5# the cracks are semi-infinite, are driven b
mechanical line loads, and grow at subcritical speeds in
bounded solids that obey the fully coupled~dynamic! equations of
thermoelasticity. To focus attention on the effects of mixed-mo
loading and convection, crack edge inelasticity is neglected.

Problem A depicts mixed-mode crack growth by treating loa
which are constant normal and in-plane shear tractions~line loads
in the out-of-plane direction! applied to opposite faces of th
crack. These loads move at the same~constant! speed as the crack
thereby justifying a steady-state analysis. Problem B treats o
normal ~Mode I! line loads, but incorporates the idea that cra
surfaces~@10#! may have an effective layer of fracture-altered m
terial. While perhaps negligible in modeling elastic response, s
layers can cause heat flux by convection. Problem B includ
therefore, a standard~@3#! convection law that enforces propo
tionality between crack surface heat flux and temperature cha

Both problems are formulated in the next section, where Pr
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lem A is seen to involve mixed traction/displacement bound
conditions, while Problem B exhibits mixed thermal bounda
conditions in addition. Related problems that involve unmix
conditions are addressed, therefore, and exact integral transf
obtained. Robust asymptotic forms are then extracted and use
reduce both problems A and B to coupled sets of integral eq
tions. Each set displays both Cauchy and Abel operators, yet
table exact solutions are possible. These solutions show
crack-face separation and thermal behavior are coupled in M
II, and that crack-surface convection allows crack-surface te
perature changes where none are seen for an insulated su
and, in general, results in steady-state crack-plane tempera
changes which are more prominent at large distances than t
for an insulated surface. Both solutions also exhibit characteri
lengths which are proportional to the characteristic length
coupled thermoelasticity, but which also depend on material pr
erties and crack/load speed.

Formulations for Problems A and B
Consider an unbounded linear isotropic homogeneous t

moelastic solid, initially at rest under a uniform~absolute! tem-
peratureTo , and containing a crack of infinite width and sem
infinite length. The crack then opens and grows in its origin
plane under the action of normal and in-plane shear line load
magnitudes (Pn ,Ps), respectively, which are applied to opposi
faces of the crack and then moved toward the crack edge
constant subcritical speedv. This wedging action eventually pro
duces a steady-state situation in which the crack also grows
speedv, and the line loads remain a fixed distanceL behind its
edge. This two-dimensional process is represented schemati
in Fig. 1, where it is seen that only Cartesian planar coordina
(x,y) are needed, and can be fixed to the moving crack edg
that (y50, x,0! always defines the crack.

In the two-dimensional steady state, only the changeu in tem-
perature fromTo , displacement components (ux ,uy) and traction
components (sx ,sy ,sxy) are required. Because time derivative
in the moving coordinate system can be neglected, these fi
depend only on (x,y), and time derivatives in the inertial fram
can be written as2v](..)/]x. Then, the results of Chadwick@4#
can be adapted to give the governing field equations of coup
thermoelasticity
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]yD @~m221!D1xu#50

(1a)
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]

]x S u2
m2«

x
D D50 (1b)
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m
sxy5

]ux

]y
1

]uy

]x
,

(1c)

1

m
~sx ,sy!52S ]ux

]x
,
]uy

]y D1~m222!D1xu.

In ~1!, (¹2,D) are the 2D Laplacian and dilatation, and

x5xo~423m2!, «5
To

cv
S xv r

m D 2

, h5
kv r

mmcv
,

(2)

m5
vd

v r
, c5

v
vd

where (xo ,cv ,k,m) are, respectively, the thermal expansion c
efficient, specific heat, thermal conductivity, and shear modu
The parameters (v r ,vd) are the rotational and isothermal dilat
tional wave speeds, while (h,«) are the thermoelastic characteri
tic length and dimensionless coupling constant. It can be sh
~@4,11#! that for many materials

«'O~1022!, h'O~1024! mm, m.A2. (3)

In light of ~3!, we will assume thatL/h@1. We expect

(sx ,sy ,sxy ,u) to vanish asAx21y2→` and to be nonsingula
everywhere except perhaps aty50, x50 andy50, x52L. The
fields (ux ,uy ,u) should also be continuous everywhere exc
perhaps the regiony50, x,0. At this juncture, critical crack/load
speed is taken to bev r ; that is, 0,c,1/m.

In Problem A of this scenario, the insulated crack surface c
ditions are

y506, x,0: sxy52Psd~x1L !,
(4)

sy52Pnd~x1L !,
]u

]y
50

whered~..! is the Dirac function. In Problem B, only the norm
loads are imposed (Ps50), and crack surface convection occu
so that the crack surface conditions are

y506, x,0: sxy50, sy52Pnd~x1L !, 7
]u

]y
1

u

hc
50.

(5)

Fig. 1 Schematic of crack growth driven by moving line loads
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In ~5!, hc is a length which characterizes convection; if the co
vection represents a layer of effective thicknessl on the crack
surface, then the Biot number~@3#! for the crack is

Bl5
l

hc
. (6)

Related Problem Formulations
Problem A, in effect, involves the two half-planesy.0 andy

,0 whose boundary conditions arise from~4! and continuity of
(ux ,uy ,u,sxy ,sy ,]u/]y) for y50, x.0. That is, it exhibits
mixed traction/displacement boundary conditions. In keeping w
a standard procedure~@12#!, it is convenient to first treat the re
lated problem with the unmixed conditions

ux] 2
15U~x!, uy] 2

15V~x!, u] 2
15Q~x!,

(7)

sxy] 2
15@sy#2

15F]u

]yG
2

1

50

for all y50. Here@ #2
1 denotes a discontinuity as thex-axis is

crossed from y502 to y501, and the discontinuities
(U,V,Q)→0 continuously asx→2(0,̀ ), are no worse than in-
tegrally singular forx,0, and vanish identically forx.0. Prob-
lem A is reduced, therefore, to solving this related problem a
using the results for eithery.0 or y,0 in ~4! to find (U,V,Q).
In this light, these quantities are, respectively, the tangential
normal crack face separation and the jump in temperature f
one crack face to the other.

For Problem B, crack-plane (y50) symmetry exists, so tha
only the half-planey.0 need be considered by requiring from~5!
that

sy52Pnd~x1L !,
]u

]y
2

u

hc
50 (8)

for y501, x,0 while sxy50 and (uy ,]u/]y50) for, respec-
tively, y50 andy50, x.0. Here, the thermal boundary cond
tions are also mixed, so that a related problem imposes for ay
50 the unmixed conditions

sxy50, uy5
1

2
V~x!,

]u

]y
5G~x! (9)

where (V,G) vanish identically forx.0, are no worse than inte
grally singular forx,0 and remain finite asx→2`. Problem B
is reduced, therefore, to solving this related problem and using
results in~8! to find (V,G). In this light, (V,hcG) are the normal
crack-face separation and the crack-surface temperature cha
Thus,V should vanish continuously asx→02.

For both related problems, the boundedness/continuity co
tions imposed on the original problems are retained.

Transform Solutions for Related Problems
To treat the related problems, the bilateral Laplace transfo

inversion operations~@13#!

g* 5E
2`

`

g~x!e2px dx, (10a)

g~x!5
1

2p i E g* epx dp (10b)

are introduced, wherep is generally complex and integration i
~10b! is along the Bromwich contour. Application of~10a! to ~1!
gives a set of three coupled ordinary differential equations iy
that can be solved for the relevant transforms
Transactions of the ASME
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G FA1ea1y1A2e2a1y
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(11a)

F uy*
1

p2

]u*

]y
1

mp
sxy*

G5F 21 21 2p

v1 v2 0

22 22 Kp
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1

b
~C1eby2C2e2by!

G
(11b)

for each half-plane, where the coefficients (A6 ,B6 ,C6) are ar-
bitrary functions ofp, and

a65a6ApA2p, b5bApA2p, v65
m2

x
~12c22a6

2 !

(12a)

a65A11
c

p
~t16t2!2, b5A12m2c2, K5m2c222

(12b)

2t65AS A2cp6
1

Ah
D 2

1
«

h
, v1v25

m4c3«

x2hp
. (12c)

Here Re(a6 ,b)>0 in the cut p-plane, so that boundednes
requires

A1
~1 !5B1

~1 !5C1
~1 !50~y.0!, A2

~2 !5B2
~2 !5C2

~2 !50~y,0!
(13)

where the superscripts signify a coefficient associated with h
planey.0(1) or y,0(2).

For the problem related to Problem A, application of~10a! and
~11! to ~7! gives the six equations needed to determine the rem
ing coefficients as

2~v12v2!A2
~1 !5

v2

m2c2 S 2

p
U* 2

K

a1
V* D1

Q*

p2 (14a)

2~v22v1!B2
~1 !5

v1

m2c2 S 2

p
U* 2

K

a2
V* D1

Q*

p2 (14b)

2m2c2C2
~1 !5

K

p
U* 1

2

b
V* (14c)

for y.0 and

2~v22v1!A1
~2 !5

v2

m2c2 S 2

p
U* 1

K

a1
V* D1

Q*

p2 (15a)

2~v12v2!B1
~2 !5

v1

m2c2 S 2

p
U* 1

K

a2
V* D1

Q*

p2 (15b)

2m2c2C1
~2 !52

K

p
U* 1

2

b
V* (15c)

for y,0. For the problem related to ProblemB, only the half-
planey.0 is of interest, so that (A1

(2) ,B1
(2) ,C1

(2)) can be dis-
carded. Application of~10a! and~11! to ~9! then gives three equa
tions that can be solved to yield

2a1~v22v1!A2
~1 !5

Kv2

m2c2 V* 1
2

p2 G* (16a)
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s

alf-

in-

2a2~v12v2!B2
~1 !5

Kv1

m2c2 V* 1
2

p2 G* (16b)

m2c2C2
~1 !5

b

p
V* . (16c)

Asymptotic Inversions for Related Problems
With ~11!–~16! available, the two related problems are esse

tially solved. Solution of Problem A requires in view of~4! and
~7! that expressions for (sxy* ,sy* ,]u* /]y) for either y.0 or y
,0 be inverted fory50, x,0 by means of~10b!. Similarly,
solution of Problem B requires in view of~8! and~9! that expres-
sions for (sy* ,u* ) be inverted fory50, x,0. The inversions,
however, give expressions that lead to semi-numerical determ
tions of the unknown functions (U,V,Q) and (V,G). We make
use, therefore, of asymptotic results: Bilateral Laplace transfo
valid for uhpu!1 give inversions that are valid forux/hu@1
~@13#!; because~2! and ~3! show thath is of micron order, such
inversions are robust.

For the problem related to Problem A,~14! and~15! are substi-
tuted into ~11! and, in view of~12!, the results are expanded i
Taylor series foruhpu!1. Keeping the lowest-order terms the
gives the asymptotic form. For example, it can be shown that
relation

u* 5
2«

x~11«! S pU* 1
K

2a
pV*

Ap

A2p
D eayApA2p

1F «

x~11«!
pU* 2

Q*

2 GeyAc/h~11«!A2p (17)

holds fory,0. In view of ~10a! and the restrictions on (U,V,Q)
noted earlier, one can write

~pU* ,pV* !5E
2`

0

~U8,V8!e2pt dt, Q* 5E
2`

0

Qe2pt dt

(18)

in ~17!, where ~ !8 denotesx-differentiation. The appearance o
the crack-face separation gradients (U8,V8) as the functions to be
determined presents no difficulty since a unique solution to
steady-state Problem A can be obtained only to within an arbitr
rigid-body motion. In~17! the positive real quantity

a5A12
c2

11«
(19)

is a manifestation of the asymptotic dilatational wave spe
vdA11«.

If it is assumed that the orders of inversion andt-integration can
be interchanged, then inversion of~17! is reduced to finding the
inversions of the four functions

I 1* 5e2pt1ayApA2p, (20a)

I 2* 5
Ap

A2p
I 1* , (20b)

I 3* 5
e2pt1yAc/h~11«!A2p

A2p
, (20c)

I 4* 5
Ah

Ac~11«!

dI3*

dy
(20d)

where (t,y),0. In view of the requirements that Re(a6 ,b)>0 in
the cutp-plane, we must have Re(Ap,A2p)>0 in the plane with
branch cuts Im(p)50, Re(p),0 and Im(p)50, Re(p).0, respec-
tively. Therefore the Bromwich contour in~10b! for the forms
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~20! can be taken as the entire Im(p)-axis. The results are rea
integrals that can be carried out with standard tables~@14#! to give

I 15
1

p

2ay

~ t2x!21a2y2 , I 25
1

p

t2x

~ t2x!21a2y2 . (21)

Substitution of~20c! into ~10b! produces the integrand branch c
Im(p)50, Re(p).0, so that use of Cauchy theory to change t
contour givesI 350 for x.t, but a real integral forx,t which
yields ~@14#!

I 35
1

Ap~ t2x!
e2~c~11«!y2!/~4h~ t2x!!~ t.x!. (22)

The function I 4 follows by differentiation. Use of these resul
gives

u5
2«

x~11«!

1

p E
2`

0 FayU81
K

2a
~ t2x!V8G dt

~ t2x!21a2y2

1
1

Ap

]

]y Ex

0F «U8

x~11«!
2

Q

2 Ge2~c~11«!y2!/~4h~ t2x!!

3
dt

At2x
~y,0!. (23)

By the same procedure, the fields of more immediate interest
obtained as

1

m
sxy5

a

m2c2

1

p E
2`

0

@2~ t2x!U81KyV8#
dt

~ t2x!21a2y2

2
K

m2c2

1

p E
2`

0 F K

2b
~ t2x!U81byV8G dt

~ t2x!21b2y2

2
x

m2

Ah

Apc~11«!

]

]x Ex

0 Q

At2x
e2c~11«!y2/4h~ t2x! dt

(24a)

1

m
sy5

K

m2c2

1

p E
2`

0 FayU82
K

2a
~ t2x!V8G dt

~ t2x!21a2y2

1
b

m2c2

1

p E
2`

0

@2~ t2x!V82KyU8#
dt

~ t2x!21b2y2

1
hx

2m2c~11«!

]

]x Fay

p E
2`

0 Qdt

~ t2x!21a2y2

1
Ah

Apc~11«!

]

]y Ex

0

Qe2c~11«!y2/4h~ t2x!
dt

At2x
G (24b)

]u

]y
5Ac~11«!

ph

]

]x Ex

0FQ

2
2

«U8

x~11«!Ge2c~11«!y2/4h~ t2x!
dt

At2x
(24c)

for y,0. Comparison of~23! and~24c! illustrates the asymptotic
nature of the expressions.

For the problem related to Problem B,~16! is substituted into
~11! and, in view of~12!, the results are also expanded in a Tay
series foruhpu!1. Based on keeping the lowest-order terms,
version of the expressions for (sy* ,u* ) by means of~10b! gives
for y.0
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1

m
sy5

1

2m2c2a

1

p E
2`

0

V8F 4ab

~ t2x!21b2y22
K2

~ t2x!21a2y2G
3~ t2x!dt1

Khx

m2c2a~11«!

1

p E
2`

0 G~ t2x!dt

~ t2x!21a2y2

(25a)

u5
2K«

2x~11«!a

1

p E
2`

0 V8~ t2x!dt

~ t2x!21a2y2

2
Ah

Apc~11«!
E

x

0

Ge2c~11«!y2/4h~ t2x!
dt

At2x
. (25b)

Solution for Problem A
With ~4! and~24! available, Problem A reduces to the equatio

mR

2m2c2a

1

p «2`

0 V8dt

t2x
52Pnd~x1L ! (26a)

mR

2m2c2b

1

p «2`

0 U8dt

t2x
2

mx

m2

Ah

Apc~11«!

d

dx Ex

0 Qdt

At2x

52Psd~x1L ! (26b)

«

x~11«!

d

dx Ex

0 U8dt

At2x
2

1

2

d

dx Ex

0 Qdt

At2x
50 (26c)

for x in ~2`,02!, whereW denotes Cauchy principal value inte
gration. In~26!

R54ab2K2 (27)

is the asymptotic thermoelastic Rayleigh function which exhib
the rootsc56(0,cR) in the cutc-plane. The constantcR lies in
the range (0,1/m) and is the asymptotic thermoelastic Rayleig
speed, nondimensionalized with respect tovd , and can be written
~@15#! as

cR5A2S m22
1

11« D 1

m2Fo
, ln Fo5

1

p E
1/m

A11« Fdt

t

(28a)

F5tan21
4A11«2t2Am2t221

A11«~m2t222!2
. (28b)

Because the nature of~26a,b! changes whenR vanishes, we now
restrict the range of subcritical crack speeds to

0,c,cR . (29)

Equation~26a! definesV8, is uncoupled from~26b,c! and is of the
Fredholm type with a Cauchy operator. Its solution is found
standard methods~@16#! to be

V8

m2c2 5
C1

A2px
2

2a

pR

Pn

m

AL

A2x~x1L !
~x,0! (30)

whereC1 is a real constant. The integral Eq.~26c! is of the Abel
type for a linear combination of the functions (U8,Q), and can be
solved for the relation

2«U8

x~11«!
2Q5

C2

A2px
(31)

whereC2 is a real constant. Finally, linearly combining~26b,c!
and introducing the variables~j52x, t52t! yields the equation
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1

p «0

` U8dt

j2t
1Ad

p

d

dj E0

j U8dt

Aj2t
5Cod~j2L ! (32)

on U8 for j in ~0,̀ !. In ~32! d is a characteristic length andCo is
a constant defined as

d

h
5S 4b«

R D 2S c

11« D 3

, Co52
2m2c2b

R

Ps

m
. (33)

The integral Eq.~32! exhibits both Cauchy and Abel operator
and the magnitudes of (h,«) in ~3! suggest that the latter is
perturbation. However,~27! and ~33! show that

c→0:
d

h
'F 2«

m2~11«!21G2 1

~11«!c
,

(34)

c→cR2:
d

h
'F bR«

m4FR~cR2c!G
2 1

cR
3~11«!3 .

where

bR5A12m2cR
2, ln FR5

2

p E
1/m

A11« tFdt

t22cR
2 (35)

and (cR ,F) are given in~28!. That is, for low and near-critica
crack/load speeds, it is the Cauchy operator that can be seen a
perturbation. Therefore,~32! is treated directly by introducing the
unilateral Laplace transform/inversion operations~@17#!

ĝ5E
0

`

g~j!e2sj dj, (36a)

g~j!5
1

2p i E ĝesj ds. (36b)

Here Re(s).0 and is large enough to ensure existence of~36a!,
and integration in~36b! is along a Bromwich contour. Application
of ~36a! to ~32! and the use of standard tables~@18#! gives the
integral equation

1

p «0

` Û8du

u2s
1AsÛ85Coe2sL~Re~s!.0! (37)

for the transformÛ8. This equation is of the Fredholm type wit
a Cauchy operator and, by following standard methods@16# its
solution can be written as

Û85
C3

~sd!3/21Co

Asd

11sd S e2sL1
1

p «0

` e2uL

u2s

du

Aud
D . (38)

In ~38! As has the branch cut Im(s)50, Re(s),0 in order that its
real part be positive indefinite in the cut plane, andC3 is a con-
stant. Boundedness ofU as j→`(x→2`) requires thatÛ8/s
have a nonsingular integral ass→0. In this light, behavior of~38!
demonstrates that

C350. (39)

Use of~33!, standard tables~@18#! and re-introduction of the vari-
ablex gives the inversion

U85
2m2c2b

RAp

Ps

md Fe1/d~x1L !E
0

21/d~x1L ! eu

Au
du2

Ad

A2x2L
G

3H~2x2L !1
2m2c2b

R

Ps

md

ex/d

p
AL

d E0

2x/d eu

Au

du

L

d
2u

(40)
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for x,0,ux/hu@1. For2L,x,0 the second term in~40! is taken
in the Cauchy principal value sense. Because (V,Q) should also
be bounded asx→2`, one can conclude from~30!, ~31!, and
~40! that

C15C250. (42)

Equations~30!, ~31!, ~40!, and~41! illustrate the coupling inheren
in ~26!: That is, for mixed-mode loading, the normal crack fa
separationV is, as in the isothermal case, dependent only
Mode I loading (Pn) and is independent of the thermal respon
of the crack surface. The tangential crack face separationU de-
pends only on Mode II loading (Ps), but it and the discontinuity
Q in temperature between the crack faces are coupled.

Solution for Problem B
With ~8! and~25! at hand, Problem B reduces to the equatio

mR

2m2c2a

1

p «2`

0 V8dt

t2x
1

mKhx

m2ca~11«!

1

p «2`

0 Gdt

t2x

52Pnd~x1L ! (42a)

K«

2x~11«!a

1

p «2`

0 V8dt

t2x
1

Ah

Apc~11«!
E

x

0 Gdt

At2x
1hcG50

(42b)

for x in ~2`,02!. Equation~42a! is of the Fredholm type for a
linear combination of the functions (V8,G), and its solution is
readily found by standard methods~@16#! to be

1

2
V81

Khxc

~11«!R
G5

C1

A2px
2

m2c2a

pR

Pn

m

AL

A2x~x1L !
~x,0!

(43)

whereC1 is a constant. Linearly combining~42a,b! and introduc-
ing the variables~j52x, t52t! gives the integral equation

1

p «0

` Gdt

t2j
1

1

Apd
E

0

j Gdt

Aj2t
1AG5Cod~j2L ! (44)

on G for j in ~0,̀ !, where now

A5
aR

cK2

~11«!2

l«
, l5

h

hc
,

d

h
5S cK2

aR D 2 «2c

~11«!3 ,
(45)

Co5
m2ca~11«!

Khx

Pn

m
.

In ~45! the positive real parameters (A,d) are, respectively, a
dimensionless constant and a characteristic length, c.f.~33!, while
l is a dimensionless convection parameter.

Equation~44! exhibits both Cauchy and Abel operators, but t
transform~36a! reduces it to an integral equation

1

p «0

` Ĝdu

u2s
1S 1

Asd
1AD Ĝ5Coe2sL~Re~s!.0! (46)

of the Fredholm type. By again using standard methods@16#, its
solution is found to be
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Ĝ5
C3

sd

~sd!ae2V

Asd1~11AAsd!2

1
CoAsd

Asd1~11AAsd!2

3
~11AAsd!e2sL

Asd1~11AAsd!2

1~sd!a
eV

p «0

` Aude2uL2V

~ud!a~u2s!

du

Aud1~11AAud!2

(47)

where the parameters~a,V! are defined by

a5
1

p
tan21 A~0,a,1/2;A>0!,

(48)

V5
1

p «0

` dt

t2sd
tan21

1

A1~11A2!At
.

In this instance boundedness ofV asj→`(x→2`) requires that

C15C350. (49)

Unlike ~40!, the transform~47! is best inverted by direct use o
~36b!: The entire Im(s)-axis is suitable as the Bromwich contou
but, despite their forms, the terms in~47! have no roots in the
plane cut along Im(s)50, Re(s),0 in order that Re(As)>0, nor
any branch cuts save that forAs itself. Thus, Cauchy theory ca
be used to change the integration path to one collapsing onto
branch cut. The result is, upon use of~45!, introduction of the
robust approximation

V5S a2
1

2D ln sd1V0 ,V05
2

p E
0

` ln t dt

t21~11At!2 (50)

valid for uhsu!1(j/h@1), and re-introduction of the variablex,

hcG5
m2ca~11«!

Kxl

Pn

md

H~2x2L !

pA2x2L

3E
0

` @x1L1~12A2!t#Ate2t/d dt

@x1L1~12A2!t#214A2t2

1
m2ca~11«!

Kxl

Pn

md

H~2x!

p2 E
0

` Ate2t/d dt

Ar~2x,t !

3E
0

t/d Aueu/d

Ar~L,u!

du

xu1Lt
sin@C~2x,t !1C~L,u!#

(51a)

r~a,b!5A@a2~11A2!b#214A2ab,
(51b)

2C~a,b!5tan21
2AAab

a2~11A2!b

for x,0,ux/hu@1. For ux/Lu@1 ~51a! behaves as

hcG'2
m2ca~11«!

Kxl

Pn

2m
Ad

p

1

~2x2L !3/2

2
m2ca~11«!

Kxl

Pn

m

1

p2~2x!3/2

3E
0

`F11
1

2
Apd

t
et/der f c~At/d!G

3
dt

Ar~L,t !
sinC~L,t !. (52)
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Equations~51a! and ~52! give in view of ~8! and ~9!, of course,
the temperature change on the crack surface. The temper
change ahead of the crack follows from~25a! as

u5
2K«

2x~11«!

1

p E
2`

0 V8dt

t2x
~y50,x/h@1!. (53)

Substitution of~43!, ~49!, and~51a! into ~53! and use of Cauchy
residue theory produces a result whose dominant terms are

u52
Km2c2«a

x~11«!R

Pn

m

AL

Ax~x1L !

1
Km2c2«a

x~11«!R

Pn

m

A

2p~11A2!

1

x1L
1

Km2c2«a

x~11«!R

Pn

m

1

p2x

3E
0

` Atdt

Ar~L,t !
cosC~L,t !E

0

` du

~ut1Ld!A11~A1Au!2

(54)

for y50,x/h@1.

Comparison of Problem B With Insulated Limit
In view of ~5! and ~8! the limit case of an insulated crac

surface occurs whenhc→`(l→0). In this limit it can be shown
that the functionG itself vanishes, but that the producthcG given
in ~51a! behaves as

hcG→ Km2c2«

x~11«!R

Pn

m
d~x1L ! ~y50,x,0,ux/hu@1! (55)

and that only the first term in~54! remains, i.e.,

u52
Km2c2«

x~11«!R

Pn

m

1

p

AL

Ax~x1L !
~y50,x/h@1!. (56)

Comparison of~55! with ~51a! shows that crack surface conve
tion creates a temperature change over the full extent of the c
surfaces, while for an insulated surface, the change is asymp
cally negligible except at the moving line loads. Equation~55! is
also identical to the steady-state temperature change generat
an insulated thermoelastic half-space by a moving normal
load ~@8#!. This implies that the asymptotic steady-state cra
surface temperature change is independent of the fracture pro
itself.

Comparison of~56! with ~54! shows that convection allows
more extensive temperature change field to arise ahead of
moving crack edge and, in particular, that the convection-indu
field is more prominent at large distances from the crack ed
That is,~56! behaves asO(x23/2) for x/L@1 while ~54! behaves
only asO(1/x). A similar weakening in decay with distance ha
been noted~@9#! for a line load moving on a thermoelastic hal
space with surface convection. Indeed, comparison of~54! with
~52! indicates that the temperature change on the crack sur
with convection decays more rapidly with distance than does
on the plane ahead of the crack. In this sense, crack surface
vection does not alter the fact, demonstrated by~55! and~56! for
the insulated case, that steady-state temperature changes gen
ahead of the crack are, asymptotically at least, more prominen
large distances than those generated on the crack surface its

Some Observations
This article considered two Green’s function problems for su

critical two-dimensional steady-state crack growth in an u
bounded solid governed by the fully coupled~dynamic! equations
of thermoelasticity. In Problem A, mixed-mode loading w
achieved by moving normal and in-plane shear line loads al
insulated crack surfaces at a fixed distance from the edge. In P
lem B, only Mode I loading was considered by dropping the mo
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ing shear loads, but crack-surface convection was allowed. T
Problem A involved mixed traction/displacement boundary c
ditions, while Problem B exhibited mixed thermal boundary co
ditions in addition. Exact integral transform solutions for two r
lated unmixed boundary value problems were obtained,
robust asymptotic forms inverted and used to reduce both P
lems A and B to sets of coupled integral equations. Despite
presence of both Cauchy and Abel operators, exact solutions
derived.

The solution for Problem A demonstrated that the norm
crack-face separation depends only on the Mode I loading, an
unaffected by the thermal response of the crack surface. That
behaves as if the solid were isothermal. The tangential crack-
separation depends, analogously, only on the Mode II loading,
it and the discontinuity in temperature change between the c
faces are coupled.

The solution for Problem B showed that crack surface conv
tion creates a more extensive temperature change field in the c
plane than that generated for an insulated crack surface. M
over, the field generated ahead of the crack decays less with
tance from the crack edge than does its insulated crack sur
counterpart.

The solutions for both problems depended, of course, on
thermoelastic characteristic lengthh, defined in~2!, which arises
from the fully coupled equations of thermoelasticity. Howev
this length was manifest in each solution as a characteristic le
d. The expressions~33! and ~46! for d for the solutions to Prob-
lems A and B, respectively, were similar in form, and both d
pended on material properties (m,h,«) and crack/load speed~c!.
In particular, the speed dependence involved the asymptotic
moelastic Rayleigh functionR, whose nonzero rootcR was the
nondimensionalized thermoelastic Rayleigh speed. An exact
mula for the root was provided, and it served as the limiti
crack/load speed for both problems.

Clearly, the analysis involved Green’s function problem
which arede factobrittle fracture studies, and two-dimension
steady-state situations were treated with asymptotic soluti
Nevertheless, the results provided do indicate that some the
effects in rapid crack growth in a fully coupled thermoelastic so
may be more sensitive to Mode II loading, and that crack surf
convection enhances thermal response. That convection is j
fied followed from the idea that crack surfaces may exhibit lay
of fracture-altered material~@10#! while perhaps negligible in elas
tic modeling, such layers can give rise to heat flux by convect
~@3#!.

In closing, several other observations are in order: First,
convection law employed did not explicitly feature the lay
thicknessl, which does appear in the crack surface Biot num
~6!. However, one should assume thatl is both small and uniform.
The former assumption, of course, justifies neglect of the laye
modeling elastic response, but the latter assumption is also im
tant; transient studies~@11#! of insulated thermoelastic half-space
indicate that even small-scale nonplanarity of the surface can
fect its thermal response.

Then, comparison of~23!–~25! with the corresponding exac
transforms~11!–~16! indicate that thermoelastic coupling is d
minished through use of asymptotic forms. Indeed, the Cau
operators in the integral Eqs.~26! and ~43! suggest similarities
with classical equilibrium~@19#! treatments of thermoelasticity
However, besides the advantage of tractability, the present an
sis does preserve elements of coupling, and illustrates, in
through the coefficients of the operators in~26! and~43!, its sen-
Journal of Applied Mechanics
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sitivity to crack/load speed. Moreover, the development of ex
steady-state transform expressions~11!–~16! provide the basis for
a more exact treatment in the future.

While the study of Problem B made use of symmetry arg
ments to reduce the analysis to a single half-plane, the stud
ProblemA did not. This approach was adopted to avoid the ne
for considering the two separate~symmetric and antisymmetric!
problems that would arise, and because the additional difficul
of dealing with the full unbounded solid were minor. Indeed, t
analysis allows insight into the interface crack problem.

Finally, it is noted that key mathematical operations in bo
Problems A and B reduced,via unilateral Laplace transforms
integral equations with both Cauchy and Abel operators to th
of a standard Cauchy type. The original equations followed fr
the inversions of bilateral Laplace transforms, which suggests
corresponding equations in that transform space could have
formulated, and addressed by standard~@20#! Wiener-Hopf tech-
niques. However, it is noted~@7#! that such an approach require
product-splitting operations and resultant transforms whose in
sions would require some effort to produce expressions as t
table as those developed here.
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Critical Wavelengths for Gap
Nucleation in Solidification—
Part I: Theoretical Methodology
A theoretical model of the gap nucleation process during pure metal solidification
deformable mold of finite thickness is presented. Both surfaces of the mold foll
sinusoidal lay for which the ratio of the amplitude to the wavelength, or aspect rati
much less than one. This makes the aspect ratio a convenient perturbation parame
the thermal and mechanical problems since it is indicative of the spatial variation in
surfaces. The thermal and mechanical fields are coupled along the upper surface
mold through a pressure-dependent thermal contact resistance. The main goal o
model is to develop a means for examining the contact pressure along the mold
interface and how variation of the mold surface wavelength affects the time and loc
of gap nucleation. Gaps, which result from irregular distortion of the shell due to
modest variation of the mold surface geometry, are assumed to nucleate when the c
pressure locally falls to zero. The model leads to two coupled differential equation
the shell thickness and contact pressure perturbations which are solved with a num
scheme. Using a series solution methodology, it is shown that the contact pressur
turbation predicted by the present model reduces to that for a rigid, perfectly condu
mold (which was considered in another work) in the limit of zero mold thickness. In
companion paper, we specifically examine various combinations of pure materials a
either as the shell or the mold material. The concept of a critical wavelength, w
separates those wavelengths that lead to gap nucleation at the crests, from those th
to gap nucleation at the troughs, is introduced. The potential for development of d
criteria for mold surface topographies using the present theoretical model as a lim
solution for finite element models of more complex casting processes is discu
@S0021-8936~00!03201-3#
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1 Introduction
One of the most challenging problems associated with

metal casting process is the control of heat extraction through
mold-shell interface during the early stages of solidification.
heat extraction is, on the average, too rapid along the metal-s
interface, then gross contraction of the ingot from the mold occ
leading to macro-gaps which can span much of the contact len
If heat extraction is locally nonuniform due, for example, to s
chastic variations from parting agents, surface topography, oxi
or lubricants, then micro-gaps, which have a lateral span less
the nominal wavelength of the mold surface topography, nucle
In both cases, the thermal conductivity in the gap region is l
than adjacent solid-solid contacts thereby constricting heat fl
through these contacts. This leads to locally elevated tempera
and ultimately remelting of portions of the ingot surface adjac
to the gap region or regions. The ingot surface can become ric
alloying agents and related geometrical defects, which su
quently have to be removed through such process-intensive t
niques as surface milling or ‘‘scalping.’’

Irregular contraction and associated gap nucleation are
thought to adversely impact the growth of the shell. For exam
it has been observed in decanted steel and aluminum casting
the shell can grow with a nonuniform thickness~@1–2#!. This
phenomenon, which has previously been referred to as cel
undulation~@3#!, is indicative of a macroscale growth instabilit

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
9, 1999; final revision, Sept. 30, 1999. Associate Technical Editor: J. R. Bar
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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since the internal surface of the shell contains ‘‘humps’’ which a
of the order of several centimeters in span and exceed the
rounding ingot thickness by at least an order-of-magnitude. C
lular undulation is observed both in static and continuous cas
processes~@4#!. Cracks develop in the shell which can great
reduce the integrity of a product formed from the cast ingot in
subsequent forming operation~such as rolling or extrusion! ~@5#!.
Nonuniform casting thickness and crack nucleation and gro
are thought to be prime contributing factors to breakout, in wh
the shell is unable to retain the residual molten metal upon ext
tion from the molds in continuous casting processes. Surface
melting and exudation~or bleeding out of molten metal into th
interface! have been found beneath the thinnest regions of
shell along the mold-shell contact~@6#!.

A thermomechanical mechanism for the onset of cellular un
lation was proposed by Halliday@7# and further developed by
Richmond and Huang@8#. They proposed that stochastic vari
tions in metal-shell heat extraction led to locally nonuniform te
perature gradients within the shell. Irregular distortion of the sh
resulted in local variations in the metal-shell contact pressu
Microscale air gap nucleation was assumed to occur when
pressure fell to zero. Shell growth rates in regions adjacent to
gaps were greatly diminished. If shell distortion acted to incre
the contact pressure above the hydrostatic stress from the res
fluid, then the growth rate was enhanced. Lateral growth of
gaps across the metal-shell interface, and hence continued v
tion of shell growth rates led to cellular undulation.

There is a small body of theoretical work on the cellular und
lation phenomenon that follows the spirit of the proposed mec
nism. For example, Richmond et al.@9# developed a beam theor
model to explore the onset of growth instability assuming t
thickness nonuniformity of a pure metal shell was due to a p
odic heat extraction profile. It was proposed that gap nuclea
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occurred when the contact pressure along the mold-shell inter
fell to zero. They found that gap nucleation occurred beneath
thinnest regions of the shell, which presumably diminished furt
growth of these regions, with a corresponding increase in con
pressure beneath the thickest regions of the shell, the thicke
gions subsequently growing at a faster rate. Li and Barber@10#
extended this work using a stress function approach and fo
that the Richmond model was appropriate for the earliest stage
casting when the shell is very thin. Their model assumed that
temperature and stress fields in the growing shell were cou
along the mold-shell interface through a pressure-dependent
mal contact resistance. Additional models, which address s
added complexities as strain rate relaxation due to viscous c
~@11#! and Stefan number~@12#! have been developed.

Experimentalists have addressed the issue of gap nucleation
shell thickness nonuniformity with a number process-related
hancements. One of the most common enhancements involve
application of a specific mold surface topography~see@13–21#!.
For example, periodic ‘‘groove’’ topographies that mimic the e
tended surface of a radiator, and hence allow for multidirectio
heat flow at the mold-shell interface, have been routinely inve
gated with empirical methodologies. Unfortunately, there are
process models of the mold-shell interface that point to topog
phy design criteria for the selection of important parameters s
as amplitude and wavelength.

In light of existing experimental work on the mold surface t
pography effect on shell growth uniformity, Hector et al.@22#
reformulated the Li and Barber@10# model so that nonuniform
heat extraction at the mold-shell interface was due to a sinuso
mold surface that was held at a uniform temperature. Their mo
assumed that the mold was a rigid, perfect conductor of h
Clearly, this was a very restrictive assumption since most cas
processes involve a mold of finite thickness which undergoes t
moelastic distortion. A methodology was presented for the ca
lation of the total contact pressure. It was found that gaps alw
nucleate at the lowest points of the surface troughs, while
evolving distortion of the shell increased the contact pressure
yond the hydrostatic pressure at the highest points of the cr
They also found that gap nucleation time and the mean s
thickness were influenced by the topography wavelength such
gap nucleation was delayed or even prevented over the time fr
of interest with increasing wavelength. Gap nucleation was fa
for a pure iron shell than for a pure aluminum shell, given t
same process conditions.

Based upon the work of Comninou and Dundurs@23#, Zhang
and Barber@24#, and others on steady-state thermoelastic con
problems, it is expected that mold distortion will play an impo
tant role in the gap nucleation process. For example, Comn
and Dundurs@23# found that the interface between two dissimil
thermoelastic half-planes can involve periodic contact and sep
tion zones in addition to a state of uniform contact pressu
Zhang and Barber@24# found that growth of a sinusoidal pertu
bation in the contact pressure between two dissimilar mate
depends upon the direction of heat flow, and, specifically,
distortivity of the materials, which relates the distortion to t
local heat flux. They also found that when the system beco
unstable, the growth of the instability depends upon the spa
wavelength of the perturbation. The work of these authors s
gests that the location of gap nucleation along the mold-shel
terface may be controlled by the wavelength of the perturbatio
the thermal field. In casting, the thermal field at the interface,
hence distortion of both the mold and shell, can be affected by
surface roughness of the mold~in addition to the other effects
such as ingot extraction rates, surface oxides, fluid flow, menis
behavior and surface tension~see@25#!!. In practice, this is typi-
cally a ground finish which consists of a spectrum of roughn
wavelengths. Hence, in some situations gap nucleation may o
at the peaks or crest regions, which suggests planar growth o
Journal of Applied Mechanics
face
the
er

tact
re-

und
s of
the
led
her-
uch
eep

and
en-
s the

x-
nal
sti-
no
ra-
uch

-

idal
del
at.

ting
er-

cu-
ays
the
be-
sts.

hell
that
ame
ter

he

act
r-
nou
r

ara-
re.
-
ials
the
e
es

tial
ug-
in-
in

nd
the

cus

ss
ccur
the

shell thickness, while in others, gap nucleation might occur in
trough or valley regions, which suggests the onset of undula
growth and ultimately, cellular undulation.

The only prior work on the mold distortion problem is due
Yigit @26# who extended the Li and Barber@10# formulation for a
mold of finite thickness with planar surfaces. Yigit@26# examined
only the perturbation quantities resulting from a spatially nonu
form cooling profile along a planar mold surface, and hence he
not examine the evolution of the total contact pressure at
mold-shell interface. It is therefore not possible to draw any
finitive conclusions from his work about gap nucleation at t
mold-shell interface and how the topography wavelength affe
gap nucleation time and location.

The present work is divided into two parts. In this first part, w
use the Hector et al.@22# methodology to reformulate Yigit’s@26#
model of mold distortion. We consider solidification of a pu
metal on a thin, deformable mold having sinusoidal surfaces w
the same wavelength or center-to-center spacing between adj
crests. Both surfaces are of low aspect ratio and hence the rat
the amplitude to the wavelength is much less than one. This r
is used as a perturbation parameter in the analysis since it is
dicative of the extent to which lateral heat flow occurs along
interface due to the modest spatial variation of the topograp
Following Li and Barber@10#, the heat conduction and therma
stress problems in the mold and the shell are coupled along
interface through a pressure-dependent thermal contact resist
The analysis leads to two coupled differential equations for
shell thickness perturbation and a function that represents res
stress. The solutions of these equations are used to calculate
contact pressure perturbation at the mold surface crests. This
lution is valid for all times. A method for calculating series sol
tions of these differential equations is presented: These solut
are valid for short times after the start of solidification. It is show
that the resulting expressions for the shell thickness and con
pressure perturbations reduce to the result developed by He
et al.@22# for the limit of zero mold thickness. In the second pa
we use the theory developed in Part I to examine the gap nu
ation process when the mold and shell materials are combinat
of either pure aluminum, copper, iron, or lead. The effect of m
surface wavelength on gap nucleation time and position is
plored for a given material combination. The concept of a criti
wavelength, which separates those wavelengths that lead to
nucleation at the crests from those that lead to gap nucleatio
the troughs, is introduced. Future development of design crit
for mold surface topographies using the present theoretical m
as a limiting solution for finite element models of more compl
casting processes is discussed.

2 The Thermal Problem
The system to be modeled is shown in Fig. 1. Heat is wi

drawn from the bottom of a thermoelastic mold of mean thickn
h0 . Both the upper surface of the mold, which is contact with t
shell alongy50, and the lower surface aty52h0 , have sinu-
soidal surface topographies of wavelengthl. Molten metal, which
is initially at its fusion temperature,Tf , perfectly wets the upper
surface of the mold att50. The modest spatial variation in th
upper mold surface leads to a corresponding spatial perturba
of the temperature fields in the shell, the mold, and the freez
front once solidification begins. The location of the freezing fro
is denoted bys(x,t). All material properties are assumed to b
constant and independent of temperature.

The temperature field in the solidified shell,Tc(x,y,t), and that
in the mold, Td(x,y,t), are governed by the heat conductio
equation

¹2Tc5
1

kc

]Tc

]t
; ¹2Td5

1

kd

]Td

]t
(1)

which are subject to the following initial and boundary condition
MARCH 2000, Vol. 67 Õ 67
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Tc~x,s,t !5Tf (2)

Kc
]Tc

]y
~x,s,t !5Lcrc

]s

]t
~x,t ! (3)

s~x,0!5 l e1 cos~mx! (4)

Kc
]Tc

]y
~x,y1 ,t !5Kd

]Td

]y
~x,y1 ,t ! ; y15 l e1 cos~mx! (5)

Td~x,y2 ,t !50 ; y252~h01 l e2 cos~mx!! (6)

Kd
]Td

]y
~x,y2 ,t !5Q~x,t ! ; y252~h01 l e2 cos~mx!! (7)

where

RQ~x,t !5Tc~x,y1 ,t !2Td~x,y1 ,t ! ; y15 l e1 cos~mx!
(8)

andQ(x,t) is an unknown heat flux that is to be determined fro
the analysis. Equation~3! defines the energy balance between h
conducted away from the moving interface into the shell and
latent heat released during solidification. Note thatLc is the latent
heat of fusion of the material, and

R~x,t !5R~P~x,t !! (9)

is the pressure-dependent thermal contact resistance, w
P(x,t) is the contact pressure along the mold-shell interface.
reader is referred to Yigit@26# for additional background on Eqs
~2!–~9!. We define

e15a1 / l ; e25a2 / l (10)

as the upper and the lower mold surface aspect ratios, res
tively, wherel 5l/2p51/m anda1 ,a2 are, respectively, the am
plitudes of the upper and lower sinusoidal mold surfaces. Fina
to simplify the analysis, we assume that the Stefan number for
casting material is small, and the heat diffusivity of the mold
infinitely large, i.e., the heat capacity of the mold is zero, in wh
case Eqs.~1! become steady-state heat conduction equations.
also assumed that there is no transversal heat transfer in th
lidified shell and in the mold.

2.1 Perturbation of the Thermal Problem. Due to the
modest spatial variation of the upper mold surface, we may
press the temperature fields,T(x,y,t), shell thickness,s(x,t),
thermal contact resistance,R(P(x,t)), and mold-shell interfacial
heat flux,Q(x,t), as follows:

Fig. 1 Pure metal shell solidifying on a deformable mold with
nominal thickness h 0 and sinusoidal surface topographies with
wavelength l
68 Õ Vol. 67, MARCH 2000
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T~x,y,t !5T0~y,t !1T1~y,t !cos~mx! (11)

s~x,t !5s0~ t !1s1~ t !cos~mx! (12)

R~P~x,t !!5R01R1~P~x,t !!cos~mx! (13)

Q~x,t !5Q0~ t !1Q1~ t !cos~mx!. (14)

We insert Eq.~11! into Eq. ~1! and separate the zeroth-order a
first-order governing thermal equations. We next proceed to
pand each of the temperature fieldsTc(x,y,t),Td(x,y,t) in a Tay-
lor series abouty5s5s0(t)1s1(t)cos(mx), y5y15 l e1 cos(mx),
and y5y252(h01 l e2 cos(mx)), respectively, toO(e). This
gives

Tc~x,s,t !5T0
c~s0~ t !,t !1s1~ t !

]T0
c~s0~ t !,t !

]y
cos~mx!

1T1
c~s0~ t !,t !cos~mx! (15)

Tc~x,y1 ,t !5T0
c~0,t !1 l e1

]T0
c~0,t !

]y
cos~mx!1T1

c~0,t !cos~mx!

(16)

Td~x,y1 ,t !5T0
d~0,t !1 l e1

]T0
d~0,t !

]y
cos~mx!1T1

d~0,t !cos~mx!

(17)

Td~x,y2 ,t !5T0
d~2h0 ,t !2 l e2

]T0
d~2h0 ,t !

]y
cos~mx!

1T1
d~2h0 ,t !cos~mx!. (18)

Equation~8! gives

$Q0~ t !1Q1~ t !cos~mx!%$R01R1~P~x,t !!cos~mx!%

5H T0
c~0,t !1 l e1

]T0
c~0,t !

]y
cos~mx!1T1

c~0,t !cos~mx!J
2H T0

d~0,t !1 l e1

]T0
d~0,t !

]y
cos~mx!1T1

d~0,t !cos~mx!J
(19)

where we have neglected terms higher thanO(e). After substitut-
ing these equations into the boundary conditions given above
separate expressions corresponding to the zeroth-order and
first-order thermal problems: These are listed in the followi
sections.

2.2 The Zeroth-Order Problem.

]2T0
c

]y2 ~y,t !50 ;
]2T0

d

]y2 ~y,t !50 (20)

T0
c~s0 ,t !5Tf (21)

Lcrc
ds0~ t !

dt
5Kc

]T0
c

]y
~s0 ,t ! (22)

Kc
]T0

c

]y
~0,t !5Kd

]T0
d

]y
~0,t ! (23)

T0
d~2h0 ,t !50 (24)

Kd
]T0

d

]y
~2h0 ,t !5Q0~ t ! (25)

where

Q0~ t !5
T0

c~0,t !2T0
d~0,t !

R0
. (26)
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2.3 The First-Order Problem.

]2T1
c

]y2 ~y,t !2m2T1
c~y,t !50 ;

]2T1
d

]y2 ~y,t !2m2T1
d~y,t !50

(27)

s1~ t !
]T0

c

]y
~s0 ,t !1T1

c~s0 ,t !50 (28)

Lcrc
ds1~ t !

dt
5KcF]T1

c~s0 ,t !

]y
1s1~ t !

]2T0
c~s0 ,t !

]y2 G (29)

KcF l e1

]2T0
c

]y2 ~0,t !1
]T1

c

]y
~0,t !G5KdF l e1

]2T0
d

]y2 ~0,t !1
]T1

d

]y
~0,t !G

(30)

T1
d~2h0 ,t !2 l e2

]T0
d

]y
~2h0 ,t !50 (31)

KdF]T1
d

]y
~2h0 ,t !2 l e2

]2T0
d

]y2 ~2h0 ,t !G5Q1~ t ! (32)

where

Q1~ t !5
1

R0~ t ! H l e1F]T0
c

]y
~0,t !2

]T0
d

]y
~0,t !G

1T1
c~0,t !2T1

d~0,t !2Q0~ t !R1J . (33)

Notice that the zeroth-order boundary conditions are identica
that for the unperturbed problem, whereas those for the first-o
problem include terms from the zeroth-order solution. This p
mits the two problems to be solved sequentially.

2.4 The Zeroth-Order Solution. The procedure for solving
the zeroth-order problem may be found in Yigit@26#. We there-
fore summarize the solution without proof.

T0
c~y,t !5Tf1

Q0~ t !

Kc @y2s0~ t !# (34)

T0
d~y,t !5

Q0~ t !

Kd @y1h0# (35)

where

Q0~ t !5
TfK

cKd

R0KcKd1Kds0~ t !1Kch0
(36)

s0~ t !52~zh01R0Kc!

1A~zh0!212R0Kczh01~R0Kc!21
2TfK

c

Lcrc t (37)

and

z5
Kc

Kd . (38)

2.5 The First-Order Solution. The solution to the first-
order thermal problem may be written as

T1
c~y,t !5a1~ t !sinh~my!1a2~ t !cosh~my! (39)

T1
d~y,t !5a3~ t !sinh~my!1a4~ t !cosh~my! (40)

where

a1~ t !5
Q0~ t !

mKc FQ1~ t !

Q0~ t !
cosh~mh0!1e2 sinh~mh0!G (41)
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a2~ t !52
Q0~ t !

mKccosh~ms0! FQ1~ t !

Q0~ t !
cosh~mh0!sinh~ms0~ t !!

1ms1~ t !1e2 sinh~mh0!sinh~ms0~ t !!G (42)

a3~ t !5
Q0~ t !

mKd FQ1~ t !

Q0~ t !
cosh~mh0!1e2 sinh~mh0!G (43)

a4~ t !5
Q0~ t !

mKd FQ1~ t !

Q0~ t !
sinh~mh0!1e2 cosh~mh0!G . (44)

Substituting Eqs.~34! and ~39! into ~29! we obtain

Q1~ t !5
1

cosh~mh0! H rcLc
ds1~ t !

dt
cosh~ms0~ t !!1Q0~ t !

3@ms1~ t !sinh~ms0~ t !!2e2 sinh~mh0!#J (45)

where we have used Eqs.~41! and ~42! for a1(t) and a2(t), re-
spectively. Finally, substituting Eqs.~34!, ~35!, ~36!, ~39!, ~40!,
~45! into Eq. ~33!, and rearranging terms, we obtain

@KcR01s0~ t !1zh0#F 1

cosh~mh0!
~mKcR01z sinh~mh0!!

3cosh~ms0~ t !!1sinh~ms0~ t !!G rcLc

KcTf

ds1~ t !

dt

1H F mKcR0

cosh~mh0!
1z tanh~mh0!Gsinh~ms0~ t !!

1cosh~ms0~ t !!J ms1~ t !1@mKcR0 sinh~mh0!1z#

3
e2

cosh~mh0!
1e1~z21!1mKcR8P1~ t !50 (46)

where we have used the following equation forR1 :

R1~P~x,t !!5R8P1~ t ! (47)

which comes from the Taylor series expansion

R~P~x,t !!5R~P0~ t !1P1~ t !cos~mx!!

5R~P0!1R8~P0!P1~ t !cos~mx! (48)

and

R85
dR~P0!

dP
. (49)

Notice that the differential equation fors1(t) is a function of the
first-order contact pressure,P1(t). In other words, the first-orde
thermal problems are coupled with their mechanical counterpa
In the next section, we will develop the stress field within t
casting and the mold in order to determineP1(t).

3 The Thermal Stress Problem
Since the spatial variation of the upper mold surface leads

corresponding perturbations in the thermal fields and interf
heat flux, we assume the thermal stress distributions in the m
and shell, and the contact pressure, adopt the following forms

s jk~x,y,t !5s jk0~y,t !1s jk~x,y,t !5s jk0~y,t !1s jk1~x,y,t !
(50)

P~x,t !5P0~ t !1P1~ t !cos~mx! (51)

P0~ t !52syy0~y1 ,t ! ; P1~ t !cos~mx!52syy1~x,y1,t ! ;

y15 l e1 cos~mx!. (52)
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As discussed by Li and Barber@10#, the total stress distribution in
the solid shell and in the mold can be expressed as a linear c
bination of a particular solution,s jk

p , that corresponds to the the
mal field, an isothermal solution,s jk

h , which is allowed to vary in
time so as to satisfy time-varying terms in the boundary con
tions, and a residual stress,s jk

r , which is the stress that remains
the solid shell after it is cooled to a uniform temperature a
relieved of all boundary tractions. In general,s jk

r may be sub-
sumed unders jk

h . Once the stress field is determined, thenP1(t)
is obtained from the second of Eqs.~52!. A condition that may
lead to unstable growth of the shell once micro-air gaps nucle
along the mold surface results whenP1(t) increases at a mold
surface crest while simultaneously decreasing in a trough.
present theory assumes that the shell retains contact with the
surface and hence goes only so far as to monitorP1(t) up to air
gap nucleation.

The mechanical boundary conditions for frictionless contac
the upper surface of the mold are

sn1t1
c 50 ; sn1t1

d 50 ; y5y15 l e1 cos~mx! (53)

u̇n1

c 5u̇n1

d ; y5y15 l e1 cos~mx! (54)

wheresn1t1
c ,sn1t1

d are the shear stresses in the (n1 ,t1) coordinate
system that rides along the upper surface of the mold~see Fig. 1!,
and u̇n1

c ,u̇n1

d are the normal velocities of the shell and the mo
respectively. Note that Eq.~54! can only be stated in terms of
time derivative since there is no reference state for displacem
of the solid. Solidification at the freezing front is assumed to oc
in a state of hydrostatic stress

sxx
c 52P0 ; syy

c 52P0 ; sxy
c 50 ; y5s~x,t !

(55)

whereP0 is the molten metal pressure.
Also, frictionless contact is assumed on the lower surface of

mold, and the normal stresses between the solidified shell and
mold are continuous. So

sn2t2
d 50 ; y5y252~h01 l e2 cos~mx!! (56)

sn1

c 5sn1

d ; y5y15 l e1 cos~mx! (57)

wheresn2t2
d is the shear stress in the (n2 ,t2) coordinate system

that rides along the lower surface of the mold. To preserve
equilibrium of the mold as a whole, we must have

syy
d ~x,y1 ,t !5syy

d ~x,y2 ,t !. (58)

3.1 The Particular Solution. The stress field correspondin
to the particular solution can be constructed from the thermoe
tic displacement potential,w i , through~@27#!

2m iui5“w i , ~ i 5c,d! (59)

wherew i(x,y,t) satisfies

¹2w i5
2m ia i~11n i !

12n i Ti ; m i5
Ei

2~11n i !
, ~ i 5c,d!

(60)

andTi is given by the sum of Eqs.~34!, ~39! and ~35!, ~40!. The
superscripti refers to either the shell or mold materials. The stre
and displacement fields corresponding to the particular solu
are then derived from~@27#!

~sxx
i !p52

]2w i

]y2 ; ~syy
i !p52

]2w i

]x2 ; ~sxy
i !p5

]2w i

]x]y

(61)

~ u̇i !y1

p 5
1

2m i

]

]t F]w i

]y G , ~ i 5c,d!
70 Õ Vol. 67, MARCH 2000
om-
-

di-
n
nd

ate

he
old

at

d,

ent
ur

the
the

the

las-

ss
ion

where the rate-dependent form of Eq.~59! has been used~as pre-
viously discussed! and the subscript ‘‘1’’ denotes a first-orde
component. Particular integrals of Eq.~60! are

wc5
mcac~11nc!

m~12nc! H my2Tf

3 F y13~KcR01zh0!

s0~ t !1KcR01zh0
G

1y@a2~ t !sinh~my!1a1~ t !cosh~my!#cos~mx!J (62)

wd5
mdad~11nd!

m~12nd! H my2Tfz

3 F y13h0

z~h01KdR0!1s0~ t !G
1y@a4~ t !sinh~my!1a3~ t !cosh~my!#cos~mx!J . (63)

We can simplify the problem somewhat by adjusting Eqs.~62!
and~63! so that the components of Eq.~54! corresponding to the
particular solution, (u̇c)n1

p and (u̇d)n1

p , are automatically satisfied
We first express the displacement normal to the mold surfac
the planar reference via the following transformation equation

~ u̇i !n1

p 5~ u̇i !y1

p cos~f1!2~ u̇i !x1

p sin~f1! ; ~ i 5c,d! (64)

where

f15
dy

dx
52e1 sin~mx!. (65)

Sincef1!1, Eqs.~64! can be written as

~ u̇i !n1

p 5~ u̇i !y1

p 1e1~ u̇i !x1

p sin~mx! ; ~ i 5c,d!. (66)

Since the zeroth-order solution requires that (u̇i)n1

p 5(u̇i)y1

p , it

is true that (u̇i)x1

p is at least ofO(e) and hence the second term

Eq. ~66! is at least ofO(e2). We may therefore write

~ u̇i !n1

p '~ u̇i !y1

p ; y5y15 l e1 cos~mx! ; ~ i 5c,d! (67)

since we are only interested in terms toO(e). The expression for
(u̇i)y1

p in Eqs.~61!, along with Eqs.~52!, ~63!, and~64! give

~ u̇c!y1

p u l e1 cos~mx!5
ac~11nc!

2m~12nc!

d

dt

3H 2e1Tf~KcR01zh0!

s0~ t !1KcR01zh0
1a1~ t !J cos~mx!

(68)

~ u̇d!y1

p u l e1 cos~mx!5
ad~11nd!

2m~12nd!

d

dt

3H 2ze1Tfh0

z~h01KdR0!1s0~ t !
1a3~ t !J cos~mx!

(69)

which result after we expand the hyperbolic functions in a Tay
series abouty5y15 l e1 cos(mx) and retain terms toO(e). We
can eliminate this unwanted velocity by superposing a suita
harmonic function ontow i in Eqs.~62! and ~63!. Let

~w i !k5Di~ t !sinh~my!cos~mx! , ~ i 5c,d! (70)

whereDi(t) are unknown functions of time. The expression f
(u̇i)y1

p in Eqs.~61! gives

~ u̇i !yk
p 5

d

dt FmDi~ t !

2m i cosh~my!cos~mx!G , ~ i 5c,d!. (71)

In order to eliminate the term on the right-hand sides of Eqs.~68!
and ~69!, we write
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Dc~ t !52
mcac~11nc!

m~12nc! H 2l e1Tf~KcR01zh0!

s0~ t !1KcR01zh0
1

a1~ t !

m J cos~mx!

(72)

Dd~ t !52
mdad~11nd!

m~12nd! H 2l ze1Tfh0

z~h01KdR0!1s0~ t !
1

a3~ t !

m J cos~mx!

(73)

and hence

~ u̇c!yk
p u l e1 cos~mx!52

ac~11nc!

2m~12nc!

d

dt

3H 2e1Tf~KcR01zh0!

s0~ t !1KcR01zh0
1a1~ t !J cos~mx!

(74)

~ u̇d!yk
p u l e1 cos~mx!52

ad~11nd!

2m~12nd!

d

dt

3H 2ze1Tfh0

z~h01KdR0!1s0~ t !
1a3~ t !J cos~mx!

(75)

since cosh(e1 cos(mx))'1. When Eq.~70! is superposed onto Eqs
~62! and ~63!, we obtain

wc5
mcac~11nc!

m~12nc! H my2Tf

3 F y13~KcR01zh0!

s0~ t !1KcR01zh0
G

2
2l e1Tf~KcR01zh0!

s0~ t !1KcR01zh0
sinh~my!cos~mx!

1Fa2~ t !y sinh~my!1a1~ t !S y cosh~my!

2
1

m
sinh~my! D Gcos~mx!J (76)

wd5
mdad~11nd!

m~12nd! H my2Tfz

3 F y13h0

z~h01KdR0!1s0~ t !G
2

2l ze1Tfh0

z~h01KdR0!1s0~ t !
sinh~my!cos~mx!

1Fa4~ t !y sinh~my!1a3~ t !S y cosh~my!

2
1

m
sinh~my! D Gcos~mx!J (77)

which provide the velocity fields~corresponding to the particula
solution! that automatically satisfy Eqs.~54!. The stress field cor-
responding to the particular solution can now be derived via E
~61!, ~76!, and~77!.

3.2 The Homogeneous Solution. We pose the following
form of the zeroth-order homogeneous solution

~syy0
i !h52P0 ; ~sxx0

i !h5Fi~y! ;

~sxy0
i !h50 ; ~ i 5c,d! (78)

where Fi(y) are unknown functions of position. The later
stresses, (sxx0

i )h, are constructed by adding the zeroth-order te
from (sxx

i )p ~determined from Eqs.~61!, ~76!, and~77!! to Fi(y)
as follows:

~sxx0
c !h52

2mcacTf~11nc!

~12nc! F y1KcR01zh0

s0~ t !1KcR01zh0
G1Fc~y!

(79)
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~sxx0
d !h52

mdad~11nd!

~12nd! F 2Tfz~y1h0!

z~h01KdR0!1s0~ t !G1Fd~y!.

(80)

From Eqs.~55!, we have (sxx0
c )h(s0 ,t)52P0 . Hence,

Fc~y!52P01
2mcacTf~11nc!

~12nc!
(81)

and the zeroth-order lateral stress in the shell corresponding to
homogeneous solution is

~sxx0
c !h52P01

2mcacTf~11nc!

~12nc! F s0~ t !2y

s0~ t !1KcR01zh0
G .

(82)

Also

~sxy0
c !h50 ; ~syy0

c !h52P0 . (83)

In similar manner,

Fd~y!52P0 (84)

and the zeroth-order lateral stress in the mold corresponding to
homogeneous solution is

~sxx0
d !h52P02

mdad~11nc!

~12nc! F 2Tfz~y1h0!

z~h01KdR0!1s0~ t !G .
(85)

Also

~sxy0
d !h50 ; ~syy0

d !h52P0 . (86)

The first-order stress field corresponding to the homogeneous
lution is derived from~@28#!

~sxx
i !h5

]2F i

]y2 ; ~syy
i !h5

]2F i

]x2 ;

~sxy
i !h52

]2F i

]x]y
, ~ i 5c,d! (87)

whereF i is the Airy stress function which satisfies the followin
compatibility relation:

]

]t
¹4F i50 , ~ i 5c,d!. (88)

In view of Eqs. ~88!, the time derivative ofF i must be bihar-
monic. It can be verified by substitution that the appropriate for
are

Fc5$@b1~ t !y1b2~ t !#cosh~my!

1@b3~ t !y1b4~ t !#sinh~my!1g~y!%cos~mx! (89)

Fd5$@B1~ t !y1B2~ t !#cosh~my!

1@B3~ t !y1B4~ t !#sinh~my!%cos~mx!. (90)

Note thatb1(t)2b4(t), andB1(t)2B4(t) are unknown functions
of time andg(y) is a time-independent function that represen
residual stress~or the stress in the shell when it is cooled to
uniform temperature and relieved of all boundary tractions!. Us-
ing Eqs. ~87!, ~89!, and ~90!, the homogeneous solution of th
first-order problem becomes

~sxx1
c !h5$@2mb3~ t !1m2~b1~ t !y1b2~ t !!#cosh~my!1@2mb1~ t !

1m2~b3~ t !y1b4~ t !!#sinh~my!1g9~y!%cos~mx! (91)

~sxy1
c !h5m$@b1~ t !1m~b3~ t !y1b4~ t !!#cosh~my!1@b3~ t !

1m~b1~ t !y1b2~ t !!#sinh~my!1g8~y!%sin~mx!

(92)
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~syy1
c !h52m2$@b1~ t !y1b2~ t !#cosh~my!

1@b3~ t !y1b4~ t !#sinh~my!2g~y!%cos~mx! (93)

~sxx1
d !h5$@2mB3~ t !1m2~B1~ t !y1B2~ t !!#cosh~my!

1@2mB1~ t !1m2~B3~ t !y1B4~ t !!#sinh~my!%cos~mx!

(94)

~sxy1
d !h5m$@B1~ t !1m~B3~ t !y1B4~ t !!#cosh~my!

1@B3~ t !1m~B1~ t !y1B2~ t !!#sinh~my!%sin~mx!

(95)

~syy1
d !h52m2$@B1~ t !y1B2~ t !#cosh~my!

1@B3~ t !y1B4~ t !#sinh~my!%cos~mx! (96)

where the prime denotes differentiation with respect toy. The
components of the total stress field are obtained through supe
sition of the particular and homogeneous stress fields via Eq.~50!.

3.3 Determination of thebi and Bi . Thebi andBi in Eqs.
~89! and ~96! are determined by requiring the total stress field
satisfy Eqs.~53! and~55!–~58!, and the homogeneous stress fie
to satisfy Eq.~54!. The total shear stress in the mold surfa
system may be written in terms of the planar reference via

sn1t1
c ~x,y1 ,t !5sxy

c ~cos2~f1!2sin2~f1!!

1~syy
c 2sxx

c !sin~f1!cos~f1!

'sxy
c 2~syy

c 2sxx
c !e1 sin~mx!. (97)

Similarly,

sn1t1
d ~x,y1 ,t !5sxy

d ~cos2~f1!2sin2~f1!!

1~syy
d 2sxx

d !sin~f1!cos~f1!

'sxy
d 2~syy

d 2sxx
d !e1 sin~mx!. (98)

The total shear stress at the bottom surface of the mold ma
written in terms of the planar reference via

sn2t2
d ~x,y2 ,t !5sxy

d ~cos2~f2!2sin2~f2!!

1~syy
d 2sxx

d !sin~f2!cos~f2!

'sxy
d 1~syy

d 2sxx
d !e2 sin~mx! (99)

where we have used

f25
dy

dx
5e2 sin~mx!. (100)

The total normal stresses relative to the planar reference of
upper surface of the mold become

sn1

c ~x,y1 ,t !5sxx
c sin2~f1!1syy

c cos2~f1!

22sxy
c sin~f1!cos~f1!

'syy
c 12e1sxy

c sin~mx! (101)

sn1

d ~x,y1 ,t !5sxx
d sin2~f1!1syy

d cos2~f1!

22sxy
d sin~f1!cos~f1!

'syy
d 12e1sxy

d sin~mx! (102)

sn2

d ~x,y2 ,t !5sxx
d sin2~f2!1syy

d cos2~f2!

22sxy
d sin~f2!cos~f2!

'syy
d 22e2sxy

d sin~mx!. (103)

Equations~53!, ~61!, ~76!, ~92!, and~97! give
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b1~ t !1mb4~ t !1g8~0!5
2mcace1Tf~11nc!

m~12nc!
(104)

where we have retained terms toO(e). The elastic constitutive
law for plane strain~where the associated rigid-body displac
ments have been neglected! is

~ u̇i !n1

h '~ u̇i !y1

h 5
11n i

Ei H ~12n i !E ~ ṡyy1
i !hdy

2n iE ~ ṡxx1
i !hdyJ , ~ i 5c,d!. (105)

Application of Eq.~54!, using Eqs.~91!, ~92!, and~94!, ~96! gives

~11nc!Ed

~11nd!Ec Fb4~ t !2~122nc!
b1~ t !

m G5B4~ t !2~122nd!
B1~ t !

m
.

(106)

Application of the expression forsn1t1
d in Eqs.~53!, using Eq.~98!

gives

B1~ t !52mB4~ t ! (107)

We expand each of Eqs.~55! in a Taylor series about the mea
position of the freezing front,s0 , beginning withsxx

c . Hence

sxx
c ~x,s,t !5sxx

c ~x,s0 ,t !1~s2s0!
]sxx

c ~x,s0 ,t !

]y
1 . . . 52P0 .

(108)

We have

]sxx
c ~x,s0 ,t !

]y
52

2mcacTf~11nc!

~12nc!@s0~ t !1KcR01zh0#
10~e!

(109)

wheresxx
c 5(sc)xx

p 1(sc)xx
h is derived from Eqs.~61!, ~76!, and

~91!. Equation~108! may therefore be written as

sxx
c ~x,s,t !5sxx

c ~x,s0 ,t !2
2mcacs1~ t !Tf~11nc!

~12nc!@s0~ t !1KcR01zh0#
cos~mx!

52P0 . (110)

Substitution of the sum of (sc)xx
p and Eq.~91! into Eq.~110! gives

F2b1~ t !

m
1b3~ t !s0~ t !1b4~ t !Gsinh~ms0~ t !!

1Fb1~ t !s0~ t !1b2~ t !1
2b3~ t !

m Gcosh~ms0~ t !!1
g9~s0!

m2

5
mcac~11nc!

m2~12nc! H 2TfFs1~ t !2e1~KcR01zh0!sinh~ms0~ t !!

s0~ t !1KcR01zh0
G

1~2 cosh~ms0~ t !!1ms0 sinh~ms0~ t !!!a2~ t !

1~sinh~ms0~ t !!1ms0 cosh~ms0~ t !!!a1~ t !J . (111)

Following the same procedure forsxy
c andsyy

c gives, respectively,

@m cosh~ms0~ t !!1m2s0~ t !sinh~ms0~ t !!#b1~ t !

1m2 sinh~ms0~ t !!b2~ t !

1@m sinh~ms0~ t !!1m2s0~ t !cosh~ms0~ t !!#b3~ t !

1m2 cosh~ms0~ t !!b4~ t !1mg8~s0!

5
mcac~11nc!

~12nc! H ~sinh~ms0~ t !!1ms0~ t !cosh~ms0~ t !!!a2~ t !

1ms0~ t !sinh~ms0~ t !!a1~ t !
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2e1Tf~KcR01zh0!cosh~ms0~ t !!

s0~ t !1KcR01zh0
J (112)

@b1~ t !s0~ t !1b2~ t !#cosh~ms0~ t !!

1@b3~ t !s0~ t !1b4~ t !#sinh~ms0~ t !!1g~s0!

52
mcac~11nc!

m2~12nc! H F2e1Tf~KcR01zh0!

s0~ t !1KcR01zh0
2ms0~ t !a2~ t !G

3sinh~ms0~ t !!2@ms0~ t !cosh~ms0~ t !!

2sinh~ms0~ t !!#a1~ t !J . (113)

Application of Eq.~57!, using Eqs.~101!, ~102! gives

B2~ t !5b2~ t !1g~0!. (114)

Application of Eq.~56!, using Eqs.~99! gives

@m cosh~mh0!1m2h0 sinh~mh0!#B1~ t !2m2 sinh~mh0!B2~ t !

2@m2h0 cosh~mh0!1m sinh~mh0!#B3~ t !

1m2 cosh~mh0!B4~ t !

52
mdad~11nd!

~12nd! H ~sinh~mh0!1mh0 cosh~mh0!!a4~ t !

2mh0 sinh~mh0!a3~ t !

1
2ze1Tfh0

z~h01KdR0!1s0~ t !
cosh~mh0!J (115)

Finally, application of boundary condition Eq.~58! gives

2B2~ t !1@B2~ t !2B1~ t !h0#cosh~mh0!

2@B4~ t !2B3~ t !h0#sinh~mh0!

52
mdad~11nd!

m2~12nd! H 2
2ze1Tfh0 sinh~mh0!

z~h01KdR0!1s0~ t !

2mh0 sinh~mh0!a4~ t !

2@sinh~mh0!2mh0 cosh~mh0!#a3~ t !J (116)

where we expanded Eqs.~56! and~58! in a Taylor series about the
mean thickness of the mold,2h0 , and have retained terms t
O(e).

Equations~104!, ~106!, ~107!, ~111!–~116! determine the un-
known residual stress functiong(s0) and eight unknown time-
dependent coefficients. These nine equations can be reduced
single differential equation through elimination of the unknow
functionsb1(t)2b4(t), B1(t)2B4(t). As a result of this proce-
dure, we obtain a second-order ordinary differential equation
the unknown residual stress function,g(s0), as follows:

g9~s0!1u1g8~s0!1u2g~s0!5u3

ds1~ t !

dt
1u4s1~ t !1u5 .

(117)

Note that we have imposed the arbitrary conditionsg(0)
5g8(0)50 since the arbitrary constants implied by the gene
solution of Eq.~117! simply determine the partition of an arb
trary, time-independent biharmonic function between the t
functionsF1 andF2 and have no effect on the physical quantiti
predicted by the solution. Onceg(s0) is known, we can recove
b2(t) and the remainingbi(t) andBi(t) through back substitution
Finally, we determine the contact pressure perturbation at
crests of the upper surface of the mold~using the expression fo
P1(t) in Eqs.~52!! via

P1~ t !5m2b2~ t ! (118)
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where

b2~ t !5u6

s1~ t !

dt
1u7s1~ t !1u8g~s0!1u9g8~s0!1u10.

(119)

Note that the coefficientsu i ( i 51, . . . ,10) arefunctions ofs0(t)
and the material and casting process parameters. Dimensio
forms of these coefficients are listed in the Appendix.

4 Dimensionless Formulation for Perturbation Quan-
tities

To facilitate the numerical calculations associated with the
sults presented in the companion paper, we found it convenien
rewrite Eqs.~46! and ~117! in terms of the following dimension-
less quantities:

b5
m2KcTf

rcLc t ; h5ms0~ t !5my ;

H05mh0 ; s̄1~b0~h!!5
ms1~ t0~y!!

e1

ḡ~h!5
m2~12nc!

Ecace1Tf
g~y! ; R̄05mKcR0 ;

R̄85
EcacTfR8

~12nc!R0
; T̄1~0,h!5

T1~0,t !

e1Tf

b̄2~h!5
m2~12nc!

Ecace1Tf
b2~ t ! ; P̄~h!5

~12nc!

Ecace1Tf
P1~ t ! ;

Q̄0~h!5
Q0~ t !

mKcTf

Q̄1~h!5
R0Q1~ t !

e1Tf
; k5

e2

e1
; j5

Edad~12nc!

Ecac~12nd!
;

g5
Ed~11nc!

Ec~11nd!
. (120)

Note that we defineb0(h) as the dimensionless time when th
mean melt line reaches the positionY5my. The ratio of the am-
plitudes of the mold surfaces is denoted byk.

5 Numerical Solution Procedure for the Contact Pres-
sure Perturbation

The dimensionless forms of Eqs.~46! and~117! are as follows:

v1s̄18~h!1v2s̄1~h!1v3ḡ~h!1v4ḡ8~h!1v550 (121)

ḡ9~h!1v6ḡ8~h!1v7ḡ~h!5v8s̄18~h!1v9s̄1~h!1v10
(122)

The dimensionless contact pressure is

P̄1~h!5b̄2~h! (123)

where

b̄2~h!5t1s̄18~h!1t2s̄1~h!1t3ḡ~h!1t4ḡ8~h!1t5 .
(124)

The coefficientsv i ( i 51, . . . ,10) andt j ( j 51, . . . ,5) arelisted
in the Appendix. Note that in Eqs.~121!, ~122!, and ~124! ~8!
denotes differentiation with respect toh, and we have used

ds̄1

dh
5@h1R̄01zH0#

ds̄1

db
(125)

in order to write the equations as a function ofh only.
The second-order differential equations with variable coe

cients, Eqs.~121! and~122!, which must be solved prior to deter
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mining P̄1(h), can be reduced to a single higher-order differen
equation and solved by numerical methods described in Li
Barber@10#. An alternative approach is to first write these equ
tions in the state-space form, and then solve them simultaneo
~@28#!. Defining the state variables as

x15 s̄1 ; x25ḡ~h! ; x35ḡ8~h!. (126)

We can then write Eqs.~121! and ~122! in the following form

x185e1x11e2x21e3x31e4 (127)

x285x3 (128)

x385e5x11e6x21e7x31e8 (129)

where the coefficientsei ( i 51, . . . ,8) arefunctions ofh and the
material and casting process parameters. Note that in Eqs.~127!–
~129!, ~8! denotes differentiation with respect toh.

The governing first-order differential equations are linear a
have three initial conditions. In order to be able to compare
predictions of this work to the limiting case of a rigid mold~see
@22#! we adopt the same initial conditions used by these auth
In the present formulation, this requiresx151, x250, and x3
50 whenh is very small but finite.

The solution is obtained by integrating Eqs.~127!–~129! with
the given initial conditions. A variable step, variable ord
predictor-corrector algorithm suitable for stiff problems is us
for this purpose~@29#!.

6 Solution for h, H 0™1 and the Rigid Mold Limit
It is important to check that Eq.~123! reduces to the resul

previously obtained by~@22#! for solidification on a rigid mold~or
e

l
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rigid, perfectly conducting foundation! with a sinusoidal surface
In addition, we wish to examine the relative importance of t
coupling process at short times after the start of solidification.
this purpose, we evaluate Eqs.~121! and~122! using the following
series solutions:

s̄1~h!511(
i 51

N

Âih
i (130)

ḡ~h!5(
i 51

N

B̂i 11h i 11 (131)

where h!1. Note that the time-independent term in Eq.~130!
accounts for the fact that the thin shell is compliant to the m
surface at initial time. Solutions for the unknown constant coe
cients,Âi and B̂i , are obtained by first inserting Eqs.~130! and
~131! into Eqs.~121! and~122!, then replacing each transcende
tal function with its series form, and finally by writing

1

h1R̄0

5
1

R̄0
S 12

h

R̄0

1
h2

R̄0
2
2••• D . (132)

Equation~123! is then evaluated using the series expressions
s̄1(h) andḡ1(h). Although the resulting expression forP̄1(h) for
arbitrarily largeH0 is too lengthy to report here, we consider th
limiting case ofH0!1, for which we retain terms to orderH0
after replacing hyperbolic functions of argumentH0 with their
Taylor series expansions. ForN54, the contact pressure pertu
bation at the highest point of a crest is
P̄1~h!5
h2

2~R̄01zH0!
2

1

60~12nc! F 10R̄0$6~12nd!jz21g~12nc!~31z1kz!%

2H0H jz~12nd!@~625k!R̄0
2210~142k!z2#

15g~12nc!@~R̄0
228z2!k22z~314z!#

J G h3

~R̄013zH0!gR̄0
2

1
1

48~12nc!
FH0H g~12nc!@3~813z13kz!24R̄0

2#

23jz2~72k!~12nd!
J 26~12nd!jzR̄0G h4

gH0R̄0
3

2
1

60~12nc! F H0H jz@24R̄016~1712k!z2R̄0
2~22R̄8281z!#

22g~12nc!@2R̄0
2~11z1kz!23~51z1kz!#

J
212jzR̄0

G h5

gH0R̄0
4

. (133)
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The first ~quadratic! term in Eq. ~133! does not change in the
course of imposing the limit of very smallH0 . Note that the
denominator in this term consists of the sum of the mean re
tance of the mold-shell interface,R̄0 , and the thermal resistanc
of the mold, viz.,zH0 .

In the limit H0→0, or, equivalentlyz→0, Eq.~133! reduces to
the rigid mold result previously determined by Hector et al.@22#.
For N55, P̄1(h) at the highest point of a crest in a rigid mo
surface is

P̄1~h!5
h2

2R̄0

2
h3

2R̄0
2

1
~62R̄0

2!h4

12R̄0
3

2
~1522R̄0

2!h5

30R̄0
4

1
~72025~419R̄8!R̄0

2132R̄0
4!h6

1440R̄0
5

1 . . . . (134)

The limiting form of s̄1(h) was also obtained from Eqs.~122! and
sis-

d

~123!. Series expressions similar to Eq.~134! can be derived for
Q̄1(h) andT̄1(0,h) following the procedure outlined above. Not
that Eqs.~133! and~134! were derived with a symbolic processo

We observe that the contact resistance sensitivity,R̄8, first ap-
pears in the coefficient ofh5 of Eq. ~133! for the deformable
mold. In the case of Eq.~134! ~i.e., for the rigid mold!, R̄8 first
appears in the coefficient ofh6. Hence, for sufficiently short times
after the start of solidification, the evolution of the contact pre
sure perturbation for both the rigid mold and the deformable m
is essentially controlled through uncoupled physics since the
sitivity is more of a longer time effect. We shall address this iss
more extensively in the companion paper.

7 Gap Nucleation Criterion
Determination of the conditions for gap nucleation can

achieved through examination ofPtr , which is the ratio of the
total contact pressure at the lowest points of the troughs,P, to the
Transactions of the ASME
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mean pressure,P0 . Since we shall be interested in specific mol
shell material combinations in Part II, we consider the dime
sional forms of these quantities. Hence

Ptr5
P

P0
512

P1

P0
. (135)

Note that forP1 /P0→1, the following condition, which is de-
rived in Hector et al.@22#, must be met:

2
R8P0

R0
!1. (136)

This limits the proposed gap nucleation analysis to either wea
coupled systems, or the extreme case of a fully uncoupled sys
All other perturbation quantities are required to be much less t
one.

Gap nucleation occurs when

Ptr50. (137)

Gap nucleation at the troughs will indicate the possibility of
regular growth of the shell since contact will simultaneously
crease at the crests~the sign in front ofP1 will positive, rather
than negative, due to the cos(mx) term in Eq.~51!!. Beyond gap
nucleation time, the present model is no longer valid since it c
not account for continued growth of the gaps and the shell.

8 Conclusions
A theoretical methodology has been developed for the purp

of examining the effect of mold surface wavelength and mo
shell material properties on gap nucleation in pure metal solid
cation processes. A metal shell is assumed to solidify on a
mold having sinusoidal surfaces of equivalent wavelengths.
thermal and mechanical fields in the shell are coupled throug
pressure-dependent thermal contact resistance. This leads to
of coupled differential equations for the shell thickness pertur
tion and a function that represents residual stress. The con
pressure along the mold-shell interface is determined both thro
numerical solution of these equations and through appropriate
ries solutions. For the numerical solution, there is no restriction
time, whereas the series solution is limited to small times after
start of solidification. The series solution was used to demonst
that the contact pressure for the deformable mold problem red
to that for a rigid, perfectly conducting foundation in the limit o
zero mold thickness. It was also found through examination
each of the series terms that the coupling effect is more appro
ate at longer solidification times for both the rigid foundation a
deformable mold problems: If gap nucleation occurs during t
time frame, it is primarily controlled through uncoupled physic

In the companion paper~Part II!, we shall use the results of th
theoretical methodology developed herein to examine the ev
tion of the contact pressure in systems where the mold-shell
terials are combinations of pure aluminum, copper, iron, or le
Based upon experimental evidence that periodic mold topo
phies can have a positive influence on the growth of the shell,
shall examine the gap nucleation process as a function of m
surface wavelength. We shall specifically focus on the effect
the wavelength has on the time and location of gap nucleatio
controlled through variation of the contact pressure at the m
shell interface. Additional material parameters such as the dis
tivity shall also be examined. The overall motivation for this wo
is to provide not only theoretical evidence for a wavelength eff
on shell growth~within the restrictions placed upon the theoretic
model!, but also to stimulate effort into the development of qua
titative design criteria for casting mold surfaces through furt
theoretical and experimental work.
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Appendix

Coefficients of Eqs. „121…–„124…. The coefficientsv i ( i
51, . . . 10) andt j ( j 51, . . . ,5) inEqs.~121!–~124! are

h52~zH01R̄0!1Az2H0
212R̄0zH01R̄0

212b ;

Q̄05
1

R̄01h1zH0

(A1)

Z15cosh~h! ; Z25sinh~h! ; Z35cosh~H0! ;

Z45sinh~H0! (A2)

Z55hZ112Z2 ; Z652Z11hZ2 ; Z75hZ21Z1 ;

Z85Z21hZ1 (A3)

Z9521 ; Z1052~Z41H0Z3! ; Z1152~122nc! ;

Z125
1

g
(A4)

Z1352~122nd!Z12 ; Z14512
Z3Z41H0

Z41H0Z3
;

Z155
Z11~H0

22Z4
2!

~Z122Z13!Z10
(A5)

Z165
Z15

Z11
; Z175

1

2
~h2Z1Z2! ;

Z185Q̄0S 12Z1
21

Z2
2

2 D ; Z1952Q̄0~R̄01zH0! (A6)

Z2052
1

2
Z2

2 ; Z2152
1

2
Q̄0~Z1Z21h! ;

Z225
1

2
~h2Z1Z2! ; Z2352

Z2
2Q̄0

2
(A7)

Z2452
1

2
zjZ1

Z4
2

Z3
; Z2552

1

2
zjQ̄0Z2

Z4
2

Z3
(A8)

Z2652
kzj

2Z3
Q̄0~Z41H0Z3!2zjH0Z3Q̄0 ;

Z2752
1

2
zjZ1S H0Z4Z4

Z3
1Z42H0Z3D (A9)

Z2852
1

2
zjZ2Q̄0S H0Z4

2

Z3
1Z42H0Z3D ;

Z2952zjH0Q̄0Z42
kzj

2Z3
H0Z4Q̄0 (A10)

Z305Z271
H0Z4Z24

Z10
; Z315Z281

H0Z4Z25

Z10
;

Z325Z291
H0Z4Z26

Z10
(A11)
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Z335
Z30

Z152Z16
; Z345

Z31

Z152Z16
; Z355

Z322Z16Z9

Z152Z16

(A12)

Z365Z172~Z52Z2!Z33 ; Z375Z182~Z52Z2!Z34
(A13)

Z385Z19Z22Z2Z92~Z52Z2!Z35 ; Z395Z202~Z72Z1!Z33

(A14)

Z405Z212~Z72Z1!Z34 ; Z415Z19Z12Z1Z92~Z72Z1!Z35

(A15)

Z425Z222~hZ12Z2!Z33 ; Z435Z232~hZ12Z2!Z34

(A16)

Z445Z19Z22Z2Z92~hZ12Z2!Z35 ;

Z455Z362
Z6Z42

hZ2
; Z465Z372

Z6Z43

hZ2
(A17)

Z475Z382
Z6Z44

hZ2
; Z485Z392

Z8Z42

hZ2
;

Z495Z402
Z8Z43

hZ2
; Z505Z412

Z8Z44

hZ2
(A18)

Z515
Z14

Z152Z16
; Z525Z12~Z52Z2!Z51 ;

Z535Z22~Z72Z1!Z51 (A19)

Z545Z12~hZ12Z2!Z51 ; Z555Z522
Z6Z54

hZ2
;

Z565Z532
Z8Z54

hZ2
(A20)

Z575~R̄01h1zH0!F 1

Z3
~R̄01zZ4!Z11Z2G ;

Z585S R̄0

Z3
1

zZ4

Z3
DZ21Z1 (A21)

Z595
k

Z3

~R̄0Z41z!1z21 ; v15
1

Q̄0

S Z571
R̄0R̄8Z48

Z56
D ;

v25Z581
R̄0R̄8Z49

Z56
(A22)

v35
R̄0R̄8Z8

Z37hZ2
; v452

R̄0R̄8

Z56
; v55

R̄0R̄8Z50

Z56
1Z59 ;

v652
Z55

Z56
; v75

Z55Z8

hZ56Z2
2

Z6

hZ2
(A23)

v85
1

Q̄0

S Z452
Z55Z48

Z56
D ; v95Z462

Z55Z49

Z56

;

v105Z472
Z55Z50

Z56
(A24)

t15
Z48

Q̄0Z56

; t25
Z49

Z56

; t35
Z8

hZ2Z56

;

t452
1

Z56
; t55

Z50

Z56
(A25)
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Critical Wavelengths for Gap
Nucleation in Solidification—
Part II: Results for Selected
Mold-Shell Material
Combinations
In this second part, we examine the contact pressure ratio, Ptr , at the lowest points of the
upper mold surface troughs in a directional solidification process using the theore
methodology developed in Part I. Since there is ample experimental evidence th
mold surface topography affects gap nucleation at the mold-shell interface and the
formity of the shell, we explore how the wavelength of the upper mold surface impac
evolution of Ptr for specific material combinations and process parameters. For
purpose, the mold-shell materials are assumed to be combinations of four pure mate
viz., aluminum, copper, iron and lead: these materials offer a wide range of thermal
mechanical properties. Critical wavelengths, for which Ptr and its time derivative simul-
taneously equal zero, are predicted for all mold-shell material combinations. The t
retical model also predicts the existence of wavelength bands which are delimite
upper and lower critical wavelengths. All wavelengths that lie within the bands lea
gap nucleation, whereas all wavelengths that lie outside of the bands do not. The e
of distortivity ratio, which is a measure of the extent to which the mold-shell inter
deforms under a given thermal loading, and selected process parameters (such
mean mold thickness, contact resistance, and pressure) on bandwidth size, are cons
in detail. Extensions of the present work to more sophisticated models that might le
rudimentary mold topography design criteria are considered.@S0021-8936~00!03301-8#
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1 Introduction
In the companion paper, a theoretical methodology was de

oped for an idealized solidification process in which a quiesc
bath of a pure molten metal solidifies on a deformable mold
finite thickness. The mold was assumed to be fabricated fro
pure metal. In order to examine a possible wavelength effec
the gap nucleation process at the mold-shell interface, the m
surfaces were assumed to follow a sinusoidal lay of the sa
wavelength, but with differing amplitudes. This assumption,
though idealized, follows the spirit of ground surface finishes u
in practice and unidirectional groove topographies tested in
experimental literature. Two coupled differential equations w
derived for the thickness perturbation in the shell and a func
that represents residual stress. A numerical solution proce
was developed from which the time variation of the contact pr
sure perturbation at the crests of the mold surface could be
tained. A method for solving the coupled differential equations
a series solution was also developed, and a solution for short t
and very thin molds was derived. It was shown that this solut
reduced to the rigid mold solution: This provided the confiden
needed to proceed with the numerical solution of the consider
more complicated deformable mold problem. The series solu
also implied that thermomechanical coupling along the mold-s
interface becomes more significant at later stages of solidifica
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~and hence does not play a prominent role in the process du
the earliest stages of solidification!. A criterion for gap nucleation
at the lowest points of the troughs in the mold surface was p
sented in anticipation of our examination of selected mold-sh
material combinations in this second part.

Motivation for the theoretical methodology presented in Par
and the associated predictions we shall examine in the pre
paper, was largely provided by the experimental literature cited
Part I. With respect to the present paper, the most important w
on the mold topography wavelength effect in solidification is th
of Murakami et al.@1#, and their results deserve further comme
tary. Following Singh and Blazek@2#, who noticed uneven shel
formation during continuous casting of iron-carbon alloys, M
rakami et al.@1# conducted a series of immersion~or dip! tests in
which water-cooled copper plates, with a~presumably! smooth
surface finish, were immersed in a bath of molten steel with
specified carbon concentration over a controlled time period. T
found that a 0.10–0.18wt percent C alloy, or hypoperitectic st
exhibited prominent thickness nonuniformities on the molten s
side of the ingots: The authors coined the term ‘‘tortoise sh
patterns,’’ since they resembled the shell of a tortoise. These
terns, which are the ‘‘humps’’ discussed in Part I of the pres
work ~@3#!, formed during the initial stages of solidification. Ir
regular distortion of the shell occurred during thed /g transforma-
tion that is characteristic of hypoperitectic steels. The distort
occurred at regular intervals due to the hydrostatic pressure o
residual molten steel. Gap nucleation resulted leading to con
ued growth of the tortoise shells during the early stages of so
fication. It was found that the wavelength of the tortoise she
exhibited a linear deviation from the gap wavelength at the mo
shell interface~about 10 mm! since the tortoise shells increased
size with solidification time.
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Murakami et al.@1# proposed that periodic grooves in the mo
surface, which led to gaps of a controlled size along the mo
shell interface due to imperfect wetting of the molten metal,
sulted in a number of important improvements. Perhaps the m
significant improvements were more uniform contact along
mold-shell interface, and a reduction in crack nucleation in
ingot due to slower, but more uniform heat extraction. To test
hypothesis, the immersion tests were repeated for hypopert
steels using casting molds with machined grooves. A key par
eter that was investigated was the groove pitch or wavelength
all tests, the depth or amplitude of the topographies was held fi
at 0.5 mm. Both longitudinal and lattice-type grooves were fou
to reduce the size of the tortoise shell patterns, with the lat
pattern generating a more uniform shell thickness than the lo
tudinal pattern. By conducting a series of experiments wherein
mold wavelength was varied up to 30 mm~holding all other pro-
cess parameters constant for each experiment!, Murakami et al.
found that a 5 mm wavelength led to the most uniform growth
the shell, with a near order-of-magnitude improvement in the s
thickness uniformity compared with corresponding results us
wavelengths of 0.1 mm and 30 mm. The authors observed
this corresponded to one-half the wavelength of the tortoise sh
associated with the most extreme case of irregular shell gro
over the same time interval. This behavior suggested the poss
ity of a wavelength selection process wherein the system ‘‘pick
off’’ a mold surface wavelength or band of wavelengths such t
the shell grew with greater uniformity. Experiments similar
those of Murakami et al., which revealed analogous behavior
aluminum alloys, were reported by Weirauch and Giron@4#.

Wavelength selection processes are often associated with i
bilities commonly observed in fluids and solids: A disturbance
the boundary conditions leads to a specific size or extent o
feature that is characteristic of the affected system. For exam
the familiar Bénard convection cells that result from buoyanc
driven instabilities exhibit a periodicity due to a selection proc
~@5#!. Displaced ridge waviness during single asperity plowing
metal alloys~@6#!, chatter in mechanical contacts~@7#!, bubble
nucleation in gummed wine labels~@8#!, and buckling of structural
members, such as plates and shells~@9#!, all involve a wavelength
selection process. Based upon the existence of wavelength s
tion processes in these and other physical systems, Richmond@10#
proposed the existence of critical mold topography waveleng
for gap nucleation in solidification processes. According to Ri
mond’s definition, the wavelength of a heat extraction profile
‘‘critical’’ if it leads to zero values of the mold-shell contact pre
sure and its time derivative at those regions of the mold-s
interface where heat extraction is least. For a smooth mold sur
~or at least one with no prominent periodicity!, the perturbations
in heat extraction result from stochastic variations in the mo
shell interface heat flux due to a variety of process-related co
tions and material properties/metallurgical transformations.
equally random arrangement of thickness irregularities in the s
results during the early stages of solidification. As the shell thi
ens, however, the boundary conditions at the mold-shell inter
have a diminishing impact on the growth of irregularities at t
freezing front. In the idealized case of a mold surface with
purely sinusoidal topography~for example!, the controlling factor
is the topography geometry, since this creates a spatial pertu
tion in the heat extraction profile. A critical wavelength leads
the simultaneous occurrence of zero values of the mold-shell
tact pressure and its time derivative at the lowest points of
mold surface troughs. Hence, a wavelength is critical if

Ptr5
dPtr

dt
50 (1)

where Ptr is the contact pressure at the lowest points of
troughs. At the same time, the contact pressure increases a
highest points of the surface crests. The mismatch in contact p
sure can establish the right conditions for the onset of irreg
78 Õ Vol. 67, MARCH 2000
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growth, since heat extraction is diminished at the thinnest sect
of the shell~i.e., directly above the lowest points of the trough!,
while heat extraction beneath the thickest sections of the s
~i.e., directly above the highest points of the crests! is improved
due to improved contact. Richmond@10# further proposed that
quantitative criteria are needed for the selection of waveleng
that minimize irregular shell growth by avoiding those wav
lengths deemed critical, according to his definition. Such crite
will allow casting process engineers to design mold surfaces
much the same way that optical engineers design antireflec
coatings~for example!. At the present time, no criteria of this typ
are available for even the most rudimentary casting process.

It is the purpose of the present paper to examine the mold-s
contact pressure~as predicted by the theoretical framework in Pa
I! and what it infers about gap nucleation along the mold-sh
interface. We shall avoid the complicated phenomena associ
with mold movement relative to the mold metal, imperfect wetti
of the molten metal, and shell deformation due to metallurgi
transformation~all of which were part of the Murakami et al.@1#
experiments!: These and related phenomena will ultimately ha
to be incorporated into future models in order to obtain a be
grasp on the reality of those solidification systems where they
important. We wish to specifically focus on the mold-shell ma
rial combination influence on the gap nucleation process at
mold-shell interface. For this purpose, the mold and shell mat
als are assumed to be one of four pure metals. We calculate
contact pressure ratio,Ptr , at the lowest points of the troughs i
the mold surface and examine the impact of the mold conducti
and upper mold surface wavelength onPtr for an aluminum shell
solidifying on a mold consisting of one of the remaining thr
materials. We also examine the role that distortivity plays in
gap nucleation process since this parameter is responsible
much of the rich behavior of thermoelastic contact mechan
~@11#!. Critical wavelengths are sought following the definitio
proposed by Richmond@10#. Conditions for the existence o
wavelength bands that are bounded by two critical waveleng
~one being larger than the other! are identified for a given mold-
shell material combination. The bands are shown to consist
continuous spectrum of wavelengths that promote gap nuclea
Wavelengths that lie outside of the bands do not lead to
nucleation.

The impact of selected process parameters on the width of
bands is explored through variation of the mean pressure of
molten metal, the mean mold thickness, the mean contact re
tance, the amplitude of the upper surface of the mold~in contact
with the shell!, and the ratio of the amplitudes of the mold su
faces for a fixed wavelength. Finally, extensions to the pres
theoretical model that will be necessary in the course of deve
ing quantitative design criteria for casting mold surface topog
phies are discussed.

2 Material Properties and Process Parameters

We wish to examine the evolution ofPtr ~defined by Eq.~135!
of Part I! for systems where the mold and shell materials
combinations pure aluminum, iron, copper, and lead. The ma
als properties used in the calculations are listed in Table 1 al
with pertinent references to those properties. Note that the p
erties for pure aluminum are taken from Richmond et al.@12#. The
symbolsTf , K, r, L, E, by a, andn denote the fusion temperature
thermal conductivity, density, latent heat, Young’s modulus, th
mal expansion coefficient, and Poisson’s ratio, respectively.
though it is assumed that each property is a temperat
independent constant, most of the reported values were meas
close to the melting temperature of each material. For more in
mation on the temperature-dependence of these materials
reader is referred to Heinlein et al.@13#.

The quantities represented in each of the following figures w
obtained through conversion to dimensional forms via the dim
sionless quantities defined in Eq.~120! of Part I. As discussed in
Transactions of the ASME
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Table 1 Material properties for pure aluminum, iron, copper, and lead at the fusion temperature

Material

Al Fe Cu Pb

Property Value Value Fe Reference Value Cu Reference Value Pb Refer

Tf ~°C! 660 1536 @14# 1084 Same as Fe 327.5 Same as F

K S W

m•°CD 229.4 36.2 @15# 345.4 Same as Fe 32.7 Same as F

r S kg

m3D 2650 7265 @16# 7938 @17# 10665 @18#

L S 105
J

kgD 3.9 2.7 @19# 2.0 Same as Fe 0.23 Same as F

E (1010 Pa) 6.0 14.4 @20# 6.4 @21# 0.852 @22#
a(1026 °C21) 37.8 23.4 @23# 26 Same as Fe 37.1 Same as F
n 0.33 0.33 @20# 0.37 @24# 0.35 Assumed
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Part I, the coupling effect is likely to play a more prominent ro
at longer times in solidification processes wherein gap nuclea
occurs at much longer times~due, for example, to high values o
the mean contact pressure from the molten metal!. Hence, in all
cases, we choseR85210212 m2 sec°C/J•Pa. Although this im-
plies that the thermal and mechanical problems are very we
coupled along the mold-shell interface, it allowed us to satisfy
restriction imposed on the contact pressure via Eq.~136! of Part I
provided that we limited the sizes ofP0 andR0 . Unless otherwise
specified,a151.0mm, k50.1, andR051025 m2 sec°C/J. Justifi-
cation behind fixing the amplitude while varying the waveleng
is discussed in Hector et al.@25#. All wavelength selections satis
fied the small aspect ratio restriction from the perturbation an
sis, i.e.,e!1.

Each of the following figures was generated through numer
solution of the coupled differential equations~Eqs. ~121! and
~122!! in Part I. The results from these calculations were used
generatePtr for a variety of process conditions and mold-sh
material combinations.

3 The Mold Material Conductivity Effect

Figure 1 examines the evolution ofPtr during solidification of a
pure aluminum shell. The four curves correspond to the case
rigid mold, a copper mold, an iron mold, and a lead mold. N
that the thickness of each deformable mold wash050.5 mm. The
normal pressure,P0 , was held at 10,000 Pa, the wavelength
each mold surface wasl52.0 mm and the ratio of mold surfac
amplitudes wask50.1.

The contact pressure ratio drops to zero at the fastest rate
the rigid mold case, with gap nucleation occurring at 0.
31023 sec. Note that this curve is exactly that predicted by
rigid mold theory of Hector et al.@25#. Gap nucleation on the
copper mold occurs at 0.9031023 sec; gap nucleation on the iro
mold occurs at about 2.7431023 sec; gap nucleation on the lea
mold occurs at about 3.0031023 sec. The contact pressure pertu
bation,P1 , at the highest points of the crests increases where
extraction is the greatest. An increase inP1 at the crests implies a
corresponding decrease inPtr at the lowest points of the trough
~due to a change in sign associated withP1 cos(mx) in Eq. ~51! of
Part I!. The behavior predicted by these curves is consistent w
that first observed by Richmond et al.@12# who used a beam
theory model to calculate the contact pressure evolution of a p
metal shell solidifying on a planar, rigid mold surface with
spatially periodic cooling profile. The contact pressure derived
this earlier work was limited to a two term series expansion, a
hence did not capture all of the physics incorporated in the pre
model.
Journal of Applied Mechanics
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The ordering of the four curves in Fig. 1 is dictated by the mo
thermal conductivity. Gap nucleation is fastest for the rigid mo
since it is perfectly conducting~i.e., has an infinite thermal con
ductivity!. Of the three pure mold materials considered in Fig.
gap nucleation is fastest for the copper mold since it has the h
est thermal conductivity~i.e., it is nearest to a thermomechanical
‘‘rigid’’ material !. Gaps take a longer time to nucleate on the ir
and lead molds. Note that gap nucleation times are closer for th
latter two mold materials since their conductivities are very sim
lar ~see Table 1!. Hence, the higher the mold thermal conducti
ity, the higher the heat extraction, and the quicker gaps will nuc
ate along the mold-shell interface~for a given set of process
parameters!.

4 The Mold Surface Wavelength Effect
Solidification process conditions are not always conducive

gap nucleation. For example, Fig. 2 shows the evolution ofPtr for
solidification of a pure aluminum shell with the same proce
mold materials considered in Fig. 1, except that the wavelengt
both mold surfaces has been increased tol540.0 mm. Consider
first the Ptr versust curves corresponding to the iron and lea
molds. These achieve minimum values of 0.9 and 0.85, res
tively ~i.e., without falling to zero! and then turn around and in

Fig. 1 The mold conductivity effect as shown through Ptr ver-
sus t „Ã10À3 sec … for an aluminum shell solidifying on a mold
with h 0Ä0.5 mm and lÄ2.0 mm
MARCH 2000, Vol. 67 Õ 79
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crease. Hence, gaps do not nucleate for these mold-shell ma
combinations. Beyond a certain time, the evolving distortion
the shell acts to increasePtr at the lowest points of the troughs
thereby improving heat extraction in those regions. On the o
hand, the contact pressure ratio at the highest points of the c
tends to decrease to zero resulting in gap nucleation. The s
freezing front is more likely to grow with a planar, rather tha
undulatory geometry. The obvious catalyst for this behavior is
change in wavelength froml52.0 mm tol540.0 mm between
Figs. 1 and 2~since we have fixed all other process paramete!.

The reason why the contact pressure at the troughs turns ar
for these mold materials is that the larger wavelength causes
heat to flow through interface. We see an indication of this eff
in the leading order term in the series expression for the heat
perturbation,Q1 , at the mold-shell interface~which is valid only
for very short times, but not subject to any limitation on the s
of h0!:

Q15
4p2a1KcTf

l2S R01
h0

KdD 4 S Tft

rcLcD 2

. (2)

Equation~2! reveals that a larger wavelength acts to diminish
heat flux right from the start of solidification. The size of th
effect is also controlled by the sum of the mean mold-shell in
face resistance,R0 , and the resistance due to the mold itse
h0 /Kd. However, it is not until later in the process that this effe
predominates to the point where the relaxation of the contact
face~due to diminished cooling! under the influence of the contac
pressure acts to counter the trend that is promoted by the
mold effect, which is always toward gap nucleation.

ThePtr curves corresponding to the iron and lead molds in F
2 therefore depict two competing effects for different mold ma
rials, those being the conductivity effect and the wavelength
fect. When the conductivities of the shell and mold materials
substantially different, an increase inl causes a more rapid turn
around inPtr . On the other hand, the behavior of a system
which the conductivities of the shell and the mold materials
similar in magnitude is quite different. In these situations,
conductivity effect predominates to longer solidification times, b
yond which the trend toward gap nucleation can be arrested
a longer wavelength through a reduction in heat extraction.

Unlike that for the iron or lead molds, a gap nucleates at
31022 sec for the aluminum-copper combination~solid curve in
Fig. 2!. As previously discussed, the copper mold is neares

Fig. 2 The mold conductivity effect as shown through Ptr ver-
sus t „sec … for an aluminum shell solidifying on a mold with
h 0Ä0.5 mm and lÄ40.0 mm
80 Õ Vol. 67, MARCH 2000
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being thermomechanically rigid and an increase in the mold s
face wavelength merely serves to delay, rather than prevent
nucleation.

Note that the ordering of the curves in Fig. 2 follows that
Fig. 1: This is dictated primarily by the mold conductivity effec

5 The Distortivity Effect
A more physically meaningful way to understand the shapes

the threePtr curves in Fig. 2 is with the distortivity,d ~@26#!. This
is defined as

d5
a~11n!

K
. (3)

The distortivity of a boundary through which heat flows is a me
sure of the extent to which that boundary deforms when a h
flux qn pass through it. When heat flows through the interfa
between two different materials, then the ratio of the distortivit
of the two materials is important for determining the extent
which the two materials comprising the interface deform relat
to one another under the imposed thermal load. For the alumin
lead and aluminum-iron shell-mold combinations,dd/dc56.989
and 3.923, respectively, and these mold materials tend to be m
compliant to the evolving distortion of the aluminum shell. Th
tendency toward gap nucleation is thus dramatically reduce
much earlier stages in solidification. In the case of the aluminu
copper system,dd/dc50.471. Hence, the copper mold tends to
less compliant to the evolving distortion in the aluminum she
The evolution ofPtr for this case reflects behavior that is simil
to that exhibited by a rigid mold.

6 Critical Wavelengths for Gap Nucleation

Figures 3–5 show the evolution ofPtr for an aluminum shell
solidifying on an iron mold for selected process parameters
Fig. 3, the mean thickness of the mold ish050.5 mm and the
mean pressure isP0510,000 Pa. Six curves, corresponding
wavelengths of 10.0 mm, 15.0 mm, 16.6 mm, 17.0 mm, 20.0 m
and 30.0 mm, are shown. Over the 0.04 sec time frame consid
in Fig. 3,Ptr due to the 30.0 mm wavelength exhibits the small
deviation fromPtr51. As the wavelengths are decreased,Ptr de-
creases more rapidly at the earlier stages of solidification. Th
evident from a comparison of the curves corresponding tol
520.0 mm andl530.0 mm~for example!. Some insight into the
wavelength effect at these very short times can be obtai

Fig. 3 Ptr versus t „sec … variation for an aluminum shell solidi-
fying on an iron mold showing a critical wavelength at lR

2

Ä16.6 mm. h 0Ä0.5 mm, P0Ä10,000 Pa.
Transactions of the ASME



-
c

s

h

t

tion

-

t
sly

-of-
e in
trend

ave-

fall

ore

-

s.
has
ths
s

h

ths
d to

old
nd.
han
ns

ce:
th.
ina-

this

t-
re-
ate
n-
r

the
ef-

l
di-
through examination ofPtr described with only the first term in
the series solution, Eq.~133!, of Part 1~since this is not restricted
by the size ofh0!. In dimensional form, this is

Ptr512
EcacKcTfpa1

l2P0~12nc!S R01
h0

KdD 3 S Tft

rcLcD 2

. (4)

Equation~4! is only valid for t!1. Sincel appears in the denomi
nator, a larger value ofl leads to a smaller value of the conta
pressure perturbation,P1 ~which is the second term in Eq.~4!!,
over the earliest solidification times, and this causes the appa
ordering of thePtr curves shown in Fig. 3~assuming all other
parameters are held constant!. Note that this trend is enhance
through an increase inh0 /Kd, which represents the mean resi
tance of the mold, and/orR0 , which is the mean resistance of th
mold-shell interface. The time-varying term is proportional to t
resistance of the growing shell. For fixedl, R0 , andh0 , the total
contact pressure decreases, sinceP1 increases, as the shell thick
ens. Figure 3 shows that there is at least one wavelength,
being at 16.6 mm, and which we denote aslR

2, that meets the

Fig. 4 Ptr versus t „Ã10À5 sec … variation for an aluminum
shell solidifying on an iron mold showing a critical wavelength
at lR

1Ä0.046 mm. h 0Ä0.5 mm, P0Ä10,000 Pa.

Fig. 5 Ptr versus t „sec … variation for an aluminum shell solidi-
fying on an iron mold showing critical wavelengths at lR

1

Ä0.046 mm and lR
2Ä16.6 mm with gap nucleation times of t R

1

Ä1.1Ã10À3 sec and t R
2Ä38.5Ã10À3 sec, respectively. h 0

Ä0.5 mm, P0Ä10,000 Pa.
Journal of Applied Mechanics
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critical wavelength criteria in Eq.~1!. Gap nucleation occurs a
tR
253.8031022 sec. Wavelengths less thanlR

2 lead to gap nucle-
ation. For the 10.0 mm and 15.0 mm wavelengths, gap nuclea
occurs at 1.5631022 sec and 2.7831022 sec, respectively. How-
ever, wavelengths that are larger thanlR

2 never lead to gap nucle
ation over the time range in Fig. 3, sincePtr never touches the
time axis. For these larger wavelengths,Ptr increases at the lowes
points of the upper mold surface troughs, while simultaneou
decreasing at the highest points of the upper surface crests.

Figure 4 examines the evolution ofPtr for the system consid-
ered in Fig. 3 due to wavelengths that are two to three orders
magnitude less than those in Fig. 3. Note that the time scal
Fig. 4 has been decreased by three orders-of-magnitude. The
established over the short times and described by Eq.~4! changes
such that the curves corresponding to the shortest three w
lengths~i.e., 0.02 mm, 0.03 mm, and 0.04 mm! achieve a mini-
mum value ~without reaching zero! at which point they turn
around toward increasing values ofPtr . The curves corresponding
to the longer wavelengths, i.e., 0.05 mm, 0.10 mm, however,
to zero att50.9531024 sec andt51.5031024 sec, respectively,
and hence gaps nucleate at the lowest points of the troughs. M
importantly, there is at least one more wavelength~in addition to
the 16.6 mm wavelength in Fig. 3!, which meets the critical wave
length criteria in Eq.~1!. This wavelength islR

150.046 mm, and
the corresponding gap nucleation time istR

151.131024 sec.
Wavelengths in excess oflR

1 ~at least up to 0.10 mm! lead to gap
nucleation: However, wavelengths that are less thatlR

1 never lead
to gap nucleation.

Figure 5 combines thePtr curves separately considered in Fig
3 and 4. In order to show all curves in one plot, the time axis
been converted to a logarithmic scale. Two critical waveleng
appear over the time range of interest, and we refer to these alR

1

~the smaller critical wavelength! andlR
2 ~the larger critical wave-

length!. The three wavelengths that lie betweenlR
150.046 mm

and lR
2516.6 mm, i.e.,l50.1 mm, 1.0 mm, and 5.0 mm, eac

lead to gap nucleation since they satisfy Eq.~2!. Gap nucleation
for the 1.0 mm and 5.0 mm wavelengths~which have been added
in Fig. 5 for the sake of illustration! occurs at 1.431023 sec and
8.031023 sec, respectively. Hence, the two critical waveleng
delimit a band or continuous spectrum of wavelengths that lea
gap nucleation. We define the bandwidth,DlR , thus

DlR5lR
22lR

1. (5)

For the situation considered in Fig. 5,DlR516.55 mm. Gap
nucleation does not occur at the lowest points of the upper m
surface troughs for all wavelengths that lie outside of this ba
For these situations, shell growth is likely to be planar, rather t
undulatory. The bands are indicative of the interacting distortio
of the mold and shell materials along the mold-shell interfa
This interaction is mitigated by the mold surface waveleng
Note that process conditions and mold-shell material comb
tions should be chosen so as to minimize or even eliminateDlR .

The behavior ofPtr depicted forlR
1<l<lR

2 and l.lR
2 has

been discussed relative to Figs. 3 and 5, respectively. At
point, some additional comments for situations wherel,lR

1

~considered, for example, in Fig. 4! are warranted. For these shor
est wavelengths, the stabilizing effect of mold-shell interface
laxation overcomes the destabilizing effect of a rapid cooling r
after an initial period of time. The shell quickly deforms to co
form to the mold. Therefore,Ptr decreases quickly, due to highe
cooling, only to achieve a minimum value at the point where
effect of interface relaxation starts to be pronounced. These
fects become less balanced asl→lR

1, since shell distortion is not
as quick due to lower heat extraction.

Figure 6 considers the evolution ofPtr due to a copper shel
solidifying on an aluminum mold under the same process con
MARCH 2000, Vol. 67 Õ 81
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tions considered in Figs. 3–5. Two critical wavelengths are sho
at lR

150.18 mm andlR
2533.3 mm, with gaps nucleating attR

1

51.6531024 sec and tR
253.1531022 sec, respectively. The

bandwidth for the copper-aluminum system isDlR533.12 mm
which is twice as large as the 16.55 mm bandwidth predicted
an aluminum shell solidifying on an iron mold in Fig. 5. Henc
this system is more restrictive as to which wavelengths can
chosen to avoid gap nucleation. However, the initial gap nu
ation time~i.e., tR

1! for the copper-aluminum and aluminum-iro
systems is essentially the same. The two wavelengths withinlR

1

<l<lR
2, viz., 1.0 mm and 10.0 mm lead to gap nucleation

5.031024 sec and 5.5231023 sec, respectively. For the case
where heat extraction is either very rapid or very slow, the evo
ing distortion of the mold-shell interface prevents gap nucleati
For intermediate heat extraction levels, gaps nucleate since
distortion of the interface cannot keep pace with the deforma
of the shell.

Fig. 6 Ptr versus t „sec … variation for a copper shell solidifying
on an aluminum mold showing critical wavelengths at lR

1

Ä0.176 mm and lR
2Ä33.27 mm with gap nucleation times of t R

1

Ä0.165Ã10À3 sec and t R
2Ä31.50Ã10À3 sec, respectively. h 0

Ä0.5 mm, P0Ä10,000 Pa.
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With respect to Figs. 5 and 6, it is worth noting that the sma
critical wavelength approaches zero and the larger critical wa
length approaches infinity as 1/Kd, k andh0 simultaneously go to
zero. This observation enables us to conclude that the crit
wavelengths corresponding to the limiting case of a rigid mold
lR

150 and lR
25`. Hence, gap nucleationalways occurs on a

rigid mold: This was one of the major conclusions in the work
Hector et al.@25# for solidification on a rigid, perfectly conducting
mold.

Figure 7 summarizes the critical wavelength concept introdu
in Figs. 3–6. Figure 7~a! shows the mold-shell system prior to ga
nucleation after the formation of a thin metal shell but prior to g
nucleation. Figures 7~b! and 7~c! show the two locations where
gap nucleation can occur along the upper mold surface at l
times in the process. Note that we represent each gap with a s
separation between the shell and the mold in each of these fig
This is for the purpose of illustration only, since the present the
is valid only to the point where the contact pressure falls to ze
Figure 7~b! shows the case where gaps nucleate at the hig
points of the upper mold surface crests. The wavelengths that
to this situation are restricted tol,lR

1 and l.lR
2. The antici-

pated growth of the shell freezing front~barring competing mate-
rial and process-related factors! in Fig. 7~c! is planar. This is the
more desirable situation from a metallurgical standpoint. Fig
7~c! shows the case where gaps nucleate at the lowest poin
the troughs in the upper mold surface. The wavelengths that
to this situation are restricted tolR

1<l<lR
2, and hence lie in a

band denoted byDlR . The shell freezing front is likely to exhibit
an undulatory morphology which is greatly in excess of the d
dritic morphology~again, barring competing material and proces
related factors!. This situation should be avoided by careful choi
of the process parameters and mold-shell material combinati
As a final observation about Fig. 7, we note that the present the
always predicts that gaps will nucleate at points correspondin
extrema in the curvature of a sinusoidal mold surface: We h
been referring to these points as the highest and lowest poin
the crests and troughs, respectively. While this may be true f
purely sinusoidal surface, it may not apply to nonperiodic s
faces.
Fig. 7 Critical wavelength effect on position of gap nucleation along the mold-
shell interface
Transactions of the ASME



s
a
i
c

n
e
t

fi
e

ing
d
ed

ach

h
ing

lu-
ur

2,
a

ad
her-
h
per
av-
t
the
gap
sen
nt

ng
tly
to
7 Distortivity Ratio Effect on Bandwidth
Zhang and Barber@27# showed that quantitatively distinct kind

of thermoelastic behavior are obtained for the contact of two h
planes, depending on the relative values of the distortivity rat
The finite thickness of the mold and moving solid/liquid interfa
of the solidification problem can be expected to modify this b
havior, but the results they found enable us to characterize
behavior of this more complex system on the basis of distortiv
ratios. Whendd/dc,1 ~note thatdd is the mold distortivity, and
dc is the shell distortivity!, the mold material has a smaller dis
tortivity than the shell material: heat flow is directed into the le
distortive material due to cooling of the lower surface of the mo
Alternatively, whendd/dc.1, then the mold material distortivity
is larger than that of the shell material: Heat flow is directed i
the more distortive material. A comparison of the distortiviti
predicted with the material properties listed in Table 1 shows
copper is the least distortive material, and lead is the most dis
tive material, sincedCu,dAl,dFe,dPb.

Figures 5 and 6 examined the case where heat flows from
distortive shell materials~i.e., aluminum and copper! into more
distortive mold materials~i.e., iron and aluminum!. The question
remains, therefore, as to what impact the distortivity effect w
have in situations where a more distortive shell material solidi
on a less distortive mold. To address this question, we consid
each of the four materials as shell materials solidifying on mo
consisting of the remaining three materials. We first searched
critical wavelengths, and then if any were found, calculated
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bandwidth,DlR , associated gap nucleation times correspond
to the critical wavelengths,tR

1,2, and the time range of the ban
delimited by the smaller and larger critical wavelengths, defin
as DtR . The following process parameters were used for e
case: h050.5 mm, a151.0mm, k50.1, R051025 m2 sec°C/J,
R85210212 m2 sec°C/J•Pa, P0510,000 Pa. Results for eac
case are tabulated in Tables 2–5 that follow. The correspond
distortivity ratio is listed for each material combination.

Table 2 shows results for pure lead solidifying on copper, a
minum, and iron molds. Lead is the most distortive of the fo
materials, and hence for each material combination in Table
dd/dc,1. When solidifying on copper and aluminum molds,
lead shell immediately nucleates gaps~i.e., according to the
present theory!. This implies that at the earliest stages of le
solidification, these mold materials may be considered to be t
momechanically rigid. When solidifying on an iron mold, whic
is a more distortive material than either of the aluminum or cop
molds~but which is closer to lead in its thermomechanical beh
ior!, gap nucleation occurs at 1.0431024 sec. Note, however, tha
DlR decreases in going from the copper to the aluminum to
iron molds. Hence, the range of wavelengths that lead to
nucleation is decreased when a mold-shell combination is cho
such thatdd/dc approaches or exceeds unity. A similar comme
applies toDtR .

Table 3 shows theoretical predictions for pure iron solidifyi
on copper, aluminum, and lead molds. An iron shell is sligh
less distortive than a lead shell. It is therefore not surprising
0
0
6

8
9
9

5
0

00
Table 2 Distortivity ratio effect on critical wavelengths and gap nucleation times for a pure lead shell

Shell Material5Lead
Mold

Material dd/dc
lR

1

~mm!
lR

2

~mm!
DlR
~mm!

tR
1

~sec!
tR
2

~sec!
DtR
~sec!

Copper 0.067 0.000000 32.45 32.45000 0.000000 0.7000 0.70000
Aluminum 0.143 0.000000 22.92 22.92000 0.000000 0.2200 0.22000

Iron 0.561 0.049319 9.71 9.660681 0.000104 0.0372 0.03709

Table 3 Distortivity ratio effect on critical wavelengths and gap nucleation times for a pure iron shell

Shell Material5Iron
Mold

Material dd/dc
lR

1

~mm!
lR

2

~mm!
DlR
~mm!

tR
1

~sec!
tR
2

~sec!
DtR
~sec!

Copper 0.120 0.0458495 194.3500 194.3041505 7.1031026 0.600 0.5999929
Aluminum 0.255 0.0344424 132.3000 132.2655576 5.5031026 0.170 0.1699945

Lead 1.782 0.0083640 47.2841 47.2841000 3.6631026 0.033 0.0329963

Table 4 Distortivity ratio effect on critical wavelengths and gap nucleation times for a pure aluminum shell

Shell Material5Aluminum
Mold

Material dd/dc
lR

1

~mm!
lR

2

~mm!
DlR
~mm!

tR
1

~sec!
tR
2

~sec!
DtR
~sec!

Copper 0.471 0.221305 60.0000 59.778695 0.002200 0.1000 0.0997
Iron 3.923 0.045550 16.5994 16.553850 0.000110 0.0385 0.0383
Lead 6.989 0.040800 14.0360 13.995200 0.000105 0.0330 0.0328

Table 5 Distortivity ratio effect on critical wavelengths and gap nucleation times for a pure copper shell

Shell Material5Copper
Mold

Material dd/dc
lR

1

~mm!
lR

2

~mm!
DlR
~mm!

tR
1

~sec!
tR
2

~sec!
DtR
~sec!

Aluminum 2.125 0.176205 33.270 33.093795 0.000165 0.0315 0.03133
Iron 8.337 0.047060 14.970 14.922940 0.000110 0.0300 0.02989
Lead 14.852 0.040255 12.964 12.923745 0.000100 0.0258 0.0257
MARCH 2000, Vol. 67 Õ 83
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find that an iron shell very quickly nucleates gaps~i.e., of the
order of a 1026 sec! following the formation of a thin shell. The
iron-copper system has a very wide range of wavelengths (DlR
5194.30 mm) that lead to the situation shown in Fig. 7~c!. Each
DlR in Table 2 greatly exceeds its counterpart in Table 2. T
means that an increase in the mold surface wavelength has m
less of an influence on gap nucleation during iron solidificat
than a corresponding increase for a lead solidification. The ir
aluminum combination is certainly not much better withDlR
5132.26 mm. Again, the bandwidth decreases with increas
dd/dc, which implies that a more distortive mold material is mo
desirable than a less distortive mold material from the standp
of limiting the number of wavelengths that promote gap nuc
ation at the lowest points of the troughs.

Table 4 shows results for pure aluminum solidifying on copp
iron and lead molds. The bandwidths associated with copper,
and lead molds are considerably smaller than those assoc
with the iron shell of Table 3. The times to initial gap nucleati
are three to four orders-of-magnitude longer than those for
iron shell.

Table 5 shows results for pure copper solidifying on aluminu
iron and lead molds. Copper is the most thermomechanically r
of the four materials, and hence for each material combinatio
Table 5, dd/dc.1. Initial gap nucleation for each of the thre
mold materials occurs two orders-of-magnitude later than that
responding to the iron shell of Table 3. The smallest bandwi
occurs for the copper-lead combination for whichdd/dc.1 is
greatest sincelR

2 decreases at a faster rate thanlR
1 with increasing

dd/dc. A comparison of Tables 4 and 5 shows that the copper
aluminum shells exhibit similar thermomechanical behavior
each of the three mold materials considered in those tables.

8 Process Parameter Effect on Bandwidth
The data presented in Tables 2–5 was generated for a sing

of process parameters and hence it is not possible to infer how
bandwidth will change as the individual process parameters v
for a given mold-shell material combination. It would be des
able, however, to select combinations based upon a given s
process parameters, such that the bandwidth is minimal, or e
nonexistent. Figures 8–12 explore the process parameter effe
the bandwidth,DlR . Each figure considers a pure aluminum sh
solidifying on the mold materials designated in that figure. N
that lead was not considered as a mold material since iron
copper adequately represent, respectively, the cases in wh
less distortive material solidifies on a more distortive mold an
more distortive shell material solidifies on a less distortive mo
In all cases,R85210212 m2 sec°C/J•Pa.

Fig. 8 DlR variation with P0 for an aluminum shell
84 Õ Vol. 67, MARCH 2000
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Figure 8 shows the variation ofDlR with mean pressure,P0 .
The remaining process parameters were fixed ath050.5 mm, a1

51.0mm, k50.1, andR051025 m2 sec°C/J. The smallest mea
pressure evaluated in Fig. 8 isP051.0 Pa. TheDlR values for
both mold materials are greatest at the smallest pressures.
the difference between these values is the least at the sma
pressures. AsP0 is increased,DlR decreases nonlinearly in bot
cases. Both systems give nearly constant values ofDlR as further
increase inP0 has a diminishing effect. For all values ofP0 con-

Fig. 9 DlR variation with h 0 for an aluminum shell

Fig. 10 DlR variation with R0 for an aluminum shell

Fig. 11 DlR variation with a1 for an aluminum shell
Transactions of the ASME
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sidered in Fig. 8,DlR for the aluminum-iron system is less tha
that for the aluminum-copper system. Hence, the range of wa
lengths that lead to gap nucleation can be decreased by solidif
a less distortive casting material on a more distortive mold m
rial at increased mean pressures.

Figure 9 shows the bandwidth variation with mean mold thic
ness,h0 , for 0.5 mm<h0<50.0 mm. The remaining process p
rameters were fixed ata151.0mm, P05500 Pa,k50.1, andR0

51025 m2 sec°C/J. Since the corresponding mold materials h
finite thermal conductivities~and smallDlR values!, the rigid
mold limit is not included in Fig. 9. Note that both curves imp
thatDlR varies asAh0. Over the range ofh0 values considered in
the figure,DlR is always larger for the aluminum-copper she
mold system than for the aluminum-iron shell-mold syste
Hence variation ofh0 has a much greater effect onDlR in a
system where a more distortive shell material solidifies on a
distortive mold material~e.g., the aluminum-copper system!.
When a less distortive shell material solidifies on a more m
distortive material~e.g., the aluminum-iron combination!, increas-
ing h0 has a relatively small effect onDlR .

Figure 10 shows the bandwidth variation with mean cont
resistance,R0 . The remaining process parameters were fixed
h050.5 mm,a151.0mm, k50.1, andP05500 Pa. For both ma-
terial combinations, variation of the mean resistance over the
31025 m2 sec°C/J,R0,5.031025 m2 sec°C/J range gives little
variation inDlR since both curves are nearly horizontal.

Figure 11 shows the bandwidth variation with the amplitud
a1 , of the upper surface of the mold~i.e., in contact with the
aluminum shell! over the 1.0mm,a1,10.0mm range. The re-
maining process parameters were fixed ath050.5 mm, k50.1,
P05500 Pa, andR051025 m2 sec°C/J. Variation ofa1 in the
aluminum-copper shell-mold system leads to a rapid increas
the bandwidth, whereas a similar variation in the aluminum-ir
shell-mold system leads to much smaller bandwidths. Hence,DlR
for a system in which a more distortive shell material solidifies
a less distortive mold material is more sensitive to changes in
mold surface amplitude than a corresponding system in whic
less distortive shell material solidifies on a more distortive m
material.

Figure 12 shows the bandwidth variation with the mold surfa
amplitude ratio,k, over the 0.001,k,2.0 range. The remaining
process parameters were fixed ath050.5 mm, P05500 Pa, and
R051025 m2 sec°C/J. Note that increasingk implies an increased
roughness of the lower mold surface.

For the range ofk values considered in Fig. 12,DlR for the
aluminum-copper shell-mold system is always greater than
for the aluminum-iron shell-mold system. Hence,DlR for a sys-
tem in which a more distortive shell material solidifies on le

Fig. 12 DlR variation with k for an aluminum shell
Journal of Applied Mechanics
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distortive mold material is more sensitive to changes ink. It is
interesting to note that for both material combinations,DlR tends
to decrease ask is increased. This implies that the tendency to g
nucleation can be diminished by roughening the lower mold s
face relative to the upper mold surface.

9 Conclusions
The evolution of the contact pressure at the lowest points of

upper mold surface troughs for the idealized solidification syst
modeled in Part I has been examined for different mold-shell m
terial combinations. Gap nucleation along the mold-shell interf
was assumed to occur when the contact pressure fell to
within a certain time after the start of solidification. This implie
the possibility of nonuniform or undulatory growth of the shell
later stages of the process since the contact pressure sim
neously increases at the highest points of the upper mold sur
crests. The shell thickness above these points increases, wh
the shell thickness above the lowest points of the troughs dim
ishes. Since the theoretical model was only valid up to gap nu
ation time, continued growth of the gaps and the shell could
be monitored. Gap nucleation is quickest in those situations wh
the distortivity of the shell material greatly exceeds that of t
mold material~e.g., lead solidifying on a copper mold!. The criti-
cal wavelength concept was introduced and critical waveleng
were predicted for all mold-shell material combinations. Tho
wavelengths which led to gap nucleation were found to fall with
a region delimited by smaller and larger critical wavelengths: T
difference between the critical wavelengths was defined as
wavelength bandwidth for gap nucleation. The bandwidth w
largest for the iron-copper shell-mold combination. Much grea
care would therefore have to be exercised in the selection
mold wavelength for this combination. On the other hand,
bandwidths were smallest in those cases where a less disto
shell material~such as copper! solidified on a more distortive
mold material~such as lead!, or if the distortivity ratio of the two
materials is near unity.

Effects of important casting processes parameters, such
mean mold thickness, contact resistance, and pressure, on the
of the wavelength bands were also examined. A general con
sion from these results is that the bandwidths predicted for so
fication of a more distortive shell on a less distortive mold gen
ally exceed those for a less distortive shell solidifying on a m
distortive mold irrespective of the size of a selected proc
parameter.

The spirit behind the present work has three important com
nents:~a! to theoretically demonstrate~within the constraints of
the theoretical assumptions! that mold surface topography ma
play a significant role in casting processes;~b! to provide a limit-
ing solution against which more sophisticated models that req
a full numerical implementation~e.g., the finite element method!
of the governing equations can be checked;~c! to suggest new
solidification experiments that are directed toward developmen
mold surface topography design criteria.

Clearly, the present methodology lacks many of the com
cated phenomena considered in the work of Murakami et al.@1#
and others. Future models will have to take the present meth
ology beyond the point of gap nucleation and into the time ran
where the shell thickness becomes substantially undulatory~i.e.,
when the tortoise shells first appear at the freezing front! due to
lateral growth of the gaps. Future models will also have to acco
for mold movement due to the increasing importance of conti
ous casting processes. Surface wetting of the molten metal, w
is certainly imperfect for the majority of mold topographies co
sidered in the experimental literature, must be adequately si
lated. Nonsinusoidal topographies~such as trapezoidal gaps an
rectified cosine waves! should also be modeled. These may lead
new conclusions about the relationship between the local cu
ture of the topography and the location of gap nucleation. T
shell constitutive model should be extended to include strain
relaxation due to viscous creep. It is likely that this will alter th
MARCH 2000, Vol. 67 Õ 85
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extent of the bandwidths for most, if not all material and proc
parameter combinations considered in the present work. Fin
the evolution of cast shell microstructure during solidificati
should also be interwoven with the present thermomechan
model.
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Thermoelastic Fracture
Mechanics for Nonhomogeneous
Material Subjected to Unsteady
Thermal Load
This article provides a comprehensive treatment of cracks in nonhomogeneous stru
materials such as functionally graded materials. It is assumed that the material prope
depend only on the coordinate perpendicular to the crack surfaces and vary continu
along the crack faces. By using a laminated composite plate model to simulate the
rial nonhomogeneity, we present an algorithm for solving the system based o
Laplace transform and Fourier transform techniques. Unlike earlier studies that con
ered certain assumed property distributions and a single crack problem, the cu
investigation studies multiple crack problems in the functionally graded materials
arbitrarily varying material properties. The algorithm can be applied to steady state
transient thermoelastic fracture problem with the inertial terms taken into account. A
numerical illustration, transient thermal stress intensity factors for a metal-ceramic j
specimen with a functionally graded interlayer subjected to sudden heating on its bo
ary are presented. The results obtained demonstrate that the present model is an e
tool in the fracture analysis of nonhomogeneous material with properties varying in
thickness direction.@S0021-8936~00!01601-9#
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1 Introduction
In recent years, the structures subjected to severe thermal

ing that gives rise to intense thermal stresses in compone
These components and systems are subjected to ultra-high
perature, ultra-high gradient temperature, and cyclical change
ultra-high temperature. At such operating temperatures the
materials design can be accomplished by suitably varying com
sition and/or microstructure of the medium. The greater part of
work in the field has been on the introduction of functiona
graded materials. Functionally graded materials usually consis
two distinct material phases, such as ceramic and metal a
phases, and the composition would vary continuously. The de
opment of functionally graded materials has demonstrated
they have the potential to reduce the magnitude of residual
thermal stresses, reduce the stress concentration near the end
increase the fracture toughness, and provide the composite
dium with a naturalR-curve behavior~see Saito and Takahash
@1#!.

An important aspect that needs to be addressed in various
gineering applications of functionally graded materials is
question of reliability and durability, in general, and fracture
lated failure, in particular. Jin and Noda@2,3# and Noda and Jin
@4,5# investigated the steady thermal stress intensity factors of
functionally gradient semi-infinite space with an internal cra
parallel to the boundary surface. Noda and Jin@6# and Jin and
Noda@7# studied the transient thermal stress intensity factors o
functionally gradient finite space with an internal crack paralle
the boundary surface. They assumed an exponential variatio
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material properties. All of these authors conclude that the app
priate selection of the nonhomogeneous parameters of the ma
can reduces the thermal stress intensity factors.

When functionally graded materials are subjected to an ul
high temperature on the boundary surface, the crack may occu
the boundary surface of the material that is exposed to the u
high temperature. Erdogan and Wu@8# investigated steady-stat
thermal stress intensity factors in a functionally gradient la
with a vertical crack normal to the boundary surface. Jin and N
@9# investigated steady-state thermal stress intensity factors
functionally gradient semi-infinite space with an edge crack s
jected to thermal load. Nemat-Alla and Noda@10# considered the
crack problem in semi-infinite functionally graded materials und
thermal load. Jin and Batra@11# studied transient thermal stres
intensity factors in a functionally gradient plate with an ed
crack subjected to a sudden cooling at the cracked surfaces.
shear modulus and the thermal conductivity of the material
selected to vary hyperbolically and exponentially, respective
Transient thermal stress intensity factors in a functionally gra
plate with an edge crack at the ceramic boundary subjected
thermal load, such as a cycle of heating and cooling, were c
sidered by Noda@12#.

The crack problems are very often not amenable to compreh
sive analytical treatments, apart from a few idealized cas
mainly due to the complexities and difficulties involved. This
especially true if the interest is focused on examining the trans
response of a cracked media with arbitrarily varying mate
properties. Most of the previous studies appear to have appare
been limited to such configurations as having an infinite exte
single crack problem, and certain assumed property distributi
But certain assumed property distributions presented in the lit
ture must be used with care, as they are not physically realiz
for certain material combinations~@13#!.

When functionally graded materials are subjected to ultra-h
temperature the materials properties are dependent upon the
perature, however, this is beyond the scope of the present st
The purpose of this paper is to investigate the time behavior
multiple crack problems for nonhomogeneous materials with
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bitrarily varying material properties. By utilizing laminated com
posite plate model to simulate material nonhomogeneity,
present an algorithm for solving the system based on Lap
transform and Fourier transform techniques. Singular integ
equations are derived and solved to investigate the multiple c
problems in the functionally graded materials with arbitrar
varying material properties. Numerical examples are provided
a metal-ceramic joint specimen with a functionally graded int
layer under non-uniform heating condition. Transient and stea
state thermal stress intensity factors are calculated, and the v
tion in the thermal stress intensity factors due to the chang
material gradient is studied. The results obtained show that
present model is an efficient tool in the fracture analysis of co
posite material with properties varying in the thickness directi

2 Formulation of the Problem
Consider a cracked nonhomogeneous material plate of th

nessh with properties that vary as a function of coordinatey ~Fig.
1!, in which Cmn denote the stiffness coefficients of the mediu
~m, n51,2,6), ax anday are the linear thermal expansion coe
ficients,k stands for the thermal conductivity,cv represents spe
cific heat, andr is mass density. The medium is infinite in th
x-direction. ~x, y! is the global coordinate system. In order
simulate the material nonhomogeneity in they-direction, divide
the elastic plate into many layers of infinite length~sayN layers!.
Assume that cracks are normal to the thickness of the plate, a
crack lies on the interface between two layers. The material p
erties are taken to be constants for each layer. The analy
model is shown in Fig. 2. The principal axes of elasticity a
parallel to thex-axis and they-axis. For theJth layer, the thick-
ness ishJ , throughout the paper the subscriptJ stands for theJth
layer, counting from the lower surface, whereas the subscrij
denotes the interface number between theJth layer and the (J
11)th layer. The local coordinateyJ is measured from the bottom
of the Jth layer.

Denote the interlaminar stress (sy) j as s j (x,t), (txy) j as
t j (x,t) and interlaminar thermal flux (qy) j asqj (x,t). The adja-
cent two layers are perfectly bonded or have a crack. The c
length is 2aj , and the crack center is located atxj5cj . The initial
displacement, velocity, and temperature are zero. The stress
placement, thermal flux, and temperature vanish at infinity. T
boundary conditions are

1 applied normal stress and shear stress on crack faces ars0 j
andt0 j , respectively.

Fig. 1 Geometry and coordinates of a nonhomogeneous ma-
terial plate

Fig. 2 Analytical model of the nonhomogeneous material
plate
88 Õ Vol. 67, MARCH 2000
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2 applied normal stresses and shear stress are, respectivelys00
andt00 for the lower surface, ands0N andt0N for the upper
surface of the plate.

3 crack faces remain completely insulated, i.e.,qj50.
4 the applied thermal flux on the lower surface and the up

surface of the medium areq00 and q0N , respectively. The
applied temperature on the lower surface and the upper
face of the medium areT00 andT0N , respectively.

For an orthotropic material, the thermal flux for each layer i

~qx!J52~kx!J]TJ /]x ~qy!J52~ky!J]TJ /]y. (1)

Assume that the temperature is independent of deformati
Combining the balance of energy with the Fourier’s law, the h
equation can be written for each layer as follows:

~kx!J]
2TJ /]x21~ky!J]

2TJ /]yJ
25rJ~cv!J]TJ /]t. (2)

Under plane stress and small deformation conditions, the
placements and stresses are

~Ux!J5uJ~x,yJ ,t ! ~Uy!J5vJ~x,yJ ,t ! (3)

sxJ5~C11!J]uJ /]x1~C12!J]vJ /]yJ2~bx!JTJ

syJ5~C12!J]uJ /]x1~C22!J]vJ /]yJ2~by!JTJ

txyJ5~C66!J~]uJ /]yJ1]nJ /]x!
J (4)

The equations of motion are

~C11!J

]2uJ

]x2 1~C66!J

]2uJ

]yJ
2 1~C121C66!J

]2vJ

]x]yJ

5rJ

]2uJ

]t2 1~bx!J

]TJ

]x

~C66!J

]2vJ

]x2 1~C22!J

]2vJ

]yJ
2 1~C121C66!J

]2uJ

]x]yJ

5rJ

]2vJ

]t2 1~by!J

]TJ

]yJ

6 . (5)

3 The Temperature Field

Referring to nondimensional variablesx̄5x/h, ȳJ5yJ /h, h̄J
5hJ /h, ā j5aj /h, c̄ j5cj /h, kj52/(1/A(kxky)J11/A(kxky)J11)
and t0J5h2rJ(cv)J /(ky)J . Applying Laplace transform over the
time variablet and Fourier transform over the space variablex,
Eq. ~2! may be solved to give the temperature in each layer of
plate

TJ* ~ x̄,ȳJ ,p!5
1

2p E
2`

1`

@A0Je
2usul0JȳJ1B0Je

usul0JȳJ#e2 isx̄ds

(6)

where the superscript* denotes the Laplace transform,A0J(s,p)
andB0J(s,p) are unknowns to be determined, and

l0J5A~kx!J /~ky!J1pt0J /s2. (7)

Substituting Eq.~6! into ~1! gives thermal fluxqj* at ȳJ5h̄J and
qj 21* at ȳJ50. By applying the inverse Fourier transform one ge
A0J and B0J in terms ofqj* and qj 21* . The temperature in each
layer can thus be determined in terms ofqj* andqj 21* by substi-
tuting A0J andB0J back into~6!,

TJ* ~ x̄,ȳJ ,p!52
h

2p E
2`

1`

e2 isx̄
RJ~s,p!

s
dsE

2`

1`

@~e2usul0JȳJ

1eusul0JȳJ!qj* ~ r̄ ,p!2~e2usul0J~ h̄J2 ȳJ!

1eusul0J~ h̄J2 ȳJ!!qj 21* ~ r̄ ,p!#eisr̄dr̄, (8)

where
Transactions of the ASME
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e re-
RJ~s,p!5
sgn~s!

~ky!Jl0J~eusul0Jh̄J2e2usul0Jh̄J!
. (9)

If the temperature on the lower surface of the medium is p
scribed, the temperature field for the first layer can also be
pressed in terms ofT00* ( x̄,p) andq1* ( x̄,p) as

T1* ~ x̄,ȳ1,p!52
h

2p E
2`

1`

e2 isx̄
R1~s,p!

s
ds

3E
2`

1`F ~eusul01ȳ12e2usul01ȳ1!q1* ~ r̄ ,p!

2
sgn~s!~ky!1sl01

h
~e2usul01~ h̄12 ȳ1!

1eusul01~ h̄12 ȳ1!!T00* ~ r̄ ,p!Geisr̄dr̄ (10)

where

R1~s,p!5
sgn~s!

~ky!1l01~eusul01h̄11e2usul01h̄1!
(11)

If the temperature on the upper surface of the medium is p
scribed, the temperature for theNth layer may be expressed i
terms ofqN21* ( x̄,p) andT0N* ( x̄,p) as

TN* ~ x̄,ȳN ,p!52
h

2p E
2`

1`

e2 isx̄
RN~s,p!

s
ds

3E
2`

1`F2
sgn~s!~ky!Nsl0N

h
~e2usul0NȳN

1eusul0NȳN!T0N* ~ r̄ ,p!1~e2usul0N~ h̄N2 ȳN!

2eusul0N~ h̄N2 ȳN!!qN21* ~ r̄ ,p!Geisr̄dr̄ (12)

where

RN~s,p!5
sgn~s!

~ky!Nl0N~eusul0Nh̄N1e2usul0Nh̄N!
. (13)

Define now the following auxiliary function:

f0 j~ x̄,p!5]TJ11* ~ x̄,ȳJ1150,p!/]x2]TJ* ~ x̄,ȳJ5h̄J ,p!/]x.
(14)

Substituting~8! into ~14! we find

f0 j~ r̄ ,p!52
i

2p E
2`

1`

e2 is r̄dsE
2`

1`

@L jqj 21* ~ x̄,p!1M jqj* ~ x̄,p!

1Njqj 11* ~ x̄,p!#eisx̄dx̄ (15)

where

L j~s,p!522RJ~s,p! (16)

Nj~s,p!522RJ11~s,p! (17)

M j~s,p!5~eusul0~J11!h̄J111e2usul0~J11!h̄J11!RJ11~s,p!

1~eusul0Jh̄J1e2usul0Jh̄1!RJ~s,p!. (18)

If T1* ( x̄,ȳN ,p) is expressed by Eq.~10!, f01( r̄ ,p) will be given
by
Journal of Applied Mechanics
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ex-

re-

f01~ r̄ ,p!52
i

2p E
2`

`

e2 is r̄ds

3E
2`

1` FL1

sgn~s!~ky!1sl01

h
T00* ~ x̄,p!

1M1q1* ~ x̄,p!1N1q2* ~ x̄,p!Geisx̄dx̄ (19)

where

L1~s,p!522R1~s,p! (20)

N1~s,p!522R2~s,p! (21)

M1~s,p!5~eusul02h̄21e2usul02h̄2!R2~s,p!

1~eusul01h̄12e2usul01h̄1!R1~s,p!. (22)

If TN* ( x̄,ȳN ,p) is expressed by Eq.~12!, f0(N21)( r̄ ,p) will be
given by

f0~N21!~ r̄ ,p!52
i

2p E
2`

1`

e2 is r̄ds

3E
2`

` FLN21qN22* ~ x̄,p!1MN21qN21* ~ x̄,p!

1NN21

sgn~s!~ky!Nsl0N

h
T0N* ~ x̄,p!Geisx̄dx̄

(23)

where

LN21~s,p!522RN21~s,p! (24)

NN21~s,p!52RN~s,p! (25)

MN21~s,p!5~eusul0Nh̄N2e2usul0Nh̄N!RN~s,p!1~eusul0~N21!h̄N21

1e2usul0~N21!h̄N21!RN21~s,p!. (26)

By defining the following two vectors of (N21) rows, each

$Q* ~ x̄,p!%5$q1* ~ x̄,p!, . . . ,qN21* ~ x̄,p!%T (27)

$F0~s,p!%

5H E
c̄12ā1

c̄11ā1

f01e
isr̄dr̄, . . . ,E

c̄N212āN21

c̄N211āN21

f0~N21!e
isr̄dr̄J T

(28)

and using inverse Fourier transform to~15!, ~19!, and~23! gives

@2D#E
2`

1`

$Q* %eisx̄dx̄5
1

i
$F0%1$F0a% (29)

where@D(s,p)# has the form

@D~s,p!#5F M1 N1

L2 M2 N2

�

LN22 MN22 NN22

LN21 MN21

G (30)

and$F0a(s,p)% is a vector of (N21) rows, with the first and the
last elements the only nonzero elements, these elements ar
lated to the boundary conditions by

F0a1~s,p!5L1~s,p!E
2`

1`

q00* ~ r̄ ,p!eisr̄dr̄ (31)
MARCH 2000, Vol. 67 Õ 89
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F0a~N21!~s,p!5NN21~s,p!E
2`

1`

q0N* ~ r̄ ,p!eisr̄dr̄ (32)

if surface heat flows are prescribed; and by

F0a1~s,p!5L1~s,p!
sgn~s!~ky!1sl01

h E
2`

1`

T00* ~ r̄ ,p!eisr̄dr̄

(33)

F0a~N21!~s,p!5NN21~s,p!
sgn~s!~ky!Nsl0N

h

3E
2`

1`

T0N* ~ r̄ ,p!eisr̄dr̄ (34)

if surface temperatures are prescribed.
Referring to the variablesKmn , which denotes themth row and

the nth column element in matrix@D(s,p)#21, one can see from
the expressions@D(s,p)# that usu→`, the only nonzero element
in @K(s,p)# are K j j (s→6`,p)5sgn(s)kj/2. Defining K jk8 (s,p)
5K jk(s,p)2K jk(`,p). Applying inverse Fourier transform to
~29! yields

2qj* ~ x̄,p!2qa j* ~ x̄,p!5
1

p
(
k51

N21 E
c̄k2āk

c̄k1āk

f0k~ r̄ ,p!dr̄

3E
0

`

K jk8 sins~ r̄ 2 x̄!ds

1
k j

2p
E

c̄ j 2ā j

c̄ j 1ā j f0 j~ r̄ ,p!

r̄ 2 x̄
dr̄ (35)

where

qa j* ~ x̄,p!5
1

2p E
2`

1`

~K j 1 K j ~N21!!$F0a1 F0a~N21!%
Te2 isx̄ds

(36)

Equation~35! is the relationship between interfacial heat flow
and interfacial auxiliary functions, and there areN21 equations
in ~35!. For those interfaces with no cracks, the auxiliary functi
is zero, so the number of equations needed to be solved is
same as the crack number.

Equation~35! provides the expression forqj* ( x̄,p) outside as
well as inside the crack. In the case of inside the crack it is
ordinary singular integral equation having a simple Cauchy-t
kernel as the dominant singular part. The crack-tip behavior
be characterized by a standard square-root singular. The int
equation can be solved numerically by noting that its fundame
function corresponds to the weight function of the Chebysh
polynomial of the first kindTm( r̄ j ).

f0 j~ ā j r̄ j1 c̄ j ,p!5 (
m51

`

Cjm~p!Tm~ r̄ j !/A12 r̄ j
2 (37)

wherer̄ j5( r̄ 2 c̄ j )/ā j ,Cjm are the unknowns to be evaluated. A
ter substituting~37!, truncated with the firstM terms into~14!, the
temperature difference between the upper surface and the l
surface of thej th crack can be evaluated as

TJ11
J* ~ x̄,p!52aj(

n51

M

Cjn~p!sin~n arccosx̄ j !/n ux̄ j u,1

(38)

in which x̄ j5( x̄2 c̄ j )/ā j . The crack face thermal flux boundar
condition requiresqj* (x,p)50, this can be satisfied by using th
following weighted residuals method:
90 Õ Vol. 67, MARCH 2000
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1

@qj* ~ ā j x̄ j1 c̄ j ,p!#
sin~n cos21 x̄ j !

n
dx̄j50. (39)

Thus the integral Eq.~35! is reduced to a finite algebraic system
evaluate the unknownCjm . Once the coefficientCjm is obtained,
the numerical solution of the integral Eq.~35! can be calculated
from ~37!. The temperature in the Laplace transform domain c
be obtained from~35! and ~8!.

As crack-tip thermal flow has standard square-root singula
can be seen from~35! and ~37! that the thermal flow intensity
factor can be calculated as

~Kq* ! j5~A2@~cj2aj !2x# !x→~cj 2aj !
2qj* ~ x̄,p!

52
k jAaj

2 (
m51

M

~21!mCjm~p! (40)

for left-hand side crack tip and

~Kq* ! j5~A2@x2~cj1aj !# !x→~cj 1aj !
1qj* ~ x̄,p!

5
k jAaj

2 (
m51

M

Cjm~p! (41)

for right-hand side crack tip.
After the solutions in the Laplace transform plane are obtain

inverse Laplace transform can be performed numerically using
method given by Miller and Guy@14#. This method has also bee
used by Jin and Noda@7# in thermoelastic fracture dynamics.

4 Thermal Stress Field
Solving the governing Eq.~5! by means of the Laplace trans

form technique, the displacements in each layer are given by

H uJ* ~ x̄,ȳJ ,p!/ i
nJ* ~ x̄,ȳJ ,p! J 5

h

2p E
2`

1`

@eJ#H A1J

B1J

A2J

B2J

J e2 isx̄ds

1
h

2p E
2`

1` 1

s
@e0J#HA0J

B0J
J e2 isx̄ds (42)

The first and the second term on the right-hand side of Eq.~42!
represent the homogeneous solution and the particular solutio
Eq. ~5!, respectively;AmJ(s,p) andBmJ(s,p) are unknowns to be
determined (m51,2). @eJ# is a 234 matrix of ȳJ , while @e0J# is
a 232 matrix of ȳJ .

@eJ~ ȳJ ,p,s!#

5F e2usul1JȳJ eusul1JȳJ e2usul2JȳJ eusul2JȳJ

z1Je
2usul1JȳJ 2z1Je

usul1JȳJ z2Je
2usul2JȳJ 2z2Je

usul2JȳJ
G

(43)

@e0J~ ȳJ ,p,s!#5F zxJe
2usul0JȳJ zxJe

usul0JȳJ

2sgn~s!zyJe
2usul0JȳJ sgn~s!zyJe

usul0JȳJ
G
(44)

andl iJ ( i 51,2) are the roots of the following characteristic equ
tion:

l iJ
4 2F S C11C2222C12C662C12

2

C22C66
D

J

1S ph

sCaJ
D 2

1S ph

sCbJ
D 2Gl iJ

2

1F S C11

C22
D

J

1S ph

sCaJ
D 2G F11S ph

sCbJ
D 2G50 (45)

while z iJ5sgn(s)hiJ (i51,2), and
Transactions of the ASME
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h iJ5
~C11!J /~C66!J1~ph/sCbJ!

22l iJ
2

l iJ~11~C12!J /~C66!J!
. (46)

In ~44!, zxJ andzyJ are the solutions of the following equations

F S C11

C66
D

J

2l0J
2 1S ph

sCbJ
D 2GzxJ1F S C12

C66
D

J

11Gl0JzyJ5
bxJ

~C66!J

S C121C66

C22
D

J

l0JzxJ1Fl0J
2 2S C66

C22
D

J

1S ph

sCaJ
D 2GzyJ5

l0JbyJ

~C22!J
.

(47)

Substitution of Eq.~42! into constitutive Eqs.~4! gives the
stress (s j* ,t j* ) at (ȳJ5h̄J) and (s j 21* ,t j 21* ) at (ȳJ50),

H s j* ~ x̄,p!

t j* ~ x̄,p!/ i
s j 21* ~ x̄,p!

t j 21* ~ x̄,p!/ i
J 5

1

2p E
2`

1`

@K0J#HA0J

B0J
J e2 isx̄ds

1
1

2p E
2`

1`

s@KJ#H A1J

B1J

A2J

B2J

J e2 isx̄ds,

(48)

where @K0J(s,p)# is a 432 matrix and @KJ(s,p)# is a 434
matrix.

Defining matricesbDJ
a(s,p) c and bDJ

b(s,p) c of four rows and
two columns each,

@DJ
a~s,p!,DJ

b~s,p!#5@KJ~s,p!#21. (49)

Applying the Fourier transform to~48! yieldsA1J , B1J , A2J , and
B2J in terms ofs j* , t j* , s j 21* , andt j 21* . By substitutingA1J ,
B1J , A2J , andB2J back into~42!, the displacements in each laye
can be determined in terms ofs j* , t j* , s j 21* , andt j 21* , namely,

H uJ* ~ r̄ ,ȳJ ,p!/ i
nJ* ~ r̄ ,ȳJ ,p! J 5

h

2p E
2`

1` 1

s
~@e1J# !HA0J

B0J
J e2 is r̄ds

1
h

2p E
2`

1` 1

s
@eJ#~@DJ

a# @DJ
b# !

H E
2`

1`

s j* eisx̄dx̄E
2`

1` t j*

i
eisx̄dx̄

3E
2`

1`

s j 21* eisx̄dx̄E
2`

1` t j 21*

i
eisx̄dx̄J T

e2 is r̄ds

(50)

where

be1J~ ȳJ ,s,p!c5@e0J#2@eJ#~@DJ
a# @DJ

b# !@K0J#. (51)

Introducing the following dislocation density functions,

fx j~ x̄,p!5]uJ11* ~ x̄,ȳJ1150,p!/]x2]uJ* ~ x̄,ȳJ5h̄J ,p!/]x
(52)

fy j~ x̄,p!5]nJ11* ~ x̄,ȳJ1150,p!/]x2]nJ* ~ x̄,ȳJ5h̄J ,p!/]x.
(53)

Substituting~50! into the above equations gives
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:

r

Hfx j~ r̄ ,p!/ i
fy j~ r̄ ,p! J 5

1

2p E
2`

1`

~@L# j @M # j @N# j !e
2 is r̄ds

3E
2`

1`

$ is j 21* t j 21* is j* t j* is j 11* t j 11* %T

3eisx̄dx̄2
i

2p E
2`

1`H fTx

fTy
J

j

e2 is r̄ds (54)

where@L(s,p)# j , @M (s,p)# j , @N(s,p)# j are 232 matrices

@L# j5@eJ~ h̄J ,p!#@DJ
b~s,p!#, (55)

@N# j52@eJ11~0,p!# bDJ11
a ~s,p!c, (56)

@M # j5@eJ~ h̄J ,p!#@DJ
a~s,p!#2@eJ11~0,p!#@DJ11

b ~s,p!#,
(57)

and

H fTx~s,p!

fTy~s,p!J
j

5@e1~J11!~0,s,p!#HA0~J11!~s,p!

B0~J11!~s,p!J 2@e1J~ h̄J ,s,p!#

3HA0J~s,p!

B0J~s,p!J . (58)

Defining the following three vectors of 2(N– 1) rows,

$F~s,p!%5H E
c̄12ā1

c̄11ā1 fx1

i
eisr̄dr̄,

E
c̄12ā1

c̄11ā1

fy1eisr̄dr̄¯E
c̄N212āN21

c̄N211āN21 fx~N21!

i
eisr̄dr̄,

E
c̄N212āN21

c̄N211āN21

fy~N21!e
isr̄dr̄J T

, (59)

$S~ x̄,p!%5$ is1* t1*¯ isN21* tN21* %T, (60)

$F r~s,p!%5$~fTx!1 ~fTy!1¯~fTx!N21 ~fTy!N21%
T,

(61)

and utilizing Fourier transform to~54! yields

@D#E
2`

1`

$S%eisx̄dx̄5$F%1 i $FT%2$Fa%, (62)

where matrix@D(s,p)# has the same form as~30!, and$Fa(s,p)%
is a vector of 2(N– 1) rows, with the first two elements and th
last two elements the only nonzero elements. These element
related to the boundary conditions by

HFa1~s,p!

Fa2~s,p!J 5L1~s,p!E
2`

1`H is00* ~ r̄ ,p!

t00* ~ r̄ ,p! J eisr̄dr̄ (63)

HFa~2N23!~s,p!

Fa~2N22!~s,p!J 5NN21~s,p!E
2`

1`H is0N* ~ r̄ ,p!

t0N* ~ r̄ ,p! J eisr̄dr̄.

(64)

Defining the inverse of matrix@D(s,p)# by @K(s,p)#, referring
to Km

n (s,p), which denotes themth row and thenth column ele-
ment in matrix@K(s,p)#, and applying the inverse Fourier tran
form to ~62! yields
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H is j* ~ x̄,p!

t j* ~ x̄,p! J
5

1

2p (
k51

N21 E
c̄k2āk

c̄k1ākS E
2`

1`FK ~2 j 21!
~2k21! K ~2 j 21!

~2k!

K ~2 j !
~2k21! K ~2 j !

~2k! Geis~ r̄ 2 x̄!dsD
3 Hfxk / i

fyk
J dr̄1

i

2p (
k51

N21 E
2`

1`FK ~2 j 21!
~2k21! K ~2 j 21!

~2k!

K ~2 j !
~2k21! K ~2 j !

~2k! G
3 H fTx

fTy
J

k

e2 isx̄ds2H is j* ~ x̄,p!

t j* ~ x̄,p! J
a

(65)

where

H is j* ~ x̄,p!

t j* ~ x̄,p! J
a

5
1

2p E
2`

1`S FK2 j 21
1 K2 j 21

2

K2 j
1 K2 j

2 G HFa1

Fa2
J

1FK2 j 21
2N23 K2 j 21

2N22

K2 j
2N23 K2 j

2N22G HFa~2N23!

Fa~2N22!
J TD e2 isx̄ds.

(66)

Equation ~65! is the relationship between interfacial stress
and dislocation density functions, and there are 2(N21) equa-
tions in it. For those interfaces with no crack, the dislocat
density function is zero, so~65! is independent of the layers num
berN. The number of singular integral equations in~65! needed to
be solved is twice the crack number.

We now analyze the asymptotic behavior of matrixK(s,p).
Since the dislocation density function for the interface with
crack is zero, only the elements related to the cracked interfa
need to be analyzed. If material properties are not continu
along the crack interface, the local stress behavior would be o
oscillatory nature. This would yield interpenetrating of mater
points of the crack surface~@15#!. Such a condition cannot b
realized physically. Hence, consider only the special case of c
tinuously varying material properties along the cracked interfa
As usu→`, the only nonzero elements in@K(s,p)# are

K ~2 j 21!
~2 j ! ~`,p!5 lim

s→6`

K ~2 j 21!
~2 j ! ~s,p!5sgn~s!~Gy! j /2 (67)

K ~2 j !
~2 j 21!~`,p!5 lim

s→6`

K ~2 j !
~2 j 21!~s,p!5sgn~s!~Gx! j /2 (68)

where (Gx) j and (Gy) j are functions of material elastic constan
By defining k̄m

n (s,p)5km
n (s,p)2km

n (`,p), Eq. ~65! may now
be written as follows:

H is j* ~ x̄,p!

t j* ~ x̄,p! J 1H is j* ~ x̄,p!

t j* ~ x̄,p! J
a

5
i

2p (
k51

N21 E
2`

1`FK ~2 j 21!
~2k21! K ~2 j 21!

~2k!

K ~2 j !
~2k21! K ~2 j !

~2k! G H fTx

fTy
J

k

e2 isx̄ds

1
1

2p (
k51

N21 E
c̄k2āk

c̄k1ākS E
2`

1`F k̄~2 j 21!
~2k21! k̄~2 j 21!

~2k!

k̄~2 j !
~2k21! k̄~2 j !

~2k! Geis~ r̄ 2 x̄!dsD
3 Hfxk / i

fyk
J dr̄15

i ~Gy! j

2p E
c̄ j 2ā j

c̄ j 1ā j fy j

r̄ 2 x̄
dr̄

~Gx! j

2p E
c̄ j 2ā j

c̄ j 1ā j fx j

r̄ 2 x̄
dr̄ 6 (69)

The solution of Eq.~69! can be expressed by the followin
formulas:

fx j~ ā j r̄ j1 c̄ j ,p!5 (
m51

`

Cjm
x ~p!Tm~ r̄ j !/A12 r̄ j

2 (70)
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fy j~ ā j r̄ j1 c̄ j ,p!5 (
m51

`

Cjm
y ~p!Tm~ r̄ j !/A12 r̄ j

2 (71)

whereCjm
x and Cjm

y are the unknowns to be evaluated. The d
placement difference between the upper surface and the lo
surface of thej th crack can be evaluated as

~uJ11
J* ~ x̄!nJ11

J* ~ x̄!!52aj (
m51

M

~Cjm
x Cjm

y !
sin~m ar cosx̄ j !

m
.

(72)

Weighted residuals methods can be used to evaluate (Cjm
x ,Cjm

y )
from the singular integral Eq.~69!. The mode I and mode II stres
intensity factors can be calculated as

~K1* ,K II* ! j5
Aaj

2 (
m51

M

~21!m~~Gy! jCjm
y , ~Gx! jCjm

x ! (73)

for a left-hand side crack-tip and

~K1* ,K II* ! j52
Aaj

2 (
m51

M

~~Gy! jCjm
y , ~Gx! jCjm

x ! (74)

for a right-hand side crack-tip.

5 Numerical Example
For the purpose of numerical illustration, a metal/ceramic jo

specimen with a functionally graded material interlayer is tak
into account. The geometrical configuration and the coordin
system are shown in Fig. 3. Assume that cracks are normal to
thickness of the plate, and the two cracks lie on the interfaces.
temperature in the lower surface of the joint is kept zero an
sudden uniform temperature changeT0 is applied on the upper
boundary of the joint. The functionally graded material is made
Ni and TiC. The material properties, elastic modulusE, Poisson’s
ratio v, coefficient of thermal expansiona, density r, thermal
conductivity k, and specific heatc, are, respectively,Em

5200 Gpa,nm50.31, am51831026/°C, rm56825 Kg/m3, km
554 W/m°C, cm5595 J/Kg°C, Ec5460 Gpa, nc50.34, ac

57.431026/°C, rc54127 Kg/m3, kc527 W/m°C, cc
5682 J/Kg°C, in which the subscriptm and c signify metal and
ceramic, respectively. The functionally graded material interla
is pure metal at the bottom and pure ceramic at the top. At
positiony in the functionally graded material interlayer, the loc
volume fraction of metal is assumed to beVm(y) which obeys a
power-law type relation (y/hg)g, whereg is known as the gradien
exponent. To relate local volume fraction to the effect propert
of the functionally graded material, the micromechanical mod
must be used. According to the criteria given by Zuiker@13# the
three-phase model or the so-called generalized self-consis
model ~@16,17#! is better than other models. Bao and Wang@18#
used the three-phase model to determine approximately the e
tive properties of a functionally graded material coating. T
three-phase model was also used by Jin and Batra@11,19# to de-
termine the volume fraction of constituents in the functiona
graded material. Assuming that the functionally graded materia
obtained by dispersing ceramic particulates in metal matrix,
use three-phase models to determine effective shear modulus
thermal conductivity. Composite spheres model~@16#! is utilized
to determine effective bulk modulus and coefficient of therm

Fig. 3 A metal-ceramic joint with functionally graded inter-
layer
Transactions of the ASME
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expansion, while the effective density and the specific heat of
functionally graded material is evaluated by rule-of-mixture.

We treat the graded regions as a series of perfectly bon
composite layers~say, N layers!, each layer being assigne
slightly different material properties. The related integrals
evaluated by using the Gauss-Chebyshev formulas. The num
of integral points is selected to be large enough for obtaining
solutions to the defined problem with a required degree of ac
racy. Assume that the thickness of the ceramic base, metal b
functionally graded material interlayer, and half-crack length
taken to be equal. For a fixed gradient exponentg51, the influ-
ences ofN on thermal flux intensity factor and thermal stre
intensity factors are depicted in Figs. 4–6, respectively. It is fou
that at any timet thermal flux intensity factors and thermal stre
intensity factors tend to converge to steady values asN becomes
sufficiently large, this indicates that we can use a laminated c
posite plate model to simulate material nonhomogeneity in
thickness direction. The result implies that we can divide the fu

Fig. 4 Influences of divided layers number N on thermal flux
intensity factors „the subscript m signify metal …

Fig. 5 Influences of divided layers number N on mode I ther-
mal stress intensity factors

Fig. 6 Influences of divided layers number N on mode II ther-
mal stress intensity factors
Journal of Applied Mechanics
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tionally graded material into a large number of layers to simul
material gradient and the present model is an efficient tool for
fracture analysis of composite materials with properties varying
the thickness direction.

For a fixed crack length 2a50.5h andg51, the thermal stress
intensity factors for different graded layer thicknesshg are drawn
in Fig. 7 and 8. Due to the interaction among different crac
influences of graded layer thickness on stress intensity factors
very complicated. It appears that as the thickness of a function
graded interlayer decreases, the mode II stress intensity fac
will decrease. It also seems that there exists an optimized in
layer thickness which relates to the minimum mode I stress in
sity factors. Furthermore, it is found that the influence of int
layer thickness is more significant for peak stress intensity fac
than for steady stress intensity factors. In all cases, stress inte
factors for crack 2 are larger than for crack 1. The results indic
that the ceramic side is more likely cracking under thermal lo

In the foregoing analysis, we have treated the functiona
graded interlayer as a number of thin layers. By making use
this laminate model, almost all the analytical models contain
cracks perpendicular to the thickness direction in which mate
properties varying, can be analyzed theoretically for the case
transient state or a steady state, either under mechanical loadi
under thermal loading. The existing analytical models in wh
the material properties were specifically selected, such as a
homogeneous half-plane~@20#! two dissimilar homogeneous half
planes bonded by a thin layer of nonhomogeneous material~@21#!
two bonded half-planes with one plane being homogeneous
the other nonhomogeneous~@22#! a nonhomogeneous medium
bonded to a rigid subspace~@23#!, a nonhomogeneous half-plan
under steady thermal loading~@2#! a strip of a functionally graded
material under steady thermal loading~@4#!, and a semi-infinite
plate of a functionally graded material under transient therm
loading ~@7#! can also be treated by utilizing the present meth
For a comparison, a pure metal medium shown in Fig. 9 w
analyzed. The dimensiona is kept fixed and the normalized the
mal stress intensity factors (K̄ I ,K̄ II)5(K I ,K II)/(EsasT0Aa) are
depicted in Fig. 10 for differentd values. It should be noted tha

Fig. 7 Influences of functionally graded material interlayer
thickness on mode I thermal stress intensity factors

Fig. 8 Influences of functionally graded material interlayer
thickness on mode II thermal stress intensity factors
MARCH 2000, Vol. 67 Õ 93
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Noda and Jin@4# have investigated this crack configuration f
steady thermal loading. Matsunaga and Noda@24# have studied
the penny-shaped crack problem in an infinite plate under t
sient thermal loading. Whend trends to be infinite, the presen
solutions agree with those by Jin and Noda@7# and Tsuji et al.
@25#. In the numerical procedure, we have truncated the infin
series in~37! to M terms in~38!. To validate the numerical pro
cedure, the peak stress intensity factor and the steady stress
sity factor for the infinited value are tabulated in Table 1. It i
clear that asM increases the result converges to some ste
values that have been reported by Jin and Noda@7# and Tsuji@25#.

6 Conclusions
In this paper we proposed an algorithm to investigate a dyna

fracture mechanics problem for nonhomogeneous materials u
nonuniform heating. Transient and steady-state thermal flux in
sity factors and thermal stress intensity factors are calculated.
merical examples are provided to examine the feasibility of
proposed method by analyzing the response of a joint to the n
uniform transient temperature distribution over the system.

For a nonhomogeneous medium, the governing equations
the temperature field and the associated thermoelastic field
come varying coefficients because of the nonuniform mater
constants. For these equations, it is very difficult to obtain
analytical solutions in general cases. The laminated compo
model has been proved to be efficiency adapted to almost al
analytical models composed of nonhomogeneous materials in
absence of a crack~see, for examples,@26–32#!. The results given
in this paper suggest that the laminated composite model can
be used in the analysis of functionally graded materials comp
ites with cracks perpendicular to the gradient direction.

Fig. 9 A cracked homogeneous medium

Fig. 10 Variation of thermal stress intensity factors with time
for different crack position

Table 1 The convergence of results with respect to M

peakK̄ I steadyK̄ I peakK̄ II steadyK̄ II

M54 0.0327 0.0270 20.0761 20.0522
M56 0.0325 0.0192 20.0760 20.0439
M58 0.0324 0.0144 20.0759 20.0361
M510 0.0322 0.0125 20.0758 20.0332
M>12 0.0322 0.0122 20.0758 20.0328
94 Õ Vol. 67, MARCH 2000
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The algorithm given above can be applied to steady-state
transient mechanical loading with the inertia terms taken into
count. Differing from the existing works reported in the literatur
the present method can be used for arbitrarily varying mate
properties through the thickness direction and the number
cracks can be larger than one.
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An Iterative Method for Solving
Elasticity Problems for Composite
Laminates
An iterative method for approximate analytical solution of elasticity problems in com
ite laminates is presented. The stress analysis is performed for laminates in the
dimensional strain state independent of the longitudinal direction. Predictions of
method are compared with results from existing analytical and numerical models. S
and accurate approximations for stresses are obtained.@S0021-8936~00!02001-8#
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Introduction
Analysis of practical laminated composite structures often

quires three-dimensional elasticity modeling. Since analytical
lutions are available for few boundary value problems, numer
modeling is generally the only option. In some cases, the cos
large numerical simulations results in a need for developing
proximate analytical elasticity solutions. One example is the
sign of laminated composite flexbeams in helicopter rotor s
tems. These symmetric laminates with a thick rectangular c
section entail a large number of candidate stacking sequen
Interlaminar stresses must be accurately determined to gai
understanding of the influence of the primary design variab
such as ply orientation and stacking sequence on failure u
tension, torsion, and bending loading.

The distribution of the interlaminar stresses in flexbeams
needed for selecting candidate configurations at the prelimin
design stage. To this end, a cross-sectional finite element s
analysis was applied by Sen and Fish@1,2# to determine the
stresses in glass-epoxy 32-ply flexbeam laminates under tor
and combined tension-torsion loads. The largest mesh in the fi
element analysis consisted of 7144 elements with 21,945 deg
of-freedom. The cost associated with such a finite element m
eling makes it highly inefficient for analyzing every candida
lay-up at the preliminary design stage. On the other hand, exis
engineering laminated plate or beam theories, which would al
for a closed-form solution, are based on assumptions restric
the strain or stress state and, therefore, are not appropriate
reliable prediction of all stress components such as the peel st

The need for a simple and accurate analytical modeling of
three-dimensional stress state independent of the longitudina
rection is addressed in this work. An approximate elasticity so
tion, which provides rigorous trend information for all stress co
ponents in laminated composites, is developed.

The interlaminar stresses in symmetric laminates with off-a
plies were first evaluated by Pipes and Pagano@3# for the case of
uniform axial extension by applying a finite difference techniq
to solve the Navier equations of elasticity for off-axis plies.
number of finite element models were subsequently develo
Brief reviews are provided in Wang and Choi@4,5# and Sen and
Fish @1#. Wang and Choi@4,5# assumed the form of the stres
functions in order to analytically solve the compatibility equatio
for two adjacent off-axis plies. A singular stress field at the fr
edge was obtained. While this solution provides a rigorous p
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diction of the free-edge interlaminar stresses, its mathema
complexity makes it unsuitable for practical multilayer laminate
Other existing analytical approaches are based onad hocassump-
tions regarding the stress or strain fields in addition to the class
two-dimensional formulation of the three-dimensional strain sta

An iterative method for one-term approximate solution of p
tial differential equations was developed by Makeev@6#. The
method was applied to several boundary value problems an
predictions were in good agreement with exact solutions. T
method was also used for predicting interlaminar stresses in s
metric laminates under axial extension and torsion in Makeev
Armanios @7#. One and two-term approximations for the stre
functions were obtained. A close agreement was established
the numerical results of Pipes and Pagano@3#, Sen and Fish@2#,
and the analytical predictions of Wang and Choi@4,5#. The
method is simple and, therefore, ideally suited for parametric
sign studies where a large number of candidate configurat
need to be evaluated quickly and economically.

In this work, the approximate model for the classical elastic
formulation@8# for laminated composites in the three-dimension
state of strain dependent on two coordinates is developed. A
tailed solution of Poisson’s equation for the case of pure torsion
an orthotropic beam with a rectangular cross section is prese
first in order to illustrate the iterative procedure. This is follow
by a general formulation of the method for composite laminat
Finally, the method is applied to laminates subjected to unifo
extension and torsion.

Analysis

Solution of Poisson’s Equation. In this section, details of the
iterative procedure are illustrated for the case of pure torsion o
orthotropic beam with a rectangular cross section shown in Fig
The stress function for this problem is governed by Poisso
equation

1

G23
C ,xx1

1

G13
C ,yy522 (1)

where G23 and G13 are the shear moduli in the (y,z) and
(x,z)-planes, respectively, and the partial derivatives are deno
by subscript commas. The functionC is zero at the edges,x
56b andy56h. Construct a weak form of Eq.~1! as follows:

E
2h

h

dyE
2b

b S 1

G23
C ,xx1

1

G13
C ,yy12D dCdx50. (2)

Select the following first approximation forC:

C~1!5(
i 51

N

f i
~1!~x!w i

~1!~y!5(
i 51

N

cosS @2i 21#
p

2

x

bDw i
~1!~y!.

(3)
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The functionsf i
(1)(x) satisfy the boundary conditions atx56b.

Substitute Eq.~3! into the weak form~2! and integrate with re-
spect tox to obtain the system of ordinary differential equatio
for w i

(1)(y)

@ai j
~1!#H d2w j

~1!

dy2 J 1@bi j
~1!#$w j

~1!%522$ci
~1!% (4)

where

ai j
~1!5

1

G13
E

2b

b

f i
~1! f j

~1!dx5
1

G13
bd i j

bi j
~1!5

1

G23
E

2b

b

f i
~1!

d2f j
~1!

dx2 dx52
1

G23
S @2i 21#

p

2

1

bD 2

bd i j

(5)

ci
~1!5E

2b

b

f i
~1!dx5

4~21! i 21

p~2i 21!
b

and d i j is the Kronecker delta. Solve system~4! using the free-
edge boundary conditionsw i

(1)(6h)50. The result is

w i
~1!5

32

p3 b2G23

~21! i 21

~2i 21!3 F 12

coshSAG13

G23

h

b
@2i 21#

p

2

y

hD
coshSAG13

G23

h

b
@2i 21#

p

2 D G .

(6)

This completes the first approximation which is due to Kantor
ich and is referred to as a Combined Method in Timoshenko@9#.
It is worth noting that the particular choice of functionsf i

(1)(x) in
Eq. ~3! results in the exact solution of Eq.~1! asN tends to infinity

C5
32

p3 b2G23(
i 51

`
~21! i 21

~2i 21!3 cosS @2i 21#
p

2

x

bD

3F 12

coshSAG13

G23

h

b
@2i 21#

p

2

y

hD
coshSAG13

G23

h

b
@2i 21#

p

2 D G . (7)

The second and higher approximations of the stress functioC
have the same form as the first approximation~3! with the same
number of termsN in the series. The second approximationC (2)

uses the functionsw i
(1)(y) obtained from the first iteration

C~2!5(
i 51

N

f i
~2!~x!w i

~1!~y!. (8)

Substitute Eq.~8! into Eq. ~2! and integrate with respect toy to
obtain the following system of ordinary differential equations f
f i

(2)(x):

@ai j
~2!#H d2f i

~2!

dx2 J 1@bi j
~2!#$ f j

~2!%522$ci
~2!% (9)

where

Fig. 1 Coordinate system and dimensions
Journal of Applied Mechanics
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or

ai j
~2!5

1

G23
E

2h

h

w i
~1!w j

~1!dy

bi j
~2!5

1

G13
E

2h

h

w i
~1!

d2w j
~1!

dy2 dy (10)

ci
~2!5E

2h

h

w i
~1!dy.

Solve system ~9! with the free-edge boundary condition
f i

(2)(6b)50 to complete the second approximation. The iterat
process can be continued till a desired level of convergenc
met.

Consider through-the-thickness distribution of the transve
shear stress at the edgex5b for a beam, 40 mm wide and 10 mm
thick, made of S2/F584 unidirectional glass-epoxy material s
tem with properties provided in Table 1. The transverse sh
stresssyz normalized by the cross section width2b and the twist
rateu is defined as follows:

syz

2bu
52

1

2b
C ,x . (11)

One-term approximation (N51) is compared with the exac
solution in Fig. 2. The expressions for the first, second, and th
iterations are

C~1!51841.18 cos~0.0785398x!

3@120.927556 cosh~0.0785398y!#

C~2!51841.18@0.8337320.0029737 cosh~0.316465x!#

3@120.927556 cosh~0.0785398y!# (12)

C~3!51841.18@0.8337320.0029737 cosh~0.316465x!#

3@0.61845620.546135 cosh~0.101823y!#

Fig. 2 Shear stress distribution at the free edge xÄb for
orthotropic beam torsion. Comparison of one-term approxima-
tion with exact solution.

Table 1 Properties of S2 ÕF584 glass-epoxy material system †2‡

E33544.13 GPa
E115E22512.41 GPa
G135G2354.46 GPa
G1254.14 GPa
n315n3250.29
n1250.5
MARCH 2000, Vol. 67 Õ 97
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and the exact solution is given by series~7! where 120 terms were
kept. Predictions of the second and third iterations are within
percent difference from each other.

Comparison for a two-term approximation is presented in F
3. The first, second, and third iterations are expressed by

C~1!5(
i 51

2

f i
~1!~x!w i

~1!~y!, C~2!5(
i 51

2

f i
~2!~x!w i

~1!~y!,

(13)

C~3!5(
i 51

2

f i
~2!~x!w i

~2!~y!

where

f 1
~1!5cos~0.0785398x!, f 2

~1!5cos~0.235619x!

w1
~1!51841.18@120.927556 cosh~0.0785398y!#

w2
~1!5268.1917@120.562422 cosh~0.235619y!# (14)

H f 1
~2!

f 2
~2!J 5 H0.944394

0.484892J 1F20.0108305 5.74659•1029

20.0340327 2.53523•1028G
3 H cosh~0.314165x!

cosh~1.01693x! J
H w1

~2!/1841.18

w2
~2!/~268.1917!J 5 H0.750775

3.88 J
1F20.678393 5.83246•1025

23.43504 26.99961•1023G
3 H cosh~0.0919757y!

cosh~0.613275y! J .

An excellent agreement with the exact solution is reached by
second and third iterations.

The results of three-term approximation are shown in Fig.
The first, second, and third iterations are

C~1!5(
i 51

3

f i
~1!~x!w i

~1!~y!, C~2!5(
i 51

3

f i
~2!~x!w i

~1!~y!,
(15)

C~3!5(
i 51

3

f i
~2!~x!w i

~2!~y!

Fig. 3 Shear stress distribution at the free edge xÄb for
orthotropic beam torsion. Comparison of two-term approxima-
tion with exact solution.
98 Õ Vol. 67, MARCH 2000
0.7

ig.

the

4.

where the closed-form solution for the associated functions
given by

f 1
~1!5cos~0.0785398x!, f 2

~1!5cos~0.235619x!,

f 3
~1!5cos~0.392699x!

w1
~1!51841.18@120.927556 cosh~0.0785398y!#

w2
~1!5268.1917@120.562422 cosh~0.235619y!# (16)

w3
~1!514.7294@120.275309 cosh~0.392699y!#

H f 1
~2!

f 2
~2!

f 3
~2!
J 5H 0.986349

0.775494
0.288386

J
1F 20.0193973 2.3365•1027 29.2446•10216

20.0933343 1.56731•1026 26.45344•10215

20.0587884 1.46645•1026 26.4915•10215
G

3H cosh~0.314159x!

cosh~0.945081x!

cosh~1.89988x!
J

H w1
~2!/1841.18

w2
~2!/~268.1917!

w3
~2!/14.7294

J
5H 0.813996

3.65549
2.61704

J
1F 20.741732 1.8073•1024 29.04282•1029

23.18749 20.0303879 1.18256•1026

21.75802 20.134276 2.07411•1026
G

3H cosh~0.0881224y!

cosh~0.464141y!

cosh~1.6822y!
J .

Note that the first iteration~15!, which is equivalent to keeping the
first three terms in series~7!, results in a large discrepancy wit
the exact solution~7! while the maximum error for the third itera
tion is less than three percent.

Fig. 4 Shear stress distribution at the free edge xÄb for
orthotropic beam torsion. Comparison of three-term approxi-
mation with exact solution.
Transactions of the ASME
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The following three observations can be made. First, one-t
approximation predicts the correct trend information. Seco
two-term approximation is accurate and therefore higher or
approximations are not necessary. Third, the convergence o
iteration procedure is fast: Two iterations are sufficient for
accurate modeling.

These observations are not specific to the choice of the sys
of trial functions in Eq.~3!. Consider the following first approxi-
mation,

C~1!5(
i 51

N F12S x

bD 2i Gw i
~1!~y!. (17)

The second iterations for one and two-term approximations
compared with the exact solution~7! in Fig. 5. Comparison of
shear stress predictions in Fig. 5 with the one and two-term
proximations in Figs. 2 and 3 shows that the solutions based
the trial functions~17! and ~3! have similar trend.

Elasticity Equations for Composite Laminates. The theory
of elasticity of an anisotropic body in the three-dimensional st
of strain dependent on two coordinates is well documented
Lekhnitski @8#. The governing equations are provided in t
following.

Consider a laminated beam with a rectangular cross sec
shown in Fig. 1. The laminate is undergoing a uniform axial str
e0 , a constant twist rateu, and constant bending curvaturesk1
andk2 . The engineering strain-displacement relations are writ
as @8#

exx5U ,x eyy5V,y ezz5e01k1x1k2y
(18)

gyz5ux1W,y gxz52uy1W,x gxy5U ,y1V,x

whereU, V, andW are functions ofx and y. Subscript commas
denote partial derivatives.

The following compatibility equations can be obtained fro
Eqs.~18!

exx,yy1eyy,xx2gxy,xy50 gxz,y2gyz,x522u. (19)

The laminate consists of plies which are represented by s
made of continuous fibers and a matrix. All fibers in a ply a
aligned parallel to the (x,z)-plane at an angle with the longitud
nal z-axis. This angle defines the ply orientation and can be
ferent for each ply. An off-axis ply is modeled as a homogene
medium with 13 nonzero elastic constants, 9 of which are in
pendent@3#. This 13-constant system is generally different fro

Fig. 5 Comparison of second iterations for one and two-term
approximations with exact solution for orthotropic beam tor-
sion
Journal of Applied Mechanics
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ply to ply. Therefore, each ply in the laminate has an independ
set of field variables. The boundary conditions, namely, continu
of the displacements and the interlaminar stresses, are establ
at the ply interfaces.

For an off-axis ply, the general constitutive relationships, d
fined in Lekhnitski@8#, are simplified to

szz5
1

a33
~ezz2a13s

xx2a23s
yy2a35s

xz! (20)

H exx

eyy

gxz

J 5F b11 b12 b15

b12 b22 b25

b15 b25 b55

G H sxx

syy

sxz
J 1H a13

a23

a35

J ezz

a33

(21)

H gyz

gxy
J 5Fb44 b46

b46 b66
G H syz

sxyJ .

The stress functions identically satisfying the equilibrium equ
tions are defined as follows:

sxx5F ,yy syy5F ,xx sxy52F ,xy (22)
sxz5C ,y syz52C ,x .

Substitute Eqs.~22! and ~21! into the compatibility Eqs.~19! to
obtain

b22F ,xxxx1~2b121b66!F ,xxyy1b11F ,yyyy1~b251b46!C ,xxy

1b15C ,yyy50 (23)

~b251b46!F ,xxy1b15F ,yyy1b44C ,xx1b55C ,yy522u1
a35

a33
k2 .

(24)

The traction-free edge boundary conditions result in the follo
ing expressions:

x56b, F5F ,x5C50 (25)

y56h, F5F ,y5C50. (26)

The following quantities are continuous at the ply interfaces d
to the continuity of the interlaminar stresses and the displa
ments:

F, F ,y , C,

b11F ,yy1b12F ,xx1b15C ,y1
a13

a33
~e01k1x1k2y!,

(27)

b11F ,yyy1~b121b66!F ,xxy1b15C ,yy1b46C ,xx1
a13

a33
k2 ,

b15F ,yy1b25F ,xx1b55C ,y1
a35

a33
~e01k1x1k2y!1uy.

Approximate Solution. In order to apply the developed itera
tion procedure to the boundary value problem, the following we
form of Eqs.~23! and ~24! is constructed

E
h1

h2

dyE
2b

b

@b22F ,xxxx1~2b121b66!F ,xxyy1b11F ,yyyy

1~b251b46!C ,xxy1b15C ,yyy#dFdx50 (28)

E
h1

h2

dyE
2b

b F ~b251b46!F ,xxy1b15F ,yyy1b44C ,xx

1b55C ,yy12u2
a35

a33
k2GdCdx50 (29)
MARCH 2000, Vol. 67 Õ 99
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whereh1 and h2 denote the lower and upper boundaries of t
associated ply~or sublaminate if the adjacent plies are treated
one group!. The form of the approximate solution is

F5(
i 51

N

f xi~x! f yi~y!, C5(
i 51

N

cxi~x!cyi~y! (30)

To simplify the calculations, thex-dependent functionsf xi(x) and
cxi(x) in Eqs. ~30! do not change from ply to ply. There are n
conceptual difficulties in considering differentf xi(x) and cxi(x)
for each sublaminate. The functions ofy in Eqs.~30! are indepen-
dent for each sublaminate. The following first approximatio
satisfying the free-edge boundary conditions~25!, are selected:

F ~1!5(
i 51

N

f xi
~1! f yi

~1!5(
i 51

N S cosj i

x

b
2

cosj i

coshj i
coshj i

x

b D f yi
~1!

(31)

C~1!5(
i 51

N

cxi
~1!cyi

~1!5(
i 51

N
1

Ahb
S 12

coshj i

x

b

coshj i

D cyi
~1!

wherej i are roots of the following characteristic equation:

cosj i sinhj i1sinj i coshj i50. (32)

The boundary conditions for they-dependent functionsf yi and
cyi are established in the following.

Equations~26! result in the following conditions at the edge
y56h

y56h, f yi5
d fyi

dy
5cyi50. (33)

Since f xi and cxi do not change from ply to ply, the first thre
conditions~27!, which express the continuity of the interlamin
stresses at the ply interfaces, are satisfied by enforcing

f yi ,
d fyi

dy
, and cyi (34)

to be continuous at the ply interfaces. The last three contin
conditions~27! cannot be satisfied due to the presence of indep
dent functions. Consistent with Eqs.~28! and~29!, a weak form of
these conditions needs to be obtained. If the complementary
tual work of surface tractions at the ply interfaces is consider
the following expressions are continuous at the ply interfaces

E
2b

b

Udsxydx, E
2b

b

Vdsyydx, E
2b

b

Wdsyzdx, (35)

in addition to the interlaminar stress continuity. Substitute E
~22! into ~35!, integrate by parts, and use Eqs.~18!, ~21!, ~22!, and
~25! to obtain the following continuity conditions:

E
2b

b Fb11F ,yy1b12F ,xx1b15C ,y1
a13

a33
~e01k1x1k2y!GdF ,ydx,

E
2b

b Fb11F ,yyy1~b121b66!F ,xxy

1b15C ,yy1b46C ,xx1
a13

a33
k2GdFdx, (36)

E
2b

b Fb15F ,yy1b25F ,xx1b55C ,y

1
a35

a33
~e01k1x1k2y!1uyGdCdx.

According to Eqs.~30!, and continuity conditions~34! and ~36!,
the following quantities are continuous at the ply interfaces:
100 Õ Vol. 67, MARCH 2000
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f yi
~1! ,

d fyi
~1!

dy
, cyi

~1! ,

b11S E
2b

b

f xi
~1! f x j

~1!dxD d2f yi
~1!

dy2 1b12S E
2b

b

f xi
~1!

d2f x j
~1!

dx2 dxD f yi
~1!

1b15S E
2b

b

f xi
~1!cx j

~1!dxD dcyi
~1!

dy

1
a13

a33
S @e01k2y#E

2b

b

f xi
~1!dx1k1E

2b

b

x fxi
~1!dxD ,

b11S E
2b

b

f xi
~1! f x j

~1!dxD d3f y j
~1!

dy3 1~b121b66!S E
2b

b

f xi
~1!

d2f x j
~1!

dx2 dxD
3

d fy j
~1!

dy
1b15S E

2b

b

f xi
~1!cx j

~1!dxD d2cy j
~1!

dy2

1b46S E
2b

b

f xi
~1!

d2cx j
~1!

dx2 dxD cy j
~1!1

a13

a33
k2E

2b

b

f xi
~1!dx, (37)

b15S E
2b

b

cxi
~1! f x j

~1!dxD d2f y j
~1!

dy2 1b25S E
2b

b

cxi
~1!

d2f x j
~1!

dx2 dxD f y j
~1!

1b55S E
2b

b

cxi
~1!cx j

~1!dxD dcy j
~1!

dy
1S a35

a33
@e01k2y#1uyD

3E
2b

b

cxi
~1!dx1

a35

a33
k1E

2b

b

xcxi
~1!dx,

i , j 51, . . . ,N

where summation over the repeated indexj is assumed.
Substitute the first approximations~31! for the stress functions

into Eqs.~28! and ~29! to obtain a system of ordinary linear dif
ferential equations with constant coefficients. The closed-form
lution of such a system is straightforward. Satisfying the bound
conditions~33! and ~37! results in a system of linear algebra
equations of order six times the number of termsN in the approxi-
mate solution times the number of sublaminates.

Since the functionsf xi(x) and cxi(x) in Eqs. ~30! do not
change from ply to ply, the weak forms~28! and ~29! are inte-
grated over the total thickness of the cross section for the sec
iteration

E
2b

b

dxE
2h

h

@b22F ,xxxx1~2b121b66!F ,xxyy1b11F ,yyyy

1~b251b46!C ,xxy1b15C ,yyy#dFdy50 (38)

E
2b

b

dxE
2h

h F ~b251b46!F ,xxy1b15F ,yyy1b44C ,xx

1b55C ,yy12u2
a35

a33
k2GdCdy50. (39)

This is equivalent to averaging the weak forms~28! and ~29!
through the thickness. The functionsf xi(x) and cxi(x) have to
satisfy the free-edge boundary conditions

x56b, f xi5
d fxi

dx
5cxi50. (40)

The odd iterations~third, fifth, etc.! are carried out in exactly
the same way as the first iteration, the even iteration procedu
identical to the second iteration.
Transactions of the ASME
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In order to obtain a nonzero even iteration for the special ca
of axial extension or in-plane bending, the following weak for
of Eqs. ~23! and ~24! is constructed based upon the principle
complementary virtual work:

E
2b

b

dxE
2h

h F S b11F ,yy1b12F ,xx1b15C ,y

1
a13

a33
@e01k1x1k2y# D dF ,yy1~b12F ,xxyy1b22F ,xxxx

1b25C ,xxy!dF2~b46C ,xx1b66F ,xxy!dF ,yGdy50 (41)

E
2b

b

dxE
2h

h F S b15F ,yy1b25F ,xx1b55C ,y

1
a35

a33
@e01k1x1k2y# D dC ,y

2~b44C ,xx1b46F ,xxy!dCGdy50. (42)

Otherwise, the system of ordinary differential equations deriv
from the weak forms~38! and ~39! together with the free-edge
boundary conditions would result in a trivial solution.

For the special case of uniform axial extension, only half of
laminate, above the middle surface, is considered due to sym
try @3#. The boundary conditions at the middle surface are

y50,
d fyi

dy
5cyi5b11S E

2b

b

f xi f x jdxD d3f y j

dy3

1b15S E
2b

b

f xicx jdxD d2cy j

dy2 50

(43)
i , j 51, . . . ,N

where the summation overj is implied.

Results

Axial Extension. In this section, the approximate analytic
solution is compared with the numerical results of Pipes and
gano@3# and Wang and Choi@4,5# for stresses in a symmetric,
@145/245#x , graphite-epoxy laminate under axial extension. T
thickness-to-width ratio is 0.25, and the material properties
provided in Table 2. The stresses predicted by Pipes and Pa
@3# and Wang and Choi@4,5# at the145/245 ply interface are
compared with one-term approximation in Figs. 6 and 7. The p
stress,syy , and the shear stresssxy distributions are not recover
able from the plots of Pipes and Pagano@3#. The in-plane normal
stresssxx data are not provided in the work of Wang and Ch
@4,5#. Despite numerical discrepancies, one-term approxima
predicts the correct trend for all stress components, except fo
in-plane normal stresssxx .

According to Pipes and Pagano@3#, the sxx-stress is tensile
~positive!, and its maximum magnitude is five times larger th
the maximum tensile peel stress,syy , magnitude as evaluate
from the corresponding plot of Wang and Choi@4,5#. A better
accuracy is achieved by two-term approximation as illustrated

Table 2 Properties of graphite-epoxy material system †3‡

E33520.0 Msi (137.9 GPa)
E115E2252.1 Msi (14.48 GPa)
G135G235G1250.85 Msi (5.86 GPa)
n315n325n1250.21
Journal of Applied Mechanics
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Figs. 8 and 9 where a close agreement with the predictions
Pipes and Pagano@3# and Wang and Choi@4,5# is shown for all
stresses.

Three-term approximation was also performed. The compari
for the second iterations of one, two, and three-term approxi
tions is presented in Figs. 10 and 11. While the discrepancy
tween the predictions of three and two-term approximate soluti
is small, the order of the system of linear algebraic equati
resulting from three-term approximation is 36 compared to 24
the two-term approximation.

The distribution of the interlaminar shear stresssyz at the free
edge is shown in Fig. 12 where the three iterations for one, t
and three-term approximations are compared with the result
Pipes and Pagano@3# and Wang and Choi@4,5#. While one-term
approximation gives an accurate estimate atx50.89b, two and
three-term approximations are accurate at bothx50.89b andb.

Torsion. Predictions of the interlaminar shear stresssyz at
the free edge are compared with the finite element results of

Fig. 6 One-term approximation. Comparison of stress predic-
tions at ¿45ÕÀ45 ply interface for axial extension of †¿45Õ
À45‡s laminate.

Fig. 7 One-term approximation. Comparison of stress predic-
tions at ¿45ÕÀ45 ply interface for axial extension of †¿45Õ
À45‡s laminate.
MARCH 2000, Vol. 67 Õ 101
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Fig. 8 Two-term approximation. Comparison of stress predic-
tions at ¿45ÕÀ45 ply interface for axial extension of †¿45Õ
À45‡s laminate.

Fig. 9 Two-term approximation. Comparison of stress predic-
tions at ¿45ÕÀ45 ply interface for axial extension of †¿45Õ
À45‡s laminate.

Fig. 10 Comparison of stress predictions at ¿45ÕÀ45 ply in-
terface for axial extension of †¿45ÕÀ45‡s laminate
102 Õ Vol. 67, MARCH 2000
and Fish@2# for the torsion of a 32-ply@012/6302#s S2/F584
glass-epoxy flexbeam laminate configuration. The width of
laminate is 38 mm, the thickness is 7.296 mm, and the mate
properties are provided in Table 1. The interlaminar shear st
was evaluated at a 27-deg twist angle per 114.3 mm length,
responding to the measured failure twist angle for this lamin
@2#. One-term approximation predictions are shown in Fig. 1
The third iteration predicts the correct trend with a nine perc
discrepancy compared to the finite element result for the m
mum stress value. The predictions of two-term approximati
appearing in Fig. 14, show a maximum value discrepancy of
than one percent for the third iteration. One-term approximat
requires solution of 54 linear algebraic equations at the first
the third iterations. Two-term approximation results in 108 line
algebraic equations at each odd iteration.

Conclusion
An iterative method for the approximate analytical solution

elasticity problems for composite laminates is presented.
stresses in laminates subjected to uniform axial extension
torsion are evaluated. A good agreement with the numer

Fig. 11 Comparison of stress predictions at ¿45ÕÀ45 ply in-
terface for axial extension of †¿45ÕÀ45‡s laminate

Fig. 12 Comparison of interlaminar shear stress predictions
at the free edge for axial extension of †¿45ÕÀ45‡s laminate
Transactions of the ASME
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Fig. 13 One-term approximation. Comparison of interlaminar shear stress pre-
dictions at the free edge xÄb for torsion of †012 ÕÁ302‡s laminate.

Fig. 14 Two-term approximation. Comparison of interlaminar shear stress pre-
dictions at the free edge xÄb for torsion of †012 ÕÁ302‡s laminate.
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solution of Pipes and Pagano@3#, and analytical predictions o
Wang and Choi@4,5# for the case of axial extension, an
the finite element results of Sen and Fish@2# for the torsion
case illustrates the validity of the method. For the examples c
sidered in this study, one-term approximation predicts a cor
trend information, and two-term approximation provides a go
numerical accuracy. Only two or three iterations are sufficient
an accurate modeling of the stress state. An advantage o
method over existing numerical or analytical models is its s
plicity, which makes the method appealing for parametric des
studies.
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Plane-Stress Deformation in
Strain Gradient Plasticity
A systematic approach is proposed to derive the governing equations and bou
conditions for strain gradient plasticity in plane-stress deformation. The displacem
strains, stresses, strain gradients and higher-order stresses in three-dimensional
gradient plasticity are expanded into a power series of the thickness h in the out-of-
direction. The governing equations and boundary conditions for plane stress are obt
by taking the limit h→0. It is shown that, unlike in classical plasticity theories, th
in-plane boundary conditions and even the order of governing equations for plane s
are quite different from those for plane strain. The kinematic relations, constitutive l
equilibrium equation, and boundary conditions for plane-stress strain gradient plast
are summarized in the paper.@S0021-8936~00!02301-1#
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1 Introduction
Ductile materials display strong size effects when the cha

teristic length scale is on the order of microns. For example
micro- and nano-indentation experiments, the measured inde
tion hardness of metallic materials increases by a factor of tw
three as the width of the indenter decrease from 10mm to 1 mm
~@1–6#!. In torsion of thin copper wires, Fleck et al.@7# observed
that the scaled shear strength increases by a factor of three a
wire diameter decreases from 170mm to 12 mm, while the in-
crease of work hardening in tension is negligible. In bending
thin nickel beams, Stolken and Evans@8# found a significant in-
crease in the plastic work hardening as the beam thickness
creases from 100mm to 12.5mm. In an aluminum-silicon matrix
composite reinforced by silicon carbide particles, Lloyd@9# ob-
served a substantial strength increase when the particle diam
was reduced from 16mm to 7.5 mm with the particle volume
fraction fixed at 15 percent.

The classical plasticity theories cannot predict this size dep
dence of material behavior at the micron scale because their
stitutive models do not possess an internal length scale. In ord
extend the continuumJ2-deformation orJ2-flow plasticity theo-
ries to micron scale, strain gradient plasticity theories have b
developed. Aifantis@10# and Muhlhaus and Aifantis@11# have
modified the constitutive model of classical plasticity by introdu
ing the Laplacian of plastic strain in the flow stress-plastic str
relation. Recently, Fleck and Hutchinson@12,13# and Fleck et al.
@7# developed a phenomenological strain gradient plasti
theory. Its point of departure is that the plastic work hardening
materials is due to the storage of both statistically stored dislo
tions ~e.g.,@14#! and geometrically necessary dislocations, and
latter are related to the gradients of plastic shear in a mate
~@14–16#!. The theory fits the mathematical framework of highe
order continuum theory of elasticity~@17–20#!, and satisfies the
Clausius-Duhem thermodynamic restrictions on the constitu
law for second deformation gradients~@21–23#!. The theory intro-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
9, 1998; final revision, July 23, 1999. Associate Technical Editor: K. T. Rame
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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duces three material lengths, two scale with rotation gradient
deformation, while the other scales with the stretch gradients
deformation. Begley and Hutchinson@24# determined three mate
rial lengths by fitting Fleck et al.’s@7# microtorsion data, Stolken
and Evans’@8# microbending data as well as micro-indentatio
data~@1–6#!. They found that the material lengths associated w
the rotation gradients of deformation are approximately 4mm for
copper and 6mm for nickel, while the length associated with th
stretch gradients of deformation is much smaller, ranging fr
0.22mm to 0.6mm.

Nix and Gao@25# used Taylor’s model to connect the geomet
cally necessary dislocations to strain gradient plasticity. Th
identified the intrinsic material lengthsl in strain gradient plastic-
ity as l 5LS

2/b, whereLS is the average dislocation spacing, andb
is the Burgers vector. In terms of the shear modulusG and yield
stresssY in uniaxial tension, the intrinsic material lengths is give
by 3a2(G/sY)2b, and is indeed on the order of microns, wherea
is a constant in Taylor’s model, ranging between 0.2 to 0.5
various materials. Nix and Gao’s@25# analysis predicts a linea
relation between the square of micro-indentation hardness and
inverse of indent depth. This linear relation agrees remarka
well with McElhaney et al.’s@6# microindentation hardness dat
for single crystal and cold worked polycrystalline copper, as w
as with Ma and Clarke’s@4# micro-indentation hardness data fo
single crystal silver and Poole et al.’s@5# data for annealed and
work-hardened copper polycrystals.

Motivated by the remarkable agreement between Nix and Ga
@25# analysis and micro-indentation data, Gao et al.@26# and
Huang et al.@27# developed a mechanism-based theory of str
gradient plasticity~MSG!. A multiscale framework is proposed t
link the microscale notion of statistically stored and geometrica
necessary dislocations to the mesoscale notion of plastic s
and strain gradient. The microscale at which dislocation inter
tion is considered is distinguished from the mesoscale at wh
the plasticity theory is formulated. On the microscale, the Taylo
hardening model is adopted as a founding principle to gov
dislocation interactions at the microscale. On the mesoscale
constitutive equations are constructed by averaging micros
plasticity laws over a representative cell. An expression for
effective strain gradient is obtained by considering models of g
metrically necessary dislocations associated with bending, tors
and two-dimensional axisymmetric void growth.

The strain gradient plasticity theories have been used in ana

ly
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ing microscale phenomena, such as micro-indentation~@24,28#!,
microtorsion~@7,27#!, and microbending experiments~@8,27,29#!
void growth and cavitation instability~@13,27#!, and fracture near
a crack tip~@27,30–37#!. All these studies are limited to plane
strain, axisymmetric, or antiplane shear deformation. There is
study on plane-stress deformation in strain gradient plasticity
to the difficulty that, unlike in plane strain, the governing equ
tions for plane stress cannot be directly obtained from the th
dimensional governing equations in strain gradient plastic
Moreover, even the order of the governing equations and in-p
traction-prescribed boundary conditions turn out to be differ
for plane stress and plane strain, which is rather different fr
classical plasticity theories.

We propose a systematic approach to derive the gover
equations and boundary conditions for plane-stress deformatio
strain gradient plasticity. The displacements, strains, stres
strain gradients, and higher-order stresses in three-dimens
strain gradient plasticity are expanded into power series of
thicknessh in the out-of-plane direction. As the thicknessh ap-
proaches zero, the governing equations and boundary condi
for plane-stress deformation are obtained. A summary of Fl
and Hutchinson’s@13# three-dimensional strain gradient plastici
is given in Section 2, while the plane-stress strain gradient p
ticity is derived in Section 3. For readers who would like to b
pass the details of derivations, the kinematic relations, constitu
law, equilibrium equation, and boundary conditions for plan
stress strain gradient plasticity are summarized in Section 4.

2 The Fleck-Hutchinson Phenomenological Strain
Gradient Plasticity Theory

The Fleck-Hutchinson@13# phenomenological strain gradien
plasticity theory has accounted for the effects from both rotat
gradients and stretch gradients of deformation. It is summarize
this section for deformation theory. For simplicity, the elastic d
formation is neglected such that the material is incompressible
the following, all Roman subscripts~e.g.,i, j, k! range from 1 to 3,
while Greek letters~e.g.,a, b, g! are 1 or 2.

The strains« i j and strain gradientsh i jk are related to displace
mentsui by

« i j 5
1

2
~ui , j1uj ,i !, (1)

h i jk5uk,i j . (2)

Incompressibility of the deformation field requires

«kk50, h ikk50. (3)

The work conjugates of strains and strain gradients are~symmet-
ric! stressess i j (5s j i ) and~symmetric! higher-order stressest i jk
(5t j ik), respectively. The constitutive law of the deformatio
theory of strain gradient plasticity can be written in terms of t
strain energy densityW as

s i j8 5
]W

]« i j
, t i jk8 5

]W

]h i jk
, (4)

wheres i j8 5s i j 21/3skkd i j are deviatoric stresses, andt i jk8 5t i jk
21/4(t ippd jk1t jppd ik) are deviatoric higher-order stresses. Fle
and Hutchinson@13# assumed that the strain energy densityW
depends only on second-order invariants of strains and strain
dients for an incompressible solid, andW takes the same form a
in uniaxial tension

W5
n

n11
S0E0 S E

E0
D ~n11!/n

, (5)

wheren is the plastic work hardening exponent,S0 is the tensile
yield stress,E0 is the yield strain (5S0/Young’s modulus!, andE
is a combined measure of effective strain and effective strain
dient and is given by
106 Õ Vol. 67, MARCH 2000
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E5A«e
21c1h i ikh j jk1c2h i jkh i jk1c3h i jkhk j i . (6)

Here,«e5A2/3« i j « i j is the effective strain in classical plasticity
h i ikh j jk , h i jkh i jk , andh i jkhk j i are three invariants of the strai
gradient tensor, andc1 , c2 , andc3 are three material paramete
scaling with the above three invariants of the strain gradient t
sor. Smyshlyaev and Fleck@38# showed thatc1 , c2 , andc3 can
be equivalently written in terms of three lengthsl 1 , l 2 , andl 3 as

c152
l 1
2

15
2

l 2
2

3
1

2

5
l 3
2, c25

l 1
2

3
1

2

3
l 2
2, c35

2

3
l 1
22

2

3
l 2
2. (7)

Begley and Hutchinson@24# proposed to determine the lengthsl 1 ,
l 2 , and l 3 by fitting experimental data such as microbend~@8#!
microtorsion~@7#! and micro-indentation data~@1–6#!. Based on
the fitting, they suggested that

l 15
l

16
;

l

8
, l 25

l

2
, l 35A 5

24
l , (8)

where l is considered as an intrinsic material length, and is
proximately 4mm for copper and 6mm for nickel. The choice in
Eq. ~8! give parametersc1 , c2 , andc3 as

c1520.0010l 2;20.0026l 2, c250.17l 2, c3520.16l 2.
(9)

Gao et al.@26# and Huang et al.@27# on the other hand, deter
mined the parametersc1 , c2 , andc3 from the relation between
the effective strain gradient and the density of geometrically n
essary dislocations. Based on three dislocation models for p
bending, pure torsion, and void growth, they established th
parametersc1 , c2 , andc3 as

c150, c25
l 2

4
, c350, (10)

or equivalently,

l 15 l 25 l 35
l

2
, (11)

where the intrinsic material lengthl has been identified from Tay
lor’s model to be on the order of the square of dislocation spac
over Burgers vector,LS

2/b, by Nix and Gao@25#. In terms of
macroscopic quantities, the material lengthl is given by

l 53a2S m

S0
D 2

b, (12)

wherem is the shear modulus,S0 is the yield stress in uniaxia
tension,b is the Burgers vector, anda is an empirical parameter in
Taylor’s model, ranging from 0.2 and 0.5 for various materia
For typical ductile materials, the material lengthl is indeed on the
order of microns, consistent with Fleck and Hutchinson’s@13# and
Begley and Hutchinson’s@24# estimates.

Based on Taylor’s model, Gao et al.@26# and Huang et al.@27#
proposed a mechanism-based strain gradient~MSG! plasticity
theory. It differs from Fleck and Hutchinson’s@13# phenomeno-
logical strain gradient plasticity not only in the coefficientsc1 ,
c2 , and c3 as in Eq.~10!, but also in the constitutive relation
~4!–~6!. However, in the present study, we will derive the go
erning equations and boundary conditions for plane-stress de
mation only in Fleck-Hutchinson’s phenomenological strain g
dient plasticity~@13#!. Equations~4!–~6! give the constitutive law
as

s i j8 5
2

3

S0

E0
S E

E0
D 1/n21

« i j , (13)
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t i jk8 5
S0

E0
S E

E0
D 1/n21Fc1hppkd i j 1c2h i jk1

c3

2
~hk j i1hki j !

2
1

4 S c11
c3

2 Dhppid jk2
1

4 S c11
c3

2 Dhpp jd ikG . (14)

We emphasize thats i j8 and t i jk8 in the above expressions are in
deed symmetric and deviatoric, i.e.,s i j8 5s j i8 , skk8 50, t i jk8
5t j ik8 , andt ikk8 50.

The equilibrium equations for an incompressible solid in t
higher-order continuum theory are~@13#!

s ik,i8 2t i jk ,i j8 1H ,k50, (15)

where

H5
1

3
skk2

1

2
t ikk,i (16)

is a combined measure of hydrostatic stress and hydros
higher-order stress for an incompressible solid. For a thr
dimensional problem, there are five independent tracti
prescribed boundary conditions, including three independ
stress tractionst̂ k and two independent high-order stress tractio
r̂ k on the surface~@13#!,

t̂ k5Hnk1ni~s ik8 2t i jk , j8 !1Dk~ninjnpt i jp8 !2D j~nit i jk8 !

1~ninjt i jk8 2nkninjnpt i jp8 !~Dqnq!, (17)

r̂ k5ninjt i jk8 2nkninjnpt i jp8 , (18)

where n is the unit normal of the boundary surface,D j[(d jk
2njnk)]/]xk is the surface gradient, andr̂ k are not independen
becausenkr̂ k50. For the special case where the surface of
body has edges, there is a line tractionp̂k that must be taken into
account~@13#!. Suppose the surface has an edgeC, formed by the
intersection of two smooth surface segmentsS1 andS2 . The line
traction p̂k is

p̂k5( ~nikjt i jk8 2kkninjnpt i jp8 !, (19)

where the summation is over both surfaceS1 andS2 at edgeC, n
is the unit normal of each segment of surface, andc is the unit
tangent along the edge defined with each segment to the lek
5c3n. ~As pointed out by Huang@27#, Eq. ~19! corrects the
misprint in Fleck and Hutchinson’s@13# expression for the line
traction p̂k .) There can also be five independent displaceme
prescribed boundary conditions. Since the displacem
prescribed boundary conditions in a two-dimensional problem
be obtained straightforwardly from the three-dimensional re
tions, the present study focuses on traction-prescribed boun
conditions.

For a two-dimensional problem in the (x1 ,x2) plane, the equi-
librium Eq. ~15! can be categorized to the in-plane equations

sag,a8 1s3g,38 2tabg,ab8 22t3ag,a38 2t33g,338 1H ,g50, (20)

and out-of-plane equations

sa3,a8 1s33,38 2tab3,ab8 22ta33,a38 2t333,338 1H ,350. (21)

The in-plane traction boundary conditions can be obtained by
placing the unit normalnk in Eqs.~17! and ~18! with ng , i.e.,

t̂g5Hng1na~sag8 2tabg,b8 !1Dg~nanbndtabd8 !2Db~natabg8 !

1~nanbtabg8 2ngnanbndtabd8 !~Dznz!22nat3ag,38 , (22)

t̂35na~sa38 2tab3,b8 !1nanbndtabd,38 2Db~natab38 !

1nanbtab38 ~Dznz!22nata33,38 , (23)

r̂ g5nanbtabg8 2ngnanbhdtabd8 , (24)
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r̂ 35nanbtab38 , (25)

where r̂ g satisfiesng r̂ g50. The out-of-plane traction boundar
conditions can be obtained by replacing the unit normalnk in Eqs.
~17! and ~18! with n5(0,0,1), i.e.,

t̂g5s3g8 22t3bg,b8 2t33g,38 1t333,g8 , (26)

t̂35H1s338 22tb33,b8 2t333,38 , (27)

r̂ g5t33g8 . (28)

For a plane-strain problem, Eqs.~20!, ~22!, and ~24! rigorously
degenerate to a two-dimensional problem since deviatoric stre
and deviatoric higher-order stresses in the out-of-plane direc
~with the subscript 3! all vanish after enforcing the plane-stra
condition ua5ua(x1 ,x2) and u350. The out-of-plane Eq.~21!
and boundary conditions~23!, ~25!, ~26!, and ~28! also become
identically zero, while Eq.~27! gives the combined measureH of
hydrostatic stress and hydrostatic higher-order stress. For a p
stress problem, however, it is unclear which higher-order stre
are zero. In fact, as shown later, deviatoric higher-order stre
ta338 and the derivatives oftab38 and t3ab8 with respect tox3 are
not zero. In the following, a systematic approach is proposed
derive the governing equations and boundary conditions for pla
stress deformation in strain gradient plasticity.

The stress and higher-order stress tractions in thex3-direction
must vanish in a plane-stress problem. Therefore, Eqs.~26!–~28!
become

s3g8 22t3bg,b8 2t33g,38 1t333,g8 50, x356
h

2
, (29)

H1s338 22tb33,b8 2t333,38 50, x356
h

2
, (30)

t33g8 50, x356
h

2
, (31)

whereh is the thickness in the out-of-plane direction.

3 Plane-Stress Deformation in Strain Gradient Plas-
ticity

In plane-stress deformation, the thicknessh in the out-of-plane
direction (x3) is much smaller than the characteristic wave leng
in x1–x2 plane. In order to capture the variation of displaceme
along thex3-direction, a rescaled coordinate§ is introduced:

§5
x3

h
. (32)

The derivative with respect to the out-of-plane direction can
written as]/]x351/h(]/]§). The two lateral surfaces correspon
to §561/2.

For plane-stress deformation, the displacementu3 in the out-of-
plane direction is linearly proportional tox3 . Therefore, the in-
plane and out-of-plane displacement can be expanded in a p
series of thicknessh as

ua~x1 ,x2 ,x3!5ua
~0!~x1 ,x2 ,§!1h2ua

~2!~x1 ,x2 ,§!1O~h4!,
(33)

u3~x1 ,x2 ,x3!5hu3
~1!~x1 ,x2 ,§!1h3u3

~3!~x1 ,x2 ,§!1O~h5!,
(34)

where the superscript denotes the order ofh in the power series,
and the in-plane displacementua and out-of-plane displacemen
u3 have even and odd powers ofh, respectively, consistent with
those in classical elasticity~@39#!.

From the strain-displacement relation~1!, strains are given by
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«ab5
1

2 S ]ua
~0!

]xb
1

]ub
~0!

]xa
D 1O~h2!, (35)

«335
]u3

~1!

]§
1O~h2!, (36)

«a35
1

2h

]ua
~0!

]§
1

h

2 S ]ua
~2!

]§
1

]u3
~1!

]xa
D 1O~h3!. (37)

Since strains must be finite as the out-of-plane thicknessh ap-
proaches 0 in a plane-stress problem, Eq.~37! requires

]ua
~0!

]§
50 or ua

~0!5ua
~0!~x1 ,x2!. (38)

This means the leading terms of the in-plane displacementsua
(0)

are independent of§ ~or x3). The incompressibility statemen
«aa1«3350 and Eqs.~35! and ~36! require

]u3
~1!

]§
52

]ua
~0!

]xa
or u3

~1!52§
]ua

~0!

]xa
. (39)

The strains in Eqs.~35!–~37! can then be written as

«ab5«ab
~0!1O~h2!5

1

2 S ]ua
~0!

]xb
1

]ub
~0!

]xa
D 1O~h2!, (358)

«335«33
~0!1O~h2!52

]ub
~0!

]xb
1O~h2!, (368)

«a35O~h!. (378)

Here the zeroth-order terms in strains«ab
(0) and «33

(0) are indepen-
dent of the out-of-plane coordinate§ ~or x3). Using Eqs.~38! and
~39!, the strain gradients can be found from strain gradie
displacement relation~2! as

habg5habg
~0! 1O~h2!5

]2ug
~0!

]xa]xb
1O~h2!, (40)

ha335ha33
~0! 1O~h2!52

]2ub
~0!

]xa]xb
1O~h2!, (41)

h33a5h33a
~0! 1O~h2!5

]2ua
~2!

]§2 1O~h2!, (42)

hab35O~h!, h3ab5O~h!, h3335O~h!. (43)

It should be pointed out that the leading term of strain gradi
h33a in Eq. ~42! comes from the second-order displacementua

(2) .
As will be shown later, this term can be determined by the lead
term of in-plane strain gradientshabg

(0) from the plane-stress con
dition. Therefore, all leading terms of strain gradientshabg

(0) ,
h33a

(0) , andha33
(0) are independent of§ ~or x3).

The constitutive Eq.~13! gives the deviatoric stresses as

sab8 5sab8~0!1O~h2!5
2

3

S0

E0
1/n ~E~0!!1/n21«ab

~0!1O~h2!, (44)

s338 5s338
~0!1O~h2!52

2

3

S0

E0
1/n ~E~0!!1/n21«aa

~0!1O~h2!,

(45)

sa38 5hsa38~1!5O~h!, (46)

where E(0) is the leading term in the combined measureE of
effective strain and effective strain gradient in Eq.~6!, and is
given by
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E~0!2
5

2

3
~«ab

~0!«ab
~0!1«aa

~0!«bb
~0!!1c1~haag

~0! 1h33g
~0! !~hbbg

~0! 1h33g
~0! !

1c2~habg
~0! habg

~0! 1h33g
~0! h33g

~0! 12hgaa
~0! hgbb

~0! !1c3~habg
~0! hgba

~0!

22habb
~0! h33a

~0! 1hgaa
~0! hgbb

~0! !. (47)

It is once again emphasized that, as shown later,h33a
(0) can be

related to the leading terms of in-plane strain gradientshabg
(0) from

the plane-stress condition. Therefore,E(0) is independent of§ ~or
x3). Similarly, the deviatoric higher-order stresses are obtai
from the constitutive Eq.~14! as

tabg8 5tabg8~0!1O~h2!

5
S0

E0
1/n ~E~0!!1/n21Fc1~hddg

~0! 1h33g
~0! !dab1c2habg

~0!

1
c3

2
~hgba

~0! 1hgab
~0! !2

1

4 S c11
c3

2 D ~hdda
~0! 1h33a

~0! !dbg

2
1

4 S c11
c3

2 D ~hddb
~0! 1h33b

~0! !dagG1O~h2!, (48)

t33a8 5t33a8~0!1O~h2!

5
S0

E0
1/n ~E~0!!1/n21@c1hdda

~0! 1~c11c2!h33a
~0! 2c3hadd

~0! #

1O~h2!, (49)

ta338 5ta338~0!1O~h2!

5
S0

E0
1/n ~E~0!!1/n21F2S c21

c3

2 Dhadd
~0! 2

1

4 S c12
3

2
c3Dh33a

~0!

2
1

4 S c11
c3

2 Dhdda
~0! G1O~h2!, (50)

tab38 5htab38~1!5O~h!, t3ab8 5ht3ab8~1!5O~h!,

t3338 5ht3338~1!5O~h!. (51)

It can be shown that the zeroth-order termssab8(0) , s338
(0) , tabg8(0) ,

t33a8(0) , andta338(0) are independent of§ ~or x3), while the first-order
termssa38(1) , tab38(1) , t3ab8(1) , andt3338(1) are linearly proportional to§
~or x3).

We analyze the equilibrium equations and traction-prescri
boundary conditions in the following. We start with the out-o
plane direction. The leading terms of the out-of-plane equilibriu
Eq. ~21! now become

1

h

]

]§
S s338

~0!22ta33,a8~0! 2
]t3338~1!

]§
1H ~0!D 50, (52)

where the combined measureH of hydrostatic stress and hydro
static higher-order stress has been expanded as

H5H ~0!1O~h2!. (53)

The leading terms of out-of-plane boundary conditiont̂350 in
Eq. ~30! give

s338
~0!22ta33,a8~0! 2

]t3338~1!

]§
1H ~0!50, at §56

1

2
. (54)

Comparison of Eqs.~52! and~54! givesH (0) in the entire field as

H ~0!52s338
~0!12ta33,a8~0! 1

]t3338~1!

]§
, (55)
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which is also independent of§ ~or x3). The leading terms of the
other out-of-plane boundary conditionst̂g50 in Eq. ~29! and r̂ g
50 in Eq. ~31! give

]t33g8~0!

]§
50, t33g8~0!50, at §56

1

2
. (56)

It should be pointed out that, once the leading terms vanish, r
tions among some second-order terms become important. Fo
ample, the second-order terms oft̂g50 in Eq. ~29! give

s3g8
~1!22t3bg,b8~1! 2

]t33g8~2!

]§
1t333,g8~1! 50, at §56

1

2
, (57)

where t33g8(2) is the second-order term oft33g8 , i.e., t33g8 5t33g8(0)

1h2t33g8(2)1O(h4).
We now analyze the in-plane equilibrium equations and bou

ary conditions. The leading terms of the in-plane equilibrium E
~20! become

2
1

h2

]2t33g8~0!

]§2 50. (58)

In conjunction with Eq.~56!, the above equation gives that th
leading terms oft33g8 are identically zero, i.e.,

t33g8~0![0. (59)

This, together with the constitutive relation~49!, gives h33a
(0) in

terms of the in-plane strain gradientshabg
(0) , i.e.,

h33a
~0! 5

1

c11c2
~c3hadd

~0! 2c1hdda
~0! !. (60)

Once the leading terms in in-plane equilibrium Eq.~20! vanish,
the next order terms become important and give the govern
equation for plane-stress deformation as

sag,a8~0! 2tabg,ab8~0! 1H ,g
~0!1

]

]§
S s3g8

~1!22t3ag,a8~1! 2
]t33g8~2!

]§
D 50.

(61)

Since the zeroth-order terms are independent of§, we can inte-
grate the above equation from§521/2 to§51/2 ~over the thick-
ness! to give the governing equations only in terms of the in-pla
deviatoric stress and deviatoric higher-order stresses,

sag,a8~0! 2tabg,ab8~0! 1~sbb8~0!22tabb,a8~0! ! ,g50, (62)

where Eqs.~55! and~57! have been used. Equation~62! gives two
fourth-order differential equations for the two in-plane displac
ments,u1

(0) andu2
(0) . Therefore, four independent boundary co

ditions should be prescribed on any boundaries withinx1–x2
plane.

The in-plane stress-traction boundary condition~22! becomes

t̂g5H ~0!ng1na~sag8~0!2tabg,b8~0! !1Dg~nanbndtabd8~0!!

2Db~natabg8~0!!1~nanbtabg8~0!2ngnanbndtabd8~0!!~Dznz!

22na

]t3ag8~1!

]§
, (63)

where, as shown in the Appendix, the last term on the right-h
side can be written in terms of in-plane strains and strain gradi
as

]t3ag8~1!

]§
5

S0

E0
1/n ~E~0!!1/n21Fc2h33g,a

~0! 1
c3

2
~h33a,g

~0! 2«bb,ag
~0! !

1
1

4 S c11
c3

2 D ~h33b,b
~0! 1«bb,dd

~0! !dagG , (64)
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while H (0) in Eq. ~63! can be evaluated from Eq.~55! as ~see
Appendix for details!

H ~0![sbb8~0!22tabb,a8~0! 2
S0

E0
1/n ~E~0!!1/n21F S c1

2
2

c3

4 D «bb,aa
~0!

1S c1

2
1c21

3

4
c3Dh33a,a

~0! G . (65)

The in-plane higher-order stress-traction boundary condition~24!
gives

r̂ g5nanbtabg8~0!2ngnanbndtabd8~0! . (66)

The other two traction boundary conditions in Eqs.~23! and~25!,
however, are on the order ofO(h) and therefore do not provide
nontrivial boundary conditions for the leading terms in deform
tion. It is observed that Eqs.~63! and~66! give only three bound-
ary conditions. This is quite puzzling because the governing
~62! require four independent boundary conditions, as discus
before. This ‘‘missing’’ boundary condition represents a uniq
feature of plane-stress deformation in strain gradient plasti
since it does not occur in plane strain nor in three-dimensio
deformation. In fact, this ‘‘missing’’ boundary condition come
from the line traction in Eq.~19!. At the intersection of lateral
surface x35h/2(§51/2) ~unit normal n5(0,0,1)) and the in-
plane boundary with unit normaln5(na ,nb,0), the line tractions
p̂k are given by

p̂g5O~h!, (67)

p̂3522natabb8 2nanbngtabg8 . (68)

The in-plane line tractionsp̂g do not contribute to the leading
terms in in-plane deformation because Eq.~67! vanish ash ap-
proaches zero. The leading terms of Eq.~68!, however, do not
automatically vanish. Therefore, the requirement ofp̂350 for
plane-stress deformation gives the ‘‘missing’’ fourth bounda
condition as

2natabb8~0!1nanbngtabg8~0!50. (69)

This completes our systematic approach to derive the gover
equations and boundary conditions for plane-stress deformatio
strain gradient plasticity.

4 Summary
We have adopted a systematic approach to derive the gover

equations and boundary conditions for plane-stress deformatio
strain gradient plasticity. It has been shown that three-dimensio
governing equations and boundary conditions are satisfied u
the order ofO(1), i.e., terms neglected are on the order ofO(h)
or higher, which vanish as the thicknessh in the out-of-plane
direction approaches zero. The governing equations and trac
prescribed boundary conditions are summarized in the followi
and the superscript 0 for the leading terms are omitted.

Kinematic Relations.

«ab5
1

2
~ua,b1ub,a!, (70)

habg5ug,ab . (71)

Constitutive Law.

sab8 5
2

3

S0

E0
S E

E0
D 1/n21

«ab , (72)
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tabg8 5
S0

E0
S E

E0
D 1/n21F c1

c11c2
~c2hddg1c3hgdd!dab1c2habg

1
c3

2
~hgba1hgab!2

2c11c3

8~c11c2!
~c2hdda1c3hadd!dbg

2
2c11c3

8~c11c2!
~c2hddb1c3hbdd!dagG (73)

where Eq.~60! has been used to eliminateh33a , and the com-
bined measureE of effective strain and effective strain gradient
given by

E25
2

3
~«ab«ab1«aa«bb!1

c1

~c11c2!2 ~c2haag1c3hgaa!

3~c2hbbg1c3hgbb!1c2Fhabghabg12hgaahgbb

1
1

~c11c2!2 ~c1haag2c3hgaa!~c1hbbg2c3hgbb!G
1c3S habghgba1

c11c222c3

c11c2
hgaahgbb

1
2c1

c11c2
hgaahbbgD . (74)

Equilibrium Equations.

sag,a8 2tabg,ab8 1~sbb8 22tabb,a8 ! ,g50. (75)

Traction-Prescribed Boundary Conditions.

t̂g5Hng1na~sag8 2tabg,b8 !1Dg~nanbndtabd8 !2Db~natabg8 !

1~nanbtabg8 2ngnanbndtabd8 !~Dznz!22naAag , (76)

r̂ g5nanbtabg8 2ngnanbndtabd8 , (77)

052natabb8 1nanbngtabg8 , (78)

whereH is the combined measure of hydrostatic stress and hy
static higher-order stress and is given by

H[sbb8 22tabb,a8 2
S0

E0
S E

E0
D 1/n21 ~3c322c1!~c21c3!

4~c11c2!
«bb,aa ,

(79)

and the tensorAag in Eq. ~76! is given by

Aag5
S0

E0
S E

E0
D 1/n21 Fc3~c21c32c1!

2~c11c2!
«bb,ag2

c1c2

c11c2
hddg,a

2
c1c3

2~c11c2!
hdda,g1

~2c11c3!~c21c3!

8~c11c2!
«bb,dddagG .

(80)

It is observed that the constitutive law~73!, the expression~74! of
combined measureE of effective strain and effective strain grad
ent, equilibrium Eq.~75!, the boundary condition~76! for plane-
stress deformation in strain gradient plasticity are much m
complicated than their counterparts in plane-strain conditi
Moreover, the boundary condition~78! is imposed for plane-stres
deformation only. However, for dislocation-model-based str
gradient plasticity~@26,27#! in which c15c350, the governing
equations and boundary conditions take some rather simple fo
that are similar to their counterparts in plane strain. For exam
Eq. ~73! becomes

tabg8 5
S0

E0
S E

E0
D 1/n21

c2habg , (738)
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where the combined measureE of effective strain and effective
strain gradient in Eq.~74! is simplified to

E25
2

3
~«ab«ab1«aa«bb!1c2~habghabg12hgaahgbb!.

(748)

The boundary condition~76! also becomes simpler because t
last termAag vanishes; similarly, the last term in Eq.~79! van-
ishes such that the combined measure of hydrostatic stress
hydrostatic higher-order stress takes a simple form

H5sbb8 22tabb,a8 . (798)

Therefore, strain gradient plasticity based on dislocation mod
gives a much simpler form than phenomenological strain grad
plasticity.
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Appendix
Similar to the derivation of Eqs.~48!, ~49!, and~50!, it can be

established from the constitutive Eq.~14! that

t3ag8~1!5
S0

E0
1/n ~E~0!!1/n21Fc2h3ag

~1! 1
c3

2
~hga3

~1! 1h3ga
~1! !

2
1

4 S c11
c3

2 D ~hbb3
~1! 1h333

~1! !dagG , (A1)

t3338~1!5
S0

E0
1/n ~E~0!!1/n21F S c1

2
2

c3

4 Dhbb3
~1! 1S c1

2
1c21

3

4
c3Dh333

~1! G .
(A2)

Their derivatives respect to§ can be written in terms of displace
ments as

]t3ag8~1!

]§
5

S0

E0
1/n ~E~0!!1/n21Fc2

]2ug,a
~2!

]§2 1
c3

2 S 2ub,abg
~0! 1

]2ua,g
~2!

]§2 D
1

1

4 S c11
c3

2 D S ub,bdd
~0! 1

]2ub,b
~2!

]§2 D dagG , (A3)

]t3338~1!

]§
5

S0

E0
1/n ~E~0!!1/n21F2S c1

2
2

c3

4 Dub,baa
~0!

2S c1

2
1c21

3

4
c3D ]2ub,b

~2!

]§2 G , (A4)

where incompressibility~39! and]u3
(3)/]§5]ub

(2)/]xb have been
used. The substitution of Eqs.~358! and~42! into Eq. ~A3! yields
the expression of]t3ag8(1)/]§ given in Eq.~64!. Similarly, the sub-
stitution of Eqs.~358! and~42! into Eq. ~A4! provides the expres-
sion of]t3338(1)/]§, which is further substituted into Eq.~55! to give
the combined measureH (0) of hydrostatic stress and hydrostat
higher-order stress in Eq.~65!.
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Sliding of a Mass on an Inclined
Driven Plane With Randomly
Varying Coefficient of Friction
Investigated are sliding motions of a rigid body on a harmonically driven inclined pla
Coulomb’s law with a random coefficient of friction is assumed. The mean sliding vel
in a steady state of deterministic motions is taken as a measure to compare determ
with stochastic behavior. Not only do the random parameters influence the deviati
the results but strongly influence the typical features of the different motions thems
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1 Introduction
Systematic investigations of dry friction problems have be

made available in the last decade. They are focused eithe
microscopic approaches concerning correlation processes bet
two bodies in contact or on macroscopic friction laws. Most fr
tion laws are phenomenological in their character and do not c
sider micromechanical mechanisms. Comprehensive literature
be found in the review paper of Ibrahim@1#. Mainly Coulomb’s
law or various modified versions are used for calculations. Th
peculiar feature is the assumption of a constant coefficient of f
tion along the sliding path. In reality, randomly distributed inte
face irregularities due to contamination, surface finish, roughn
and waviness of the contact surface should be taken into acco
Experimental data always exhibit a randomly varying fricti
force along the sliding path. As will be shown, the use of a c
stant coefficient of friction does not only involve an uncerta
parameter in the calculation of a distinct motion but it neglects
interaction of the solution with typical characteristics of the sl
ing motion itself.

2 Mechanical System
Consider a massm on a rough plane with an angle of inclina

tion a>0. ~See Fig. 1!.
The drive of the plane

y5a sinVt (1)

is harmonic with support displacement amplitudea and angular
frequencyV. The relative coordinatex gives the position of the
mass which can either slide or have lockups on the plane.
describe the sliding path a length coordinate

ds5udxu (2)

is introduced. This separation between the mass trajectorys and
the relative positionx is necessary because of the specific featu
of the motion. The mass will slide back and forth. A mater
point on the contact surface can be touched more than one tim
dependency of the friction coefficient on the relative positionx is
inconsistent because of two reasons. First, a reversal in the d
tion of sliding may lead to different friction at the same pointx.
The simplest intuitive example is a brushed carpet, having
resistance when moving a mass in direction to the unidirectio

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, No
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Houston, TX 77204-4792, and will be accepted until four months after final pu
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oriented fibers and high resistance in the opposite direction. S
ond, each sliding process alters the friction properties of the in
face. A reversal of direction therefore always meets a new si
tion.

Both facts can be proved by calculating the exceptional cas
the motion on an ideal horizontal plane (a50). Deterministic
friction exhibits stationary, periodic oscillations with constant a
plitude. Stochastic friction, depending on the relative positionx,
also leads to equivalent features of the stationary motion.
distribution of the friction coefficient along the sliding path b
comes periodic. This contradicts reality.

Coulomb’s law of kinetic friction gives the active tangenti
contact force

Ra5mmgcosa sgnẋ. (3)

The normal compressive forcemgcosa remains constant for al
times.

During sliding the friction coefficientm(s) depends on the sur
face properties along the sliding path. Kilburn@2# conducted an
experimental investigation which indicates that friction behav
like a random process. Its constant component is most signifi
and nearly identical to the coefficient of friction. This allows th
assumption

m~s!5m01 f ~s! (4)

with a constant mean valuem0 superimposed by a random fiel
f (s). Solutions in the deterministic casef (s)[0 have already
been derived by Vielsack@3#. The choice of the deviationf (s) is
rather intuitive. It is oriented by Soom and Chen@4#, who simu-
lated the effective roughness in terms of a wave number spec
but without taking friction into account. In contrast, a consta
waviness of the contact surface will be considered in the follo
ing. This implies the existence of a definite material pattern at
interface. Apparently, sand paper with a definite granulation is
most simple example. Then, the interface parameterD is achieved
by subdividing the sliding coordinates into constant steps. The
random fieldf (s) reads

f ~s!5Xn , sP@nD,~n11!D#, n50,1,2, . . . (5)
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Fig. 1 Rigid mass on an inclined, moving, rough plane
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whereXn are real numbers, normally distributed~Gaussian! with
mean value zero and standard deviations. They are generated b
a standard computer program. These assumptions lead to a G
ian distribution of the friction coefficient along the sliding path
illustrated in Fig. 2.

The interface parameterD cannot be correlated with the rea
geometry of the interface. This is conditioned by Coulomb’s l
being independent of the shape of the contact area, as well a
the rigid-body model having no distinct geometrical dimensio
Therefore,D can only be used as a relative measure. The ques
is, how does the mechanical system behave if the interface pa
eterD tends to zero without changing the standard deviations.

Sliding is determined by the motion equation

mẍ1Ra5mgsina1maV2 sinVt. (6)

During sticking a passive tangential contact force

Rp5mgsina1maV2 sinVt (7)

exists. The quantities

t5Vt

A5tana/m0

B5aV2/~m0g cosa!

rp5Rp /~m0mgcosa!

ra5Ra /~m0mgcosa! (8)

j5Bx/a

d5BD/a

cn5Xn /m0

allow a dimensionless representation of~3!, ~6!, and ~7! in the
form

ra5~11cn!sgnj8
j952ra1A1B sintJ j8Þ0 (9)

for sliding, and

rp5A1B sint
j[j0

J j8[0 (10)

for sticking. The random numbercn must be generated after eac
sliding stepd. The constant displacementj0 characterizes a dis
tinct state of sticking. During the course of time, the contact fo

r5H ra ; j8Þ0

rp ; j8[0
(11)

is intermittent between active and passive. The separation po
are called switching times. They are the inherent unknowns of
nonsmooth dynamical problem under consideration.

Fig. 2 Friction coefficient: „a… versus sliding path, „b… Gauss-
ian distribution
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3 Integration of Motion
The motion can consist of a sequence of three possible sm

partial states, i.e., relative sliding down (j8.0), relative sliding
up (j8,0), and states of sticking (j8[0). The partial states are
enumerated byk50,1,2, . . . . Thetype and the duration of the
kth smooth part (k50,1,2, . . . ) depend on the excitation param
etersA andB and are not known a priori. Therefore, in addition
Eqs.~9! and~10! further information is needed indicating the en
of a certain state~switching condition! and predicting the type of
the following state~switching decision!.

3.1 State ‘‘Sticking’’. Assume t5tk21 to be a known
switching time at which a partial state ‘‘sticking’’ starts. The pr
vious history of motion at the timetk2120 yields the coordinate
j(tk2120)5j0 and the velocityj8(tk2120)50. They form the
constant relative displacementj(t)[j0 and the vanishing relative
velocity j8(t)[0 during the existence of this state in a time i
terval tk21,t,tk . The unknown switching timetk character-
izes the change to the next partial state. The passive contact
rp can be calculated from Eq.~10! at any timet.tk21 . Sticking
is finished as soon as the value of the passive contact forcerp
reaches the threshold for sliding, which means

urp~t!u5urau. (12)

The value of the active friction forcera is known from the end of
the last sliding process attk21 and is kept constant duringtk21
,t,tk . Equation~12! is called a switching condition. Asrp(t)
is a known function in time, the switching timetk follows from
the search for the first root of the algebraic expression~12! in the
open interval (tk21 ,t@ . If no root exists, the mechanical syste
remains in a state of lockup for all times. Otherwise, sticking
followed by sliding. Knowing the switching timetk , the switch-
ing decision

sgn~j8!5sgn~rp~tk20!! (13)

rules the direction of sliding. At the switching timetk , the contact
force ~11! changes from passive to active continuously, but n
continuously differentiably.

3.2 States ‘‘Sliding’’. Assume t5tk21 to be a known
switching time at which a partial state ‘‘sliding’’ with a known
direction of velocityj8 starts. The previous history yields the ge
eralized coordinatesj(tk2120) andj8(tk2120)50 at the time
tk2120. They form the initial conditions

j~tk2110!5j~tk2120!
(14)

j8~tk2110!50

for the equation of motion~9! with a random numbercn known
from the previous partial state. The sign of the velocityj8 is
known attk2110 from history. Therefore, Eq.~9! becomes lin-
ear. Taking~14! into account, its explicit solution can be given
Because of its simplicity it shall be omitted in the following.
numerical integration is not needed.

The procedure of solving a state ‘‘sliding’’ consists of tw
loops. The outer loop concerns the jump of the deviationf (s) in
Eq. ~4!. The intervalsd on the total sliding path are enumerated
n50,1,2, . . . .

During sliding the active contact forcera will change its value
after each length stepd. Assumetn21 to be a known switching
time at which the value ofra changes from 11cn21 to 11cn .
Thencn has to be generated as a new random number. The in
conditions for the solution of Eq.~9! in the open interval (tn21 ,t@
read

j~tn2110!5j~tn2120!,
(15)

j8~tn2110!5j8~tn2120!.
MARCH 2000, Vol. 67 Õ 113
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The value of the active contact forcera511cn is limited to a
time intervaltn21,t,tn with unknown upper bound. It is fin-
ished when the ratio

E
0

j udj~t!u
d

5n;nPN (16)

becomes the natural numbern. As j~t! is known explicitly, the
switching condition~16! is an algebraic expression which allow
for calculation of the unknown switching timetn .

The inner loop controls the existence of thekth smooth state,
which actually is assumed to be ‘‘sliding’’ by inspecting all su
cessive intervalsd one by one.

A partial state ‘‘sliding’’ consists of a sequence of solutions
Eq. ~9! with different values ofra . Altogether sliding exists in a
time rangetk21,t,tk . The unknown switching timetk charac-
terizes the transition to a new state. Sliding in one direction
finished when the velocityj8 becomes zero. The search for th
first root of the switching condition

j8~t!50 (17)

in the open interval (tk21 ,t@ leads to the switching timetk . This
is again an algebraic task. If no root exists, the mechanical sys
remains in a unidirectional sliding process for all times. Oth
wise, one has to decide about the new state starting attk10. First,
sticking is assumed. The passive contact forcerp(tk10) follows
from Eq. ~10!. If the switching decision

urp~tk10!u,urau (18)

is valid, sticking really exists in the open interval (tk ,t@ . If, on
the other hand,

urp~tk10!u.urau, (19)

there exists an immediate reversal of motion to opposite slidi

sgn~j8!52sgn~j8~tk20!!. (20)

At the end of each sliding process, the contact forcer is discon-
tinuous.

The problem of integration is reduced to an algebraic task. T
is the determination of all switching times on the basis of
switching conditions~12!, ~16!, and~17!, which will be performed
by numerical means as described by Vielsack and Hartung@5#.
The total motion consists of a sequence of different states, w
are valid during time intervals of different lengths. The end o
certain state determines the following one. The total solution
pieced together analytically. The process is strongly history
pendent.

Despite the fact that no numerical integration is necessary
calculations are extremely time-consuming. The reasons lie in
iterative determination of all transition points between succes
length intervalsd to get the sequencen50,1,2, . . . and of all
switching times between all intermittent states ‘‘sliding’’ an
‘‘sticking’’ to get the sequencek50,1,2, . . . . Moreover, the time
ranget.0 for the calculations must be chosen very large to
tain sufficiently large numbers of samples because the durat
of the sliding periods are random. In reality, to get one probabi
distribution, about 15 hours are needed on a Pentium II, 400 M
PC.

4 Results
The main interest is focused on the consequences of stoch

friction on the system’s response. It is obvious that only a limi
number of examples can be considered. Their choice is ra
heuristic. But the aim is to compare a ‘‘normal’’ situation wit
two ‘‘exceptional’’ ones. This implies the appropriate choice
three sets of parametersA and B. The question is whether equa
stochastic propertiesd and s have the same influence on the r
sponses in all three sets, or not.
114 Õ Vol. 67, MARCH 2000
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4.1 Deterministic Dry Friction. Both parametersA and B
contain implicitly the constant mean valuem0 of the coefficient of
friction. The absolute value of the active friction force is norma
ized tourau51. The intensity of the harmonic drive is captured b
B>0. The inclination of the plane is given byA>0. A constella-
tion 0<A<1 and B50 corresponds to the trivial lockup of
mass on an inclined unmoveable plane.A.1 leads to unidirec-
tional accelerated sliding down. Within the range 0<A,1 and
B.0 ~sufficiently large to exceed the threshold value of Eq.~11!!
the mass performs different types of steady-state motions. T
response period 2p always equals the dimensionless excitati
period. A constant mean velocity

jm8 5@j~t12p!2j~t!#/2p (21)

exists for all types. This quantity will be taken for now to cha
acterize the main property of a distinct response.

Figure 3 shows phase curves of three steady states during
response periods. Figure 3~a! depicts a ‘‘normal’’ situation with
alternating sliding up and down without sticking. The amount
velocity in a state ‘‘sliding down’’ is about three times larger tha
for ‘‘sliding up.’’ This leads to a driftj(t12p)2j(t)56.11
during one response period. The valueA50.99 for the motion
plotted in Fig. 3~b! is near to the critical inclinationA51.0. Even
low excitationB50.4 is sufficient to induce a steady-state moti
with a considerable driftj(t12p)2j(t)52.34. The response
consists of successive states of unidirectional sliding down w
intermediate states of sticking. Their duration of about ten perc
of a period is not visible because time is eliminated in the traj
tory. Figure 3~c! depicts the fact of an approximately horizont
plane withA50.01. Despite the strong excitationB54.0, the drift
j(t12p)2j(t)50.36 is very small. The response consists o
sequence of alternating sliding without sticking. The velocity d
tribution in both directions is nearly the same.

4.2 Stochastic Dry Friction. In addition to the system pa
rametersA and B two more parametersd and s are needed to
describe the friction properties of the contact surface. Its interf
property is measured byd. Three valuesd50.1, d50.01, andd
50.001 will be considered in the following. The standard dev
tion s50.1 of the random numbers in Eq.~9! will be the same for
all problems. To compare stochastic effects with the correspo
ing deterministic result, the probability density functionp(e) of
the true relative error

e5@jm8 ~A,B!2jm8 ~A,B,d,s!#/jm8 ~A,B! (22)

of the mean velocity for a given set of parameters is needed.
procedure is as follows: The deterministic valuejm8 (A,B) is cal-
culated once. The stochastic valuejm8 (A,B,d,s) changes from

Fig. 3 Trajectories of steady-state motions: „a… ‘‘normal’’ situ-
ation, „b… near to critical inclination, „c… near the horizontal
plane
Transactions of the ASME
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period to period. All results for the first 100 response periods
omitted to exclude transient effects. Then every tenth resu
stored. This distance of time seems to be enough to obtain i
pendent samples. Altogether, 10,000 samples are calculated f
cases.

Figure 4 shows the reduction of the error arising at the seA
50.25, B53.0 when decreasing the interface parameterd. It is
considerably small even for the large relative valued50.1. The
integrals of the probability density functions are equal to unity

This behavior of a ‘‘normal’’ motion has also been confirm
by additional calculations whereA was sufficiently far away from
the exceptional casesA50 andA51.0. The transition of the sto
chastic response to the deterministic one for decreasingd can be
explained by considering the course of the contact force~11! dur-
ing time~see Fig. 5!. The time interval 1000•2p<t<1005•2p is
chosen arbitrarily.

Fig. 4 Probability density of the relative error in the mean ve-
locity of a ‘‘normal’’ motion

Fig. 5 Five response periods of a ‘‘normal’’ motion with differ-
ent interface parameter. Left: trajectories; right: contact forces
versus time
Journal of Applied Mechanics
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Knowing r5r(t) the problem could be rewritten by only on
equationj952r(t)1A1B sint. Each integration to getj8 and
j is equivalent to a smoothening effect which is well known fro
experimental investigations. Even a very noisy signal of the
celeration leads to a smooth signal for the displacement.
smaller d for a fixed values, the better is the approach to th
deterministic solution, which can be seen from the correspond
phase curves. However, this intuitively expected property gives
quantitative information about the influence of the stochastic
rameter on different types of motion.

Figure 6 shows phase curves and contact forces for the ex
tional motion near to the critical inclination of the plane. Th

Fig. 6 Five response periods of a motion near the critical in-
clination of the plane. Left: trajectories; right: contact forces
versus time.

Fig. 7 Five response periods of a motion on an approximately
horizontal plane. Left: trajectories; right: contact forces versus
time.
MARCH 2000, Vol. 67 Õ 115
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property of the contact surface is the same as before. Now, ev
small valued50.001 affects the result considerably compar
with the deterministic one.~Note: scales of the trajectories diffe
from Fig. 5.! On the other hand, a large valued50.1 give rise to
sliding periods, which can be longer than the exciting peri
Moreover, it can happen at a point of separation from sliding
sticking that the active contact forcera becomes so large that th
switching condition~12! is never reached during sticking. Th
system remains in a lockup position for all times. In such a s
ation the program is restarted to obtain a sufficient numbe
samples for the error in the mean velocity.

The second exceptional case is a motion on an approxima
horizontal plane. Here Fig. 7 shows a similar situation as bef
~Note: Scales of the trajectories differ from Fig. 6.! The stochastic
results differ considerably from the deterministic one.

The error distributions for both exceptional motions confirm t
above statements. Note that the scale on both axes in Fig. 8
altered with respect to Fig. 4, by a factor 10 on the abscissae
a factor of 0.1 on the ordinate.

In both cases, the error is enlarged by one order of magnit
compared with the situation of a ‘‘normal’’ motion.

Moreover, the probability distribution is non-Gaussian in t
caseA50.99. Its mean value is unequal to zero. The distinction
the result for a ‘‘normal’’ motion is remarkable and has an imp
tant consequence. The mean sliding velocity of the mass on
plane is an easily observable quantity when performing exp
ments. It seems obvious to use its value for a determination
constant coefficient of friction by averaging some experimen
data. But despite the fact that the frictional properties at the in
face are unaltered, the apparent friction coefficient will chan

Fig. 8 Probability density of the relative error in the mean ve-
locity; „a… motion near to the critical inclination of the plane, „b…
motion on an approximately horizontal plane
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when changing the type of motion. Considering a completely d
ferent mechanical situation Adams@6# has pointed out a similar
discrepancy. The coefficient of friction at the interface can a
differ from the apparent coefficient at a large distance due
interface stick-slip.

All results are based on a constant values50.1 of the standard
deviation. Dividings in half and recalculation of all example
leads to probability densities with less deviation and double ma
mum values than those given in Figs. 4 and 8. Apparently
mechanical problem becomes deterministic when the deviatios
tends to zero.

5 Conclusions
Considered are sliding motions of a mass on an inclined m

ing plane. The influence of both different angles of inclination a
harmonic excitations on the response of the mass are investig
The contact force is modeled under the assumption of Coulom
law. In the deterministic case, the friction coefficient remains c
stant along the whole sliding path. In contrast, a relative interf
parameter and a deviation from the constant friction coefficien
introduced to capture stochastic properties of the contact surf

In the deterministic case, all responses show a common fea
in the steady state. This is a constant mean velocity dependin
both the inclination and the excitation. To characterize the in
ence of the stochastic parameters, the probability density of
relative error in the mean velocity is taken as a measure.

An intuitively expected result is valid for all kinds of motions
When decreasing the interface parameter of the contact sur
all stochastic responses approach to the corresponding dete
istic ones. The error, however, is strongly influenced not only
the stochastic parameter but also by the considered motion it
Depending on this sensitivity concerning the type of motion
classical deterministic calculation based on the mean value of
friction coefficient can include an unpredictable error with resp
to reality. This statement is confirmed by Kikuchi and Oden@7#:
‘‘It is known that even for the same combination of both conta
materials, changes only in the dynamic properties of the exp
mental setup or the driving velocity produce dramatic change
the observed friction characteristics.’’
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An analytical method for determining the load-deformation behavior of cord compo
cylindrical shells is developed by considering the mechanics of the matrix, the cords
the shell. To illustrate the method, a circular cylindrical shell with a single ply of u
formly spaced cords parallel to the shell axis is considered. The differential equation
the displacements are derived. These equations are solved analytically in closed fo
a shell with the cords on the middle surface and subjected to axisymmetric loading
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Introduction
An analytical method for determining the load-deformation b

havior of cord composite cylindrical shells is developed.
A cord composite consists of cords embedded in a matrix. C

rent applications of cord composites include pneumatic tires,
springs, hoses, sleeves, couplings, belts, bladders, diaphra
and various membrane structures. The cords have high axial
ness and high axial strength, as well as small bending stiffness
long fatigue life. The matrix separates and protects the cords,
a rubber matrix can sustain large strains and resist wear. In a
tion, the matrix provides a web between the cords to carry
contain loose material, such as gravel on a conveyer belt, o
contain liquids or gases inside such structures as bladders, t
hoses, tires, air springs, and diaphragms.

The most common application of a cord composite shell is
automobile or truck steel-belted radial tire, where steel cords
embedded in a rubber matrix. It is the combination of the prop
ties of the steel cords and the rubber matrix that allows tire s
vival after striking rocks and potholes. Engineers in the tire ind
try believe that the performance of tires still can be significan
increased through improved structural analysis. One aspect of
formance of a tire is the load-deformation relations. Curren
new designs are evaluated by the long and costly process of b
ing a prototype and determining its properties. To expedite
development process, an improved analytical model for the lo
deformation relations is needed.

In the literature, attempts have been made to determine
behavior of cord composites by experimental, finite element,
analytical methods. Reviews of cord composites are given
Walter @1# and Walter and Patel@2#. While many papers contain
brief discussion of cylindrical shells, toroidal shells, tires, or a
rubber springs, only a few contain a geometrical analysis of
shell structure. Typically, the approach to determine the lo
deformation relations for cord composites has been similar to
approach used for conventional composites~@3#!; a cord has been
modeled by an isotropic-rod approximation, a cord compo
lamina by the rule of mixtures, and a cord composite laminate
classical lamination theory. The extension-twist coupling of
cords ~@4#! was ignored. More recently, this coupling has be
taken into account. Paris, Lin, and Costello@5# presented the firs

1To whom all correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, De
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Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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analysis of a cord composite that included the extension-tw
coupling of the cord. It was not until an analysis of the sta
response of cord composite plates was presented in the doc
thesis by Kittredge@6# and in three papers by Shield~Kittredge!
and Costello@7–9# that the mechanics of the cords was includ
in the analysis of cord composite plates. Paris@10# considered
cord-reinforced cylindrical shells.

The objective is to assess the effects of changes in the geom
and/or constituents of a cord composite shell on the lo
deformation relations. These relations are developed analytic
by considering the mechanics of the matrix, the cords, and
shell. The matrix is modeled as linear-elastic~@11#!. The theory
that is used to model the cords was developed by Costello@4# and
includes the extension-twist coupling of the cords. For the sh
differential equations for the displacements are derived using
analysis of the bending of circular cylindrical shells by Flu¨gge
@12#. These equations are solved for a shell with axisymme
loading and the cords on the middle surface. The response du
uniformly distributed axisymmetric end loads and uniform inte
nal pressure is found for both a semi-infinite cylinder and a fin
cylinder. Other solutions are given by Paris@10#. The resulting
load-deformation relations are strongly dependent upon the p
erties of the constituents, including the extension-twist coupl
of the cords, and the geometry, boundary conditions, and load
of the cord composite shell.

Formulation
The differential equations for the displacements of a cord co

posite cylindrical shell due to the loads are developed by con
ering the mechanics of the matrix material, the cords, and
shell. A circular cylindrical shell with a single ply of uniformly
spaced cords, with the cord axes parallel to the axis of the she
considered.

The matrix is assumed to be homogeneous, linear-elastic,
isotropic. The stress-strain relations and the strain-displacem
relations in cylindrical coordinates can be found in the book
Love @11#.

Costello@4# showed that the cord axial force and twisting m
ment are linearly proportional to the axial strain and twist of t
cord, and that the cord bending moment is linearly proportiona
the curvature of the cord. The theory of Costello most recently
been verified by Jiang, Yao and Walton@13#, where a finite ele-
ment model, experimental results, and the theory of Costello
compared. The transverse load-carrying capacity of the cord
neglected. Although the axial response of the cords is differen
tension than in compression~@14#!, these bimodular characteristic
are neglected.

The shell is modeled following the theory for the bending
circular cylindrical shells by Flu¨gge @12#. It is assumed that lines
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straight and normal to the middle surface before deformation
straight and normal to the middle surface after deformation,
that the change in the length of any line normal to the mid
surface is negligible. In addition, the shell is assumed to be
and the strains, displacements, and rotations are assumed
small. These assumptions are often referred to as the Kirchh
Love hypothesis. In the current theory, it is assumed that the c
are perfectly bonded to the matrix and that the volume fraction
the cords is small.

Equilibrium Equations. Figure 1 shows a cord composit
cylindrical shell with a single ply of uniformly spaced cords wi
the cord axes parallel to the axis of the shell. Figure 2 show
typical element for the shell. The radius of the middle surface
denoted bya, the thickness byh, the cylindrical coordinates byx,
w, and z, the arc length along thew-axis by s, and the element
dimensions in thex andw-directions byDx andaDw. Thex-axis
is parallel to the longitudinal direction, thew-axis is parallel to the
circumferential direction, where thex and w-axes lie on the
middle surface, and thez-axis is an inward normal to the middl
surface of the shell such that thex, w, and z-axes form a right-
handed orthogonal coordinate system.

Figure 3 shows a typical element for the shell with~a! the
tractions and the force resultants and~b! the moment resultants
The tractions in thex, w, andz-directions are denoted bypx , pw ,
andpz , the force resultants byNx , Nxw , Nwx , Nw , Qx , andQw ,

Fig. 1 A cord composite cylindrical shell

Fig. 2 A typical element for the shell
118 Õ Vol. 67, MARCH 2000
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and the moment resultants byMx , Mxw , Mwx , and Mw . It is
assumed that the force and moment resultants may be represen
by a Taylor series. The equilibrium equations for the element i
terms of the tractions, force, and moment resultants are found b
setting the sum of the forces equal to zero and the sum of th
moments equal to zero. Setting the sum of the forces equal to ze
and setting the sum of the moments equal to zero yields

]Nx

]x
1

1

a

]Nwx

]w
1px50, (1)

]Nxw

]x
1

1

a

]Nw

]w
1pw2

Qw

a
50, (2)

]Qx

]x
1

1

a

]Qw

]w
1pz1

Nw

a
50, (3)

]Mxw

]x
1

1

a

]Mw

]w
2Qw50, (4)

]Mx

]x
1

1

a

]Mwx

]w
2Qx50, (5)

and

Nxw2Nwx1
Mwx

a
50. (6)

Solving Eqs.~4! and ~5! for Qw andQx , respectively, yields

Qw5
]Mxw

]x
1

1

a

]Mw

]w
(7)

and

Fig. 3 A typical element for the shell with „a… the tractions and
the force resultants and „b… the moment resultants
Transactions of the ASME
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Qx5
]Mx

]x
1

1

a

]Mwx

]w
. (8)

Substituting Eqs.~7! and ~8! into Eqs.~1!–~3! and ~6!, yields

]Nx

]x
1

1

a

]Nwx

]w
1px50, (9)

]Nxw

]x
1

1

a

]Nw

]w
2

1

a

]Mxw

]x
2

1

a2

]Mw

]w
1pw50, (10)

]2Mx

]x2 1
1

a

]2Mxw

]x]w
1

1

a

]2Mwx

]x]w
1

1

a2

]2Mw

]w2 1
Nw

a
1pz50,

(11)

and

Nxw2Nwx1
Mwx

a
50. (12)

Equations~9!–~12! are the differential equations for the force an
moment resultantsNx , Nxw , Nwx , Nw , Mx , Mxw , Mwx , and
Mw . There are four coupled, linear, nonhomogenous, partial
ferential equations with constant coefficients in terms of ei
unknowns, and the problem is statically indeterminate.

Kinematics. Figure 4 shows exaggerated displacements
rotations for the shell~a! in the xz-plane and~b! in the wz-plane.
The shell undergoes a deformation, and pointA moves fromA to
A8. The displacements ofA in the x, w, andz-directions are de-
noted byuA , vA and wA . The displacements of the middle su

Fig. 4 Exaggerated displacements and rotations for the shell
„a… in the xz -plane and „b… in the wz-plane
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face of the shell in thex, w, andz-directions are denoted byu, v,
and w, respectively. Using the Kirchhoff-Love hypothesis to e
pressuA , vA , andwA in terms ofu, v, andw yields

uA5u2z
]w

]x
, (13)

vA5S a2z

a D v2
z

a

]w

]w
, (14)

and

wA5w, (15)

whereu5u(x,w), v5v(x,w) andw5w(x,w).

Strain-Displacement Relations. The normal strains in thex
andw-directions are denoted by«x and«w , respectively, and the
shearing strain corresponding with the directions of the axesx
andw is denoted bygxw . The strain-displacement relations are

«x5
]uA

]x
, (16)

«w5
1

r S ]vA

]w
2wAD , (17)

and

gxw5
1

r

]uA

]w
1

]vA

]x
, (18)

wherer 5a2z.

Matrix Force and Moment Resultants. The normal stresses
in thex andw-directions are denoted bysx andsw , respectively,
and the shearing stress corresponding with the directions of
axes ofx andw is denoted bytxw . The stress-strain relations ar

sx5
Em

12ym
2 ~«x1ym«w!, (19)

sw5
Em

12ym
2 ~«w1ym«x!, (20)

and

txw5
Em

2~11ym!
gxw , (21)

whereEm is the modulus of elasticity andym is the Poisson’s ratio
of the matrix material. The subscriptsm and c will be used to
denote variables related to the matrix and cord, respectively.

The matrix force resultants are found by integrating the stres
over the thickness of the shell and the moment resultants
found by integrating the first moment of the stresses over
thickness of the shell. Figure 5 shows a typical element for
shell with the in-plane stresses. The stressessx andtxw act on a
differential area (a–z)Dwdz of the surface of the element with
normal in thex-direction and the stressessw and txw act on a
differential areaDxdzof the surface of the element with a norm
in thew direction, all at a distancez from the middle surface. The
matrix force resultants are denoted byNxm , Nxwm , Nwxm , Nwm ,
Qxm , andQwm , and the matrix moment resultants are denoted
Mxm , Mxwm , Mwxm , and Mwm . The matrix force and momen
resultants are

Nxm5
1

aDw E
2h/2

h/2

sx~a2z!Dwdz, (22)

Nxwm5
1

aDw E
2h/2

h/2

txw~a2z!Dwdz, (23)
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Mxm5
1

aDw E
2h/2

h/2

sx~a2z!Dwzdz, (24)

Mxwm5
1

aDw E
2h/2

h/2

txw~a2z!Dwzdz, (25)

Nwm5
1

Dx E2h/2

h/2

swDxdz, (26)

Nwxm5
1

Dx E2h/2

h/2

txwDxdz, (27)

Mwm5
1

Dx E2h/2

h/2

swDxzdz, (28)

and

Mwxm5
1

Dx E2h/2

h/2

txwDxzdz. (29)

The change in these integrals due to the cross-sectional area o
cords is neglected.

Equations~13!–~29! yield

Nxm5CS ]u

]x
1

ym

a

]v
]w

2
ym

a
wD1

D

a

]2w

]x2 , (30)

Nwm5CS 1

a

]v
]w

1ym

]u

]x
2

w

a D2
D

a3 S w1
]2w

]w2D , (31)

Nxwm5
12ym

2
CS ]v

]x
1

1

a

]u

]w D1
12ym

2

D

a2 S ]v
]x

1
]2w

]x]w D ,

(32)

Nwxm5
12ym

2
CS ]v

]x
1

1

a

]u

]w D1
12ym

2

D

a2 S 1

a

]u

]w
2

]2w

]x]w D ,

(33)

Mxm52
D

a2 S a2
]2w

]x2 1ym

]2w

]w2 1a
]u

]x
1ym

]v
]w D , (34)

Mwm52
D

a2 S ]2w

]w2 1yma2
]2w

]x2 1wD , (35)

Mxwm52~12ym!
D

a2 S a
]2w

]x]w
1a

]v
]xD , (36)

and

Fig. 5 A typical element for the shell with the in-plane matrix
stresses
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Mwxm52~12ym!
D

a2 S a
]2w

]x]w
1

a

2

]v
]x

2
1

2

]u

]w D , (37)

where terms ofO(h/a)5 have been neglected,C is the extensional
rigidity of the matrix and is defined to be

C5
Emh

12ym
2 , (38)

andD is the flexural rigidity or bending stiffness of the matrix an
is defined to be

D5
Emh3

12~12ym
2 !

. (39)

Cord Force and Moment Resultants. Figure 6 shows a
cord loaded by an axial force and twisting moment, whereFc is
the axial force,Mtc is the twisting moment,Ri is the radius of the
inner wire,Ro is the radius of the outer wires,Rc is the outside
radius of the cord,m is the number of outer wires, anda is the
helix angle of the outer wires. The cord axial forceFc and twist-
ing momentMtc may be expressed as

Fc

AcEc
5C1«c1C2Rctc , (40)

and

Mtc

EcRc
3 5C3«c1C4Rctc , (41)

whereAc is the metallic cross sectional area,Ec is the modulus of
elasticity of the material,«c is the axial strain,tc is the twist per
unit length, andC1 , C2 , C3 , andC4 are constants which can b
determined analytically@4#. Figure 7 shows a cord~a! undeformed

Fig. 6 A cord loaded by an axial force and twisting moment
Transactions of the ASME
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and~b! deformed in pure bending, whereMbc is the cord bending
moment, andrc is the radius of curvature of the cord. The co
bending momentMbc may be expressed as

Mbc

EcRc
3 5C5Rckc , (42)

wherekc51/rc is the curvature andC5 is a constant which can b
determined analytically~@4#!.

Figure 8 shows a typical element for the shell with the co
axial force, twisting moment, and bending moment. T
z-coordinate of the cord axis is denoted aszc . The axial strain,
change in curvature, and twist per unit length of the cord may
expressed in terms of the strains, change in curvatures, and
of the middle surface. Using Eqs.~13!–~15! to express«c , kc ,
andtc yields

«c5F]uA

]x G
z5zc

, (43)

kc5
1

rc
5F]2wA

]x2 G
z5zc

, (44)

and

tc5H ]

]x F1

2 S vA

r
1

1

r

]wA

]w
2

]vA

]z D G J
z5zc

. (45)

Figure 3 shows a typical element for the shell with~a! the
tractions and the force resultants and~b! the moment results. Fig
ure 8 shows a typical element for the shell with the cord ax
force, twisting moment, and bending moment. The transve
load-carrying capacity of the cords is assumed to be negligi
The axial force, twisting moment, and bending moment in

Fig. 7 A cord „a… undeformed and „b… deformed in pure bend-
ing
Journal of Applied Mechanics
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cord may be divided by the spacing of the cords and resolved into
the force and moment resultants in the shell. The cord force re-
sultants are denoted byNxc , Nxwc , Nwxc , Nwc , Qxc , andQwc ,
and the cord moment resultants are denoted byMxc , Mxwc ,
Mwxc , and Mwc . Referring to Figs. 3 and 8 and comparing the
force and moment resultants with the cord axial force, twisting
moment, and bending moment yields

Nwc5Nxwc5Qx5Qw5Nwxc5Mwc5Mwxc50, (46)

Nxc5
Fc

b
, (47)

Mxc5
Fczc2Mbc

b
(48)

and

Mxwc52
Mtc

b
(49)

whereb is the spacing of the cords. Equations~40!–~49! yield

Nxc5
AcC1Ec

b S ]u

]x
2zc

]2w

]x2 D1
AcC2EcRc

ab S ]v
]x

1
]2w

]x]w D ,

(50)

Mxc5
AcC1Eczc

b

]u

]x
2S AcC1Eczc

2

b
1

C5EcRc
4

b D ]2w

]x2

1
AcC2EcRczc

ab S ]v
]x

1
]2w

]x]w D , (51)

and

Mxwc52
C3EcRc

3

b S ]u

]x
2zc

]2w

]x2 D2
C4EcRc

4

ab S ]v
]x

1
]2w

]x]w D .

(52)

Note that by dividing the cord axial force, twisting moment, and
bending moment by the spacing of the cords that the cord is
smeared out in the circumferential direction~w-direction! but not
in the radial direction~z-direction!. The position of the cord in the
radial direction is significant where bending is considered. It is
assumed that the spacing of the cordsb is sufficiently small to
yield accurate results.

Total Force and Moment Resultants. The total force and
moment resultants are the sum of the force and moment resultants
of the matrix and of the cords. The total force and moment result-
ants may be expressed as

Fig. 8 A typical element for the shell with the cord axial force,
twisting moment, and bending moment
MARCH 2000, Vol. 67 Õ 121
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Nx5Nxm1Nxc , (53)

Nw5Nwm1Nwc , (54)

Nxw5Nxwm1Nxwc , (55)

Nwx5Nwxm1Nwxc , (56)

Mx5Mxm1Mxc , (57)

Mw5Mwm1Mwc , (58)

Mxw5Mxwm1Mxwc , (59)

and

Mwx5Mwxm1Mwxc . (60)

Equations~30!–~37!, ~46!, and~50!–~60! yield

Nx5S C1
AcC1Ec

b D ]u

]x
1

AcC2EcRc

ab

]v
]x

1
ymC

a

]v
]w

2
ymC

a
w

1S D

a
2

AcC1Eczc

b D ]2w

]x2 1
AcC2EcRc

ab

]2w

]x]w
, (61)

Nw5ymC
]u

]x
1

C

a

]v
]w

2S C

a
1

D

a3Dw2
D

a3

]2w

]w2 , (62)

Nxw5
~12ym!C

2a

]u

]w
1

12ym

2 S C1
D

a2D ]v
]x

1
~12ym!D

2a2

]2w

]x]w
,

(63)

Nwx5
12ym

2a S C1
D

a2D ]u

]w
1

~12ym!C

2

]v
]x

2
~12ym!D

2a2

]2w

]x]w
,

(64)

Mx5S 2
D

a
1

AcC1Eczc

b D ]u

]x
1

AcC2EcRczc

ab

]v
]x

2
ymD

a2

]v
]w

2S D1
C5EcRc

4

b
1

AcC1Eczc
2

b D ]2w

]x2 1
AcC2EcRczc

ab

]2w

]x]w

2
ymD

a2

]2w

]w2 , (65)

Mw52
D

a2 S w1yma2
]2w

]x2 1
]2w

]w2D , (66)

Mxw52
C3EcRc

3

b

]u

]x
2F ~12ym!D

a
1

C4EcRc
4

ab G ]v
]x

1
C3EcRc

3zc

b

]2w

]x2 2FC4EcRc
4

ab
1

~12ym!D

a G ]2w

]x]w
,

(67)

and

Mwx52
~12ym!D

a2 S 2
1

2

]u

]w
1

a

2

]v
]x

1a
]2w

]x]w D . (68)

Equations~61!–~68! are the total force and total moment resu
ants. Substituting Eq.~61!–~68! into Eqs.~7! and ~8! yields

Qx5S 2
D

a
1

AcC1Eczc

b D ]2u

]x2 1
~12ym!D

2a3

]2u

]w2

1
AcC2EcRczc

ab

]2v
]x22

~11ym!D

2a2

]2v
]x]w

1
AcC2EcRczc

ab

3
]3w

]x2]w
2S D1

C5EcRc
4

b
1

AcC1Eczc
2

b D ]3w

]x3 2
D

a2

]3w

]x]w2

(69)
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and

Qw52
C3EcRc

3

b

]2u

]x22F ~12ym!D

a
1

C4EcRc
4

ab G ]2v
]x2

1
C3EcRc

3zc

b

]3w

]x3 2S D

a
1

C4EcRc
4

ab D ]3w

]x2]w
2

D

a3

]w

]w

2
D

a3

]3w

]w3 . (70)

Differential Equations for the Displacements of the Middle
Surface. The differential equations for the displacements
the middle surface of the shell are found. Substituting Eqs.~61!–
~68! into Eqs.~9!–~12! yields

S C1
AcC1Ec

b D ]2u

]x2 1
12ym

2a2 S C1
D

a2D ]2u

]w2 1
AcC2EcRc

ab

]2v
]x2

1
~11ym!C

2a

]2v
]x]w

2
ymC

a

]w

]x
1S D

a
2

AcC1Eczc

b D ]3w

]x3

2
~12ym!D

2a3

]3w

]x]w2 1
AcC2EcRc

ab

]3w

]x2]w
1px50, (71)

C3EcRc
3

ab

]2u

]x2 1
~11ym!C

2a

]2u

]x]w

1F ~12ym!C

2
1

3~12ym!D

2a2 1
C4EcRc

4

a2b G ]2v
]x2

1
C]2v
a2]w22

C3EcRc
3zc

ab

]3w

]x3 2
C

a2

]w

]w

1F ~32ym!D

2a2 1
C4EcRc

4

a2b G ]3w

]x2]w
1pw50, (72)

ymC

a

]u

]x
1S AcC1Eczc

b
2

D

a D ]3u

]x3 2
C3EcRc

3

ab

]3u

]x2]w

1
~12ym!D

2a3

]3u

]x]w2 1
AcC2EcRczc

ab

]3v
]x3

2F ~32ym!D

2a2 1
C4EcRc

4

a2b G ]3v
]x2]w

1
C

a2

]v
]w

2S C

a2 1
D

a4Dw

2S D1
AcC1Eczc

2

b
1

C5EcRc
4

b D ]4w

]x4

1S AcC2EcRczc

ab
1

C3EcRc
3zc

ab D ]4w

]x3]w

2S 2D

a2 1
C4EcRc

4

a2b D ]4w

]x2]w22
2D

a4

]2w

]w22
D

a4

]4w

]w4 1pz50,

(73)

and Eq.~12! is identically satisfied. Equations~71!–~73! are three
linear, coupled, nonhomogenous, partial differential equati
with constant coefficients for the three displacementsu, v, andw.
The coupling is due in part to the extension-twist coupling of t
cords.

Results

Axisymmtric Loading. Closed-form solutions are found fo
a shell with the cords on the middle surface, axisymmetric lo
ing, and the in-plane tractions equal to zero. First, a general s
tion for the displacements from the loads is developed. Seco
the solution for a semi-infinite cylinder loaded by a uniform i
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ent
nd
ternal pressure and by end loads is developed. Third, the solu
for a finite cylinder loaded by a uniform internal pressure and
end loads is developed.

The shell has the cords on the middle surface, axisymme
loading, and the in-plane tractions equal to zero. Therefore,

px50, pw50, pz5pz~x!, and zc50. (74)

Since the loads are functions ofx only, Eq. ~74!, the displace-
ments of the middle surface will also be functions ofx only and
may be expressed as
Journal of Applied Mechanics
tion
by

tric

u5u~x!, v5v~x!, and w5w~x!. (75)

Note that although the loading is axisymmetric, the displacem
in thew directionv is not assumed to be zero. Since the loads a
the displacements are functions ofx only, Eqs.~74! and ~75!, all
derivatives with respect tow are zero.

General Solution. Solving Eqs.~71! and ~72! for d2u/dx2

andd2v/dx2 and integrating once with respect tox yields
du

dx
5

12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b

S C1
C1EcAc

b D F12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b G2
C2C3Ec

2Rc
4Ac

a2b2

S Cym

a
w2

D

a

d2w

dx2 D1B1 , (76)

and

dv
dx

5

2
C3EcRc

3

ab

S C1
C1EcAc

b D F12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b G2
C2C3Ec

2Rc
4Ac

a2b2

S Cym

a
w2

D

a

d2w

dx2 D1B2, (77)

whereB1 andB2 are constants of integration to be determined.
Substituting Eqs.~76! and ~77! into Eq. ~73! yields

A1

d4w

dx4 1A2

d2w

dx2 1A3w5p, (78)

where

A15D1
C5EcRc

4

b
2S D

a D 2H 12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b

S C1
C1EcAc

b D F12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b G2
C2C3Ec

2Rc
4Ac

a2b2

J , (79)

A25
2ymCD

a2 H 12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b

S C1
C1EcAc

b D F12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b G2
C2C3Ec

2Rc
4Ac

a2b2

J , (80)

A35
C

a2 1
D

a42S ymC

a D 2H 12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b

S C1
C1EcAc

b D F12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b G2
C2C3Ec

2Rc
4Ac

a2b2

J , (81)
d,
rse

nd
rse
f

and

p5
ymC

a
B11pz . (82)

Equation~78! is a fourth-order, linear, nonhomogeneous, ordina
differential equation with constant coefficients forw and has the
solution

w5e2bx@B3 cos~ax!1B4 sin~ax!#

1ebx@B5 cos~ax!1B6 sin~ax!#1wp~x!, (83)

where

a5F1

2 S A3

A1
D 1/2

1
A2

4A1
G1/2

(84)

and
ry

b5F1

2 S A3

A1
D 1/2

2
A2

4A1
G1/2

, (85)

B3 , B4 , B5 , andB6 are constants of integration to be determine
andwp(x) is the particular solution that depends on the transve
loadingpz(x). An alternate form of the solution to Eq.~78! is

w5D1 cosh~bx!cos~ax!1D2 cosh~bx!sin~ax!

1D3 sinh~bx!cos~ax!1D4 sinh~bx!sin~ax!1wp~x!,

(86)

wherea andb are as given above by Eqs.~84! and~85!, D1 , D2 ,
D3 , and D4 are constants of integration to be determined, a
wp(x) is the particular solution that depends on the transve
loadingpz(x). The type of problem will determine which form o
the solution is most convenient.
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Consider the loads that may be applied to the end of a cylin
cal shell. The force and moment resultants acting on the end o
cylindrical shell areNx , Nxw , Qx , Mx , andMxw . These are the
traction boundary conditions. Now consider the net moment
these force and moment resultants about the centerline of the
lindrical shell. Figure 9~a! shows an element of the end of a c
lindrical shell with the loads with a moment about the centerli
The sum of the moments about the centerline is

SMCL5MxwDs2a~NxwDs!. (87)

The force resultantNxw and moment resultantMxw can be re-
solved into an equivalent shear force resultantTx acting on the
end of the cylindrical shell. Figure 9~b! shows an element of the

Fig. 9 An element of the end of a cylindrical shell with „a… the
loads with a moment about the centerline and „b… the equiva-
lent shear force resultant
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end of a cylindrical shell with the equivalent shear force resulta
Dividing both sides of Eq.~87! by aDs yields the equivalent shea
force resultantTx is

Tx5
(MCL

aDs
5

Mxw

a
2Nxw . (88)

When the transverse traction ispz5po1p1x, wherepo andp1
are constants, the forcing termp given by Eq.~82! becomes

p5
ymC

a
B11po1p1x. (89)

The particular solutionwp of Eq. ~78! for the forcing termp given
by Eq. ~89! is

wp5
1

A3
S ymC

a
B11po1p1xD . (90)

The particular solutionwp given by Eq.~90! is valid regardless of
the boundary conditions. Therefore, it is valid for both a sem
infinite cylinder with end loads and a finite cylinder with en
loads.

Semi-Infinite Cylinder With End Loads. Consider a semi-
infinite cylinder with a uniform internal pressurepo and end
loads. The boundary conditions atx50 areNx5N, Mx5M , Qx
5Q, andTx5T, and the transverse traction ispz5po , wherepo
is a constant. It is most convenient to use the form of the solu
for w given by Eq.~83!. The displacementw is bounded inx and
thereforeB5 andB6 must be zero. The forcing termp is given by
Eq. ~89!, wherep150. The particular solutionwp is given by Eq.
~90!, again wherep150.

Applying the boundary conditionsNx5N andTx5T at x50 to
Eqs. ~61!, ~63!, ~67!, ~76!, ~77!, and ~88!, and solving for the
constants of integrationB1 andB2 yields
B15

F12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b GN1
C2EcAcRc

ab
T

S C1
C1EcAc

b D F12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b G2
C2C3Ec

2Rc
4Ac

a2b2

(91)

and

B25

2
C3EcRc

3

ab
N2S C1

C1EcAc

b DT

S C1
C1EcAc

b D F12ym

2 S C1
3D

a2 D1
C4EcRc

4

a2b G2
C2C3Ec

2Rc
4Ac

a2b2

. (92)
he
e
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Applying the boundary conditionsMx5M and Qx5Q at x
50 to Eqs.~65!, ~69!, ~76!, ~77!, ~83!–~85!, and~90! and solving
for the constants of integrationB3 andB4 yields

B352

M1B1S D

a
1

A2Cym

2aA3
D1

A2po

2A3

2a2A1
2

Q

2a2bA1
(93)

and

B45

M1B1S D

a
1

A2Cym

2aA3
D1

A2po

2A3

2abA1
. (94)

The constants of integrationB1 , B2 , B3 , B4 , B5 , andB6 have
been determined in terms of the loads, and thereforedu/dx,
dv/dx, and w have been determined in terms of the loads. T
displacementsu and v can easily be found by integrating th
equations fordu/dx anddv/dx, respectively, once with respect t
x. The equations foru and v will have two new constants o
integration. The constants represent rigid-body displacements
may be set equal to zero.

Finite Cylinder With End Loads. Consider a finite cylinder
of length 2L with end loads and a uniform internal pressurepo .
The transverse traction ispz5po , where po is a constant. The
boundary conditions areNx5N at x56L, Mx5M at x56L,
Qx5Q at x52L, Qx52Q at x5L, andTx5T at x56L.

It is most convenient to use the form of the solution forw given
by Eq. ~86!. Since the transverse tractionpz5po , thenp150 in
Eq. ~90!. The cylinder is symmetric about thewz-plane, and there-
Transactions of the ASME
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ce-
fore the transverse displacementw must also be symmetric an
the constants of integrationD2 andD3 must be zero.

Applying the boundary conditionsNx5N and Tx5T at x5
6L to Eqs.~61!, ~63!, ~67!, ~76!, ~77!, and ~88! and solving for
the constants of integrationB1 andB2 yields Eqs.~91! and ~92!,
the same as for a semi-infinite cylinder.

Equations~65!, ~69!, ~76!, ~77!, ~84!–~86!, and~90! and apply-
ing the boundary conditionsQx52Q and Mx5M at x5L and
solving for constants of integrationD1 andD4 yields

D15
A8~M2A6!1A5Q

A4A81A5A7
(95)

and

D45
2A7~M2A6!1A4Q

A4A81A5A7
, (96)

where

A452abA1 sin~aL !sinh~bL !, (97)

A552abA1 cos~aL !cosh~bL !, (98)

A652
B1

a S D1
A2Cvm

2A3
D2

poA2

2A3
, (99)

A752abA1@a cos~aL !sinh~bL !1b sin~aL !cosh~bL !#,
(100)

and

A852abA1@a sin~aL !cosh~bL !2b cos~aL !sinh~bL !#.
(101)

The constants of integrationB1 , B2 , D1 , D2 , D3 , andD4 have
been determined in terms of the loads, and thereforedu/dx,
dv/dx, and w have been determined in terms of the loads. T
displacementsu and v can easily be found by integrating th
equations fordu/dx anddv/dx, respectively, once with respect t
x. The equations foru and v will have two new constants o
integration. The constants represent rigid-body displacements
may be set equal to zero.

Selected results are compared with the solutions given
Gough-Tangorra and Akasaka-Hirano for a cord composite cy
drical shell. In each case the cords are on the middle surface
are parallel to the shell axis. First, the results for an axially loa
semi-infinite shell are examined. Second, the results for a se
infinite shell loaded by an edge moment are examined. Third,
results for an axially loaded finite shell are examined. The auth
are not aware of any published experimental data on the lo
deformation behavior of cord composite cylindrical shells to co
pare with the analytical solutions.

A concise review of the solutions by Gough-Tangorra a
Akasaka-Hirano is given by Walter and Patel@2#. Classical lami-
nation theory~@3#! is used to find the stiffnesses of the lamin
The solution given by Paris@10# is used to find the force and
moment resultants, and deformations of the shell.

The Gough-Tangorra equations for the in-plane material pr
erties are

E15EcVc1Em~12Vc!. (102)

E25
4Em~12Vc!@EcVc1Em~12Vc!#

3EcVc14Em~12Vc!
, (103)

G125Gm~12Vc!, (104)

n1250.5, (105)

and

n215n12

E2

E1
, (106)
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whereE is the tensile modulus,G is the shear modulus,V is the
Poisson’s ratio, and subscripts 1 and 2 indicate the in-plane
terial properties parallel to and perpendicular to the cord direct
respectively.

The cord volume fractionVc is defined as

Vc5
Ac

bh
. (107)

The Akasaka-Hirano equations for the in-plane material pr
erties are

E15EcVc , (108)

E25
4Em

3
, (109)

G125Gm , (110)

n1250.5, (111)

and

n2150. (112)

The properties of the constituents and the geometry of the c
composite cylindrical shell are

Steel cord: Ri50.15 mm
Ro50.14 mm
m56
a581.4 deg
Rc5Ri12Ro50.430 mm
Ec5200 GPa
nc50.25
Ac50.440 mm2

C150.967
C250.0828
C350.187
C450.0723
C550.0638

Rubber matrix Em510 MPa
ym50.5

Shell: h54Rc51.71 mm
a50.318 m
nc50.3

Finite cylinder: 2L52a50.635 m

Consider a semi-infinite cylinder with an axial loadN5C. Fig-
ure 10 shows the normalized displacementsu/a, v/a, and w/a
versus the normalized coordinatex/a. The curves for the normal-
ized displacementu/a are indistinguishable for the current solu
tion, Gough-Tangorra, and Akasaka-Hirano. For the solutions
Gough-Tangorra and Akasaka-Hirano, the normalized displa

Fig. 10 Normalized displacements u Õa, v Õa, and w Õa versus
normalized coordinate x Õa
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mentv/a is zero. However, for the current solution, the norm
ized displacementsu/a andv/a are of the same order of magn
tude. The magnitude of the normalized displacementv/a is
almost twice the magnitude ofu/a. The sign of the normalized
displacementv/a is dependent upon the lay of the cords: here
cords are right lay and the sign of the normalized displacem
v/a is negative; if the cords were left lay, the sign ofv/a would
be positive. The curves forw/a are indistinguishable for the cur
rent solution and the solutions of Gough-Tangorra and Akasa
Hirano. The shell has significant extension-twist coupling due
the extension-twist coupling of the cords.

Consider a semi-infinite cylinder with an edge momentM
5D/a. Figure 11 shows the normalized displacementw/a versus
normalized coordinatex/a. The curves for the normalized dis
placementw/a for the current solution is dramatically differen
from the solutions of both Gough-Tangorra and Akasaka-Hira
The curves for the normalized displacementw/a for the solutions
of Gough-Tangorra and Akasaka-Hirano are very close. At
end of the shell, where the normalized coordinatex/a is zero, the
normalized displacementw/a for the current solution is one orde
of magnitude greater than those for the solutions of Gou
Tangorra and Akasaka-Hirano. A larger displacement indicate
smaller bending stiffness. The bending stiffness for the Gou
Tangorra and Akasaka-Hirano solutions is larger than the ben
stiffness for the current solution since the Gough-Tangorra
Akasaka-Hirano solutions smear out the cord over the thicknes
the shell and the current solution does not. The normalized
placementw/a decays exponentially and has nearly vanish
when the normalized coordinatex/a.1 for the current solution,
and when x/a.2 for the solutions of Gough-Tangorra an
Akasaka-Hirano. Figure 12 shows the normalized moment res

Fig. 11 Normalized displacement w Õa versus normalized co-
ordinate x Õa

Fig. 12 Normalized stress resultant Mx ÕM versus normalized
coordinate x Õa
126 Õ Vol. 67, MARCH 2000
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ant Mx /M versus the normalized coordinatex/a. Again, the
curve for the current solution is dramatically different from th
solutions of both Gough-Tangorra and Akasaka-Hirano. T
curves for the solutions of Gough-Tangorra and Akasaka-Hir
are very close. The normalized moment resultantMx /M decays
exponentially and has nearly vanished when the normalized c
dinatex/a.1 for the current solution, and whenx/a.2 for the
solutions of Gough-Tangorra and Akasaka-Hirano. The norm
ized displacementw/a and moment resultantMx /M decay much
more rapidly for the current solution than for the solutions
Gough-Tangorra and Akasaka-Hirano.

Consider a finite cylinder with an axial loadN5C. This is an
intermediate length shell based upon the analysis of a se
infinite shell with an edge moment above. Figure 13 shows
normalized displacementsu/a, v/a, andw/a versus the normal-
ized coordinatex/a. These results for an axially loaded finit
cylinder are similar to those for a semi-infinite cylinder abov
The following discussion follows the discussion for a semi-infin
cylinder above. The curves for the normalized displacementu/a
are indistinguishable for the current solution, Gough-Tango
and Akasaka-Hirano. For the solutions of Gough-Tangorra
Akasaka-Hirano, the normalized displacementv/a is zero. How-
ever, for the current solution the normalized displacementsu/a
andv/a are of the same order of magnitude. The magnitude of
normalized displacementv/a is almost twice the magnitude of th
normalized displacementu/a. The curves for the normalized dis
placementw/a are indistinguishable for the current solutio
Gough-Tangorra and Akasaka-Hirano. The shell has signific
extension-twist coupling due to the extension-twist coupling
the cords.

Summary and Conclusions
An analytical method for determining the load-deformation b

havior of cord composite cylindrical shells was developed by c
sidering the mechanics of the matrix, the cords, and the shell.
differential equations for the displacements were found for a s
with a single ply of uniformly spaced cords with the cord ax
parallel to the shell axis. The equations were solved analyticall
closed form for a shell with the cords on the middle surface. T
response due to uniformly distributed axisymmetric end loads
uniform internal pressure was found for both a semi-infinite c
inder and a finite cylinder.

In general, the effect of the extension-twist coupling of t
cords on the displacements of a cord composite cylindrical s
depends upon the shell constituents, geometry, boundary co
tions, and loading. The results show that the axially loaded c
composite cylindrical shells considered have significa
extension-twist coupling.

Fig. 13 Normalized displacements u Õa, v Õa, and w Õa versus
normalized coordinate x Õa
Transactions of the ASME
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Machining as a Wedge
Indentation
A case is made for the consideration of single-point machining of ductile metals
special type of wedge indentation process. A general-purpose finite element analy
machining using iterative rezoning is developed based on this analogy. The accura
this analysis, which does not incorporate any separation criterion, is limited only by
knowledge of the material properties and the friction conditions at the tool-chip interf
Strain hardening, strain rate effects, and the temperature dependence of the proper
the work material can be taken into consideration. While Coulomb friction is assume
the chip-tool interface in the present model, it can easily be reformulated to include m
complicated frictional interactions such as adhesion. An analysis of the cut
indentation of an isotropic work-hardening material at slow speeds under two diffe
friction conditions is presented. It is shown that many of the important features of
chining processes are consistently reproduced by the analysis.@S0021-8936~00!03501-7#
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1 Introduction
The main reason for developing machining models is the n

to predict outputs of the machining process such as cutting for
residual stresses, and the tool life for a given set of input par
eters like feed, speed, depth of cut, and tool geometry. Such m
els will help us address the inverse problem of determining
inputs for achieving certain values of the output parameters. V
ous models of machining at varying levels of complexity ha
been proposed by different researchers. These models ca
broadly classified into~i! slip line field models,~ii ! finite element
models and~iii ! atomistic models. A careful review of these mo
els suggests that finite element models are best suited for acc
prediction of machining parameters.

Based on similarities between experimentally observed de
mation patterns in machining and indentation of ductile met
and on atomistic analyses of these two processes, it is concl
that they are equivalent and that finite element models of mac
ing of ductile materials~with production of continuous chips! do
not have to incorporate separation or failure criteria for the w
material. An iterative finite element model of machining which
capable of simulating machining by periodic remeshing of
workpiece~to offset mesh distortions due to deformation caus
by the infeed of the tool! is described. Due to its closer represe
tation of the actual machining process, such a model is m
accurate than conventional Lagrangian finite element models
incorporate a separation criterion. This model is used to ana
machining and gives results which are consistent with experim
tal observations pertaining to cutting and wedge indentation.

2 Background

2.1 Finite Element Analysis. Finite element studies of the
machining process have been carried out by a number of rese
ers. Klamecki’s model~@1#! was limited to the incipient cutting
stage. Usui and Shirakash@2# also assumed a steady-state ch
geometry and advanced the tool only incrementally. The fi
analysis of orthogonal metal cutting where the tool was mo
into the workpiece to generate a chip which separates from

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
2, 1997; final revision, Feb. 23, 1998. Associate Technical Editor: M. Ortiz. Disc
sion on the paper should be addressed to the Technical Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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workpiece along a previously defined ‘‘parting line’’ was due
Strenkowski and Carroll@3#. In their analysis, the nodes along th
parting line were ‘‘unhooked’’ when the effective strain at the
nodes exceeded 0.5. Subsequently they adopted an Eulerian a
sis in which finite element equations were formulated in an Eu
rian reference frame~@4#!. This approach allows the mesh to b
fixed in space and the material to flow through the mesh, ther
avoiding problems of mesh distortion and the need for a p
defined parting line. The procedure required iterative modificat
of the chip geometry so as to satisfy the velocity boundary c
ditions and since a purely viscoplastic material model was
sumed, it could not give information about residual stresses. V
ous other researchers~@5–8#! have carried out Lagrangian
analyses of metal cutting process by incorporating the concep
the parting line along which nodes initially tied together are se
rated as the tool advances into the work. The criteria used for
‘‘unhooking’’ have included limiting values of strain, distance
the tool tip, etc. All of these criteria are completely arbitrary a
have a major influence on the residual stresses in the chip an
machined surface~@3#!. Though there is no inherent difference
the nature of chip formation while cutting with negative and po
tive rake angle tools, these analyses could not simulate cut
with large negative rake angle tools suggesting that the mode
of the process is not accurate. Another source of error was
coarseness of the mesh even in regions of intense plastic d
mation. These models require tremendous computational
sources to effectively model the cutting process because of
need for a fine mesh of elements all along the parting line.

It can be argued that finite element analyses which incorpo
node separation along a parting line, simulate a process more
to the splitting of wood than to the machining of ductile meta
Unhooking the nodes when they are a small distance away f
the cutting edge, results in a small crack in the work mate
ahead of the tool. It is a well-acknowledged fact that there is
such crack propagating ahead of the tool in the machining
ductile metals~@9–10#!. Though material ‘‘separation’’ occurs
along a plane in the workpiece, it is more accurate to picture s
separation as due to plastic flow of the material rather than du
tensile rupture. The presence or absence of a crack ahead o
cutting edge is a big factor in determining the actual mechanic
the process. From consideration of the distribution of the hyd
static stress along the shear zone, given by Roth and Oxley@11#
and reproduced here in Fig. 1, it can be seen that the hydros
stress close to the cutting edge is compressive. Such compre
stresses cannot produce tensile rupture of the work material.
also evident that if this small compressively stressed zone is
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Fig. 1 Variation of hydrostatic stress along the shear plane as given by Oxley
et al. †11‡
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placed by a crack, the tensile stress beyond this zone can be
to drive the crack ahead of the cutting edge of the tool. The rea
for the inability of such finite element analyses to simulate m
chining with large negative rake angle tools is that even whe
crack is artificially introduced ahead of the tool, the stresses du
machining tend to close this crack rather than open it. Thus
results obtained by finite element method studies where the n
are unhooked along a parting line~@3,5,8,7#! neither reflect the
true nature nor the magnitude of the stresses and strains f
close to the cutting edge in machining.

Two new analyses~@12–13#! have overcome such limitations o
previous analyses by continual remeshing of the workpiece
chip material in the deformation zones. Sekhon and Chenot@12#
have used a velocity approach in which velocities are the
knowns at the nodes and the workpiece material is treated lik
incompressible viscous fluid. Thus elastic effects are ignored
so residual stresses cannot be estimated. However, their cou
thermomechanical analysis does take into consideration the
mal aspects of the process.

Marusich and Ortiz@13# have developed a Lagrangian fini
element model of machining using continual remeshing and
explicit solution technique. Their model incorporates thermal
fects as well as fracture criteria for the material and is able
predict localized shear deformation in the case of high-speed
chining. Analysis of quasi-static processes is not possible by th
explicit solution techniques. Both this and the previous analy
mentioned ~@12#! use proprietary codes for the finite eleme
analysis.
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2.2 Atomic Analysis of Machining. Recently there has
been some work directed at modeling the machining process a
level of the individual atoms of the workpiece and the tool~@14–
19#!. The aim of such analyses has been to study the mecha
of chip formation in ultra precision machining, deduce limits
the depth of cut achievable, and investigate the integrity of
machined surface. The tool and the workpiece are modeled
separate collections of atoms. Each atom interacts with its ne
bors according to assumed force laws which express the in
atomic forces as functions of the interatomic spacing. The ther
vibrations of the atoms are also taken into account in the mod

Cutting is simulated by forcing the atoms comprising the to
into the workpiece. No separation criterion for the atoms is u
in these simulations. Plastic deformation of the work material
curs when the lattice strain energy exceeds a critical level u
which it is energetically favorable for the atoms to rearran
themselves~in a manner akin to that considered in theoretic
calculations of the ultimate shear stress! in a different configura-
tion of lower energy. Thus dislocations are generated and mov
a zig-zag path from the cutting edge to the free surface resultin
a broad zone of shear~as opposed to a shear plane!. Upon contin-
ued infeed of the tool, a succession of progressive shearing
tions are found to result in the formation of a chip. These analy
have yielded useful information about the strain distribution in
chip and the subsurface of the machined layer. But extensio
these results to the macroscopic dimensions of most cutting
cesses is difficult.

In this study, experimental observations from prior studies
MARCH 2000, Vol. 67 Õ 129
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well as finite element analysis of machining are used to obta
better understanding of the mechanics of separation of mat
into the workpiece and the chip at the cutting edge. A compell
case is presented for considering machining~cutting! of ductile
metals as a wedge indentation process. This insight is then ap
to develop a finite element analysis of machining without recou
to separation criteria, purely by periodic remeshing of t
workpiece.

3 Equivalence of Machining and Indentation
Early researchers were fully aware of the similarities betwe

machining and wedge indentation. By using sequences from
tion pictures of the indentation of a paraffin block by a wedg
shaped tool pressed into the middle of the block, and the cut
action initiated when the tool is pressed into the block close to
edge, Ernst@9# was able to conclude that machining is equivale
to asymmetric indentation with an inclined wedge. Bhattachar
@20# has also highlighted the similarities between machining a
indentation. Due to the difficulty of analysis of the inclined wed
indentation model, and the simplicity of the shear-plane mode
chip formation, the latter has probably found favor as the mo
for analysis of machining. When detailed information about
cutting process is required, the simple straight shear-plane m
has been found to be inadequate and extensive modifications
been proposed resulting in systems which are hard to ana
~@21,11#!. In this context it is worthwhile to revisit the machinin
problem as a special case of indentation.

Texture or flow lines are produced in any deformation proc
as a result of elongation of the grains of the material in the dir
tion of maximum tensile strain. These lines can be furth
stretched, compressed, and rotated by subsequent strains im
on the material. Chaudhri@22# has recently investigated the su
surface deformation produced in mild steel specimens inde
with tungsten carbide cones by studying the deformation of n
rally occurring texture lines~formed by the alignment of pearlite
grains produced by prior cold drawing!. Figure 2 shows an etche
cross-section through the center of such an indentation prod
by a 45-deg tungsten carbide cone. It is seen clearly that
texture lines are not ruptured by the penetration of the inden
but are actually bent around the tip of the indenter. In machin
flow lines form as a consequence of the shear deformation oc
ring along the primary shear zone. These lines are then stret
and rotated due to the secondary deformation taking place a
the rake face of the tool. Thus the flow lines in the chip and
workpiece also contain similar information as the flow lin
around the indentation in Fig. 2, and can be used for compa
the deformation patterns in the two processes. Furthermore,

Fig. 2 Etched cross section through the center of a conical
indentation in mild steel showing deformation of texture lines
„†22‡…. Note that the texture lines are not cut by the tip of the
indenter.
130 Õ Vol. 67, MARCH 2000
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chining with sticking friction along the tool-chip interface als
shows flow lines bent around the tip of the tool as seen in Fig
In the case of frictionless indentation of a semi-infinite solid wi
a wedge, the theory of Hill et al.@23# predicts that the materia
ahead of the indenter and along the axis of loading ‘‘ruptures’’
the edge of the indenter is moved in. This has been found to
roughly true in experiments where split lead specimens with gr
imprinted on the surfaces of the split were indented with lub
cated steel wedges. A similar ‘‘rupture’’ of the flow lines ca
indeed be observed in etched cross sections of quick-stop sp
mens of machining when the chip slides over the tool rake face
in Fig. 4.

Further evidence of the similarities between machining a
wedge indentation comes from Hutchings’s@24# study of the de-
formation produced in mild steel surfaces by the oblique impac
square plates made of hardened tool steel. A regime of defor
tion intermediate between normal wedge indentations and cut
was observed in these experiments, which is consistent with
orientation and the direction of motion of the indenter in the e
periments being intermediate between normal indentation and
chining. These experimentally observed similarities in the def
mation pattern in machining and indentation have motivated

Fig. 3 Etched cross section through a machining quick-stop
specimen involving sticking between the chip and the rake face
of the tool „†29‡…. The texture lines are curved around the cut-
ting edge of the tool.

Fig. 4 Etched cross section of a machining quick-stop speci-
men involving sliding of the chip over the rake face „†10‡…. Note
that the flow lines are cut by the cutting edge of the tool.
Transactions of the ASME
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es
view that machining is indeed a special type of wedge indenta
in which the indentation is made close to one of the edges of
surface being indented with the wedge positioned asymmetric
with respect to the surface normal and the direction of motion
the indenter is controlled. Similarity between machining and
dentation is also evident from atomistic analyses of the two p
cesses where only the shape, location, and the direction of mo
of the tool/indenter are found to be different while all the physi
phenomena modeled are the same. Using this analogy betw
machining and indentation, it is easy to picture machining a
process whereby a chip is generated from the workpiece b
process of pure shear. Thus machining can be analyzed by i
tive finite element analysis, without the need for any criterion
material failure ahead of the cutting edge to produce the chip

The real difficulty encountered in finite element analyses
machining is that points in the workpiece which start out close
each other may end up being very far apart if some of them fo
part of the chip and others constitute part of the machined surf
Such ‘‘local’’ deformation of the material cannot be accomm
dated in conventional Lagrangian finite element analysis. T
coupled with the idea that there was ‘‘separation’’ or ‘‘fracture
of the material close to the cutting edge of the tool in machini
has led to the incorporation of artificial failure criteria in machi
ing models which enforce separation of initially continuous ma
rial into a chip and a machined surface along a predeterm
parting line. Such models cannot represent the true nature o
machining process.

The atomistic analyses of machining processes reviewed ea
indicate that even in the case of tools so sharp that their cut
edge radii are less than a few nanometers, the deformation in
workpiece produced as a result of dislocations being gener
and moved along the shear zone can be considered to be a
deformation. This suggests that when the scale at which the w
piece is modeled is such that the elements representing the w
piece material close to the cutting edge of the tool are m
smaller than the radius of curvature of the cutting edge, the
ments can be assumed to deform purely by shear with no te
rupture being involved. It is thus clear that machining can
analyzed accurately by an iterative finite element method so l
as the size of the elements are small enough to realistically re
sent the stress state in the workpiece near the cutting edge, an
workpiece is periodically remeshed in order to replace distor
elements with undistorted elements. The next section descr
such an iterative finite element analysis of the machining proc

4 Iterative Finite Element Analysis of Machining
The Lagrangian finite element analysis described here use

erative rezoning, by which the mesh representing the discre
tion of the workpiece and the chip for an interval of time,
replaced by a different mesh for the next interval of time. T
distribution of stresses and strains represented by the old me
interpolated onto the new mesh. Thus the new mesh is a diffe
discretization of the exact same body with the same stress
strain fields. The difference is that the new mesh does not re
any of the distortions the old mesh underwent due to the in
mental infeed of the tool during the time for which it was used
represent the workpiece and the chip. This technique of contin
remeshing in between displacement increments of the tool av
problems due to excessive mesh distortion, namely inaccurat
sults and, in extreme cases, the inability of the solution proced
to converge to an equilibrium stress state. It should be noted
only in order to circumvent these problems did most of the pre
ous analyses report to unhooking the nodes along the parting

4.1 Analysis Methodology. Figure 5 shows the configura
tion of the cutting process being analyzed. The analysis perfor
is a two-dimensional plane strain analysis. The tool is idealized
a rigid body having a rake angle of 0 deg and a clearance ang
10 deg with a curvature at the corner representing the radiu
curvature of the cutting edge, 250mm in this case. There is no
Journal of Applied Mechanics
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inherent limitation imposed by the model on the values of the r
angle and this can be varied arbitrarily. In fact, even in the pres
study, the local rake angle near the cutting edge of the too
highly negative, though the nominal rake angle of the tool is
deg. The workpiece is a rectangular piece of metal 50 m
long325 mm deep, held rigidly along its bottom edge. The to
and the workpiece surfaces~edges in 2-d! are connected togethe
by contact elements along the interface which transmit suffic
forces to prevent interpenetration of one body into another. F
tion and adhesion are also modeled for the contact region.
model of friction adopted is shear limited Coulomb friction wi
the maximum shear stress at the tool-workpiece interface lim
to 150 MPa. The tool is positioned so that it will interfere with th
workpiece when moved. The depth of cut was chosen to be 0
mm in the present case. This small value,,2.0, of the ratio of the
depth of cut to the cutting edge radius of the tool was delibera
chosen in order to clearly illustrate the similarities between m
chining and indentation.

Cutting is simulated by forcing the tool to move into the wor
piece in small increments. After a predetermined value of
equivalent plastic strain~chosen to be 0.25 in this case as th
corresponds to a pure shear strain of less than 30 deg! is exceeded
at any point in the workpiece, a new mesh is automatically g
erated to represent the deformed configuration of the workpiec
is observed in our simulations that the results are insensitive to
remeshing criterion, when the equivalent plastic strain increm
between remeshing increments is varied up to 0.33. After inter
lation of the stresses and strains onto the new mesh, the analy
restarted by further infeed of the tool. During the automatic
meshing, adaptive mesh refinement is accomplished by ma
the mesh finer in the regions of high gradients of stresses
strains and in regions of high plastic strain increments. This
done by fixing the minimum and maximum element sizes a
allowing the sizes of the individual elements to vary within the
limits depending on the above criteria. Mesh refinement is car
out only in regions where the fine details of the stress distribut
have to be resolved.

The model described above has been implemented using a
bination of two commercial finite element method packages. T
automated creation and refinement of the meshes~pre-processing!
and the processing of the results~post-processing! are both done
using the P3/PATRAN package. PATRAN was chosen becaus
offers the Patran Command Language~PCL! in which these tasks
could be programmed efficiently and because of its ability to c
ate input files for a range of solvers. The actual solution of e
step in the simulation when the tool is moved incrementally in
the workpiece is performed in ABAQUS/STANDARD. CPE
constant strain quadrilateral plane-strain elements are used to
cretize the workpiece. ABAQUS was chosen as the solver beca
of its ability to automatically interpolate values of the variabl

Fig. 5 Configuration of workpiece and tool for the finite ele-
ment simulation of machining
MARCH 2000, Vol. 67 Õ 131
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from the old mesh onto the new mesh, the flexibility provided
the contact elements, and because of its reputedly superior
dling of plasticity problems.

5 Results and Discussion
The finite element analysis described above has been use

study the cutting process for two values of the coefficient of fr
tion ~m50.2 and 0.8! at the chip-tool interface. In both cases, t
rake angle is 0 deg, the radius of curvature of the cutting edg
the tool is 250mm and the depth of cut is 452mm. The hardening
characteristic assumed for the work material is shown in Fig
with initial yield beginning at an effective stress of 350 MPa. T
maximum shear stress along the tool-chip interface is limited
150 MPa, which is less than the shear strength of the work m
rial even in its unhardened state. In the analysis, the minim
mesh size~50 mm! is chosen to be one-fifth of the radius o
curvature of the cutting edge.

Figures 7 and 8 show the stages in the formation of the chip
cutting proceeds, for the two cases~m50.2 andm50.8!. Equiva-
lent plastic strain contours are also plotted in these figures. Fig
9 shows the steady state distribution of the von Mises stress
approximately 5 mm of cutting~i.e., infeed of the tool! by which
time a constant curl of the chip is established. Similar plots for
three components of stresses (sxx , syy , andsxy) are shown in
Figs. 10–12. The main features of the machining process as
denced by these figures are summarized below.

5.1 Stress and Strain Distributions in the Chip. A region
of fairly concentrated shear~Fig. 7! separates the nearly un
strained work material from the fully strained chip. This regi
can be approximated as a parallel sided shear zone as shown
matically in Fig. 13. There is another region of secondary de
mation ~where the Mises stress is around 450 MPa! close to the
rake face of the tool which is evident in Figs. 9~a! and 9~b!. This
region can be approximated as a triangular region as indicate
Figs. 1 and 13. The existence of such a triangular secondary s
zone has been commonly postulated by a number of investiga
~@25,26,11,27#!. The fact that secondary shear occurs even tho
the shear strength of the chip-tool interface is less than the s
strength of the chip, implies that the slip lines in this zone are
parallel to the interface. Such secondary shear can result in
vature of the flowlines close to the rake face of the cutting t
even though the chip may actually be sliding~i.e., not sticking!
over the rake face of the tool.

A zone of plastic deformation extends underneath the mach
surface. The depth of subsurface plastic deformation is foun
be nearly equal to the radius of curvature of the cutting edge. T
subsurface deformation results in compressive stresses in the
chined surface. Though the stress patterns shown are those
the load applied by the tool still present, elastic recovery cau
by unloading of the tool is not expected to significantly change
stress distribution close to the free surface and sosxx at the sur-
face can be taken to be the residual stress. The residual stre
compressive with a magnitude greater than 200 MPa, whic
more than half the uniaxial yield stress of the material. The pla

Fig. 6 Strain-hardening characteristic of the work material
132 Õ Vol. 67, MARCH 2000
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strains in the machined surface are as high as 5.0. The el
springback of the machined surface after it passes underneat
tool is found to be'2 mm which is less than one percent of th
radius of curvature of the cutting edge.

The plastic strain in most of the chip formed during steady st
cutting is found to be between 1.3 and 2.0. It is much higher cl
to the chip-tool interface~up to 7.3!. Most of the strain in this
layer close to the interface occurs when the material passes
the cutting edge of the tool. The increase in the strain as the
moves along the rake face of the tool is negligible. The str
gradient along the chip-tool interface is also low and therefore
adaptive remeshing criterion used, based upon strain gradients
strain rate as noted above, results in fairly large elements in
chip in this region.

The cutting and thrust forces stabilize very early in the analy
even before a steady-state curvature of the chip is attained.
cutting forces, for a 1-cm wide workpiece, are 4600N form50.2
and 5400N form50.8. The cutting pressure defined as the ratio
the cutting force to the interference area~which is the product of
the uncut chip thickness and the width of cut!, represents the
average pressure required to deform the material in the inte
ence zone. It is found to be close to three times the yield stren
of the material form50.2 and is around 3.4 times the yiel
strength form50.8. The thrust force is between 0.5 and 0.6 tim
the cutting force. It is interesting to note here that the indentat
pressure or hardness value for most metals is about three time
yield strength of the solid~@28#!.

From Fig. 10, the length of contact between the chip and
tool is estimated as 0.866 mm for the case ofm50.2 and 1.21 mm
for the case ofm50.8. It can be seen~Fig. 12! that form50.8 the
shear stress at the chip-tool interface (sxy) is nearly constant at
150 MPa, for most of the length of contact between the rake f
of the tool and the chip. Close to the end of chip tool contact, t
shear stress along the rake face rapidly decreases to zero. A
lar feature is also observed in the distribution ofsxx ~Fig. 10!
which remains constant at around 500 MPa for most of the con
length and then rapidly decreases to zero at the end of con
Another interesting observation from Fig. 10 is that the maxim
contact pressure at the chip-tool interface is 819 MPa form50.2
while it is only 700 MPa form50.8.

The variation of the hydrostatic and shear stresses along
shear plane can be directly inferred from the plots ofsxx andsyy .
For m50.2 the hydrostatic stress close to the cutting edge
'2475 MPa. This decreases to'2175 MPa in the middle of the
shear zone and rises to'2325 MPa near the exit of the shea
plane~i.e., near the free surface of the workpiece!. For m50.8 the
three corresponding values are2575 MPa,2190 MPa, and2330
MPa.

The back surface of the chip is found to be wrinkled. This is
result of concentrated shear occurring in the region where
shear plane exits the work material. This is observed even
studies with much finer meshes, so long as material workhard
ing and strain-rate effects are minimal.

5.2 Chip Curl. From Figs. 11 and 10, it is seen that th
stress along the free surface~back! of the chip is highly tensile. It
is also tensile along the surface of the chip which has moved
of contact with the tool rake face~front side of the chip!. syy in
the middle of the chip is compressive. Such a distribution
stresses was seen to develop early on in the formation of the c

The hypotheses propounded by various researchers to ex
the curvature of the chip include~i! the cutting moment causes th
chip to bend;~ii ! the ‘‘crushing’’ of the chip in the secondary
shear zone and the resultant acceleration of the work materia
moving through the secondary shear zone causes the chi
lengthen along this side~the front side!. This results in a curvature
of the chip, similar to the curvature of a bimetallic strip;~iii ! the
shear plane is curved in such a way that the shear plane ang
Transactions of the ASME
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Fig. 9 Steady-state von Mises stress distribution. Hundred units of stress equals one
MPa.
p

o

c

rved
hat
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not
smaller near the exit of the shear plane. Thus the chip velocity
the outside is smaller than the average chip velocity causing
chip to curl.

The stress distributions which would be expected in the chi
each of these three hypotheses are true are indicated in Fig
The bending moment on the chip considered as a beam w
result in compressive stresses along the free surface~back! of the
chip if hypothesis~i! was true. Crushing of the chip in the se
Mechanics
on
the

if
. 14.
uld

-

ondary shear zone will result in compressivesyy in the front of
the chip, whereas the observed stress is tensile. Only a cu
shear plane would result in a stress distribution similar to t
given by the finite element analysis, while simultaneously
counting for curl of the chip. It should be noted that though t
chip does accelerate~due to secondary shear! as it flows along the
rake face of the tool, this is just an accessory to chip curl and
the cause of chip curl.
MARCH 2000, Vol. 67 Õ 135
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Fig. 10 Steady-state distribution of sxx . Hundred units of stress equals one MPa.
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The reason for the curvature of the shear plane can be fo
from a detailed analysis of the stress distribution in the zone
plastic deformation. Work in this direction, utilizing finer meshe
is in progress.

5.3 Differences Due to the Two Different Friction Coeffi-
cients. The main difference between the stress distributions
the two cases is found in the values ofsxy at the chip-tool inter-
face. Form50.2, sxy is less than 150 MPa~ranges between 30
ARCH 2000
und
of

s,

in

and 130 MPa! along most of the chip-tool contact length, where
for m50.8sxy is nearly constant at 150 MPa, the maximum val
allowed by the shear limited Coulomb friction used in the ana
sis, along the contact length~Fig. 12!.

The chip thickness ratio is approximately 2.0 form50.2 while
it is 2.5 for m50.8. This indicates the trend towards stubby ch
for high friction coefficients. The reason for the relatively sm
change in the chip thickness ratio is the fact that for the case
m50.8, the chip-tool interface friction is limited by the she
Transactions of the ASME
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Fig. 11 Steady-state distribution of syy . Hundred units of stress equals one MPa.
e
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strength of the interface. The maximum plastic strain is found
occur in the chip form50.2 while the maximum strains are foun
in the machined surface form50.8. There is a dramatic differenc
in the chip curl for the two cases. The chip curl is higher for t
case of lower friction at the chip tool interface.

The variation in the cutting and thrust force components
tween different iterations after steady state is reached was q
small form50.2 ~,2 percent for the cutting force and,1 percent
for the thrust force!. The variation in the cutting force form50.8
Mechanics
to
d

e

e-
uite

was higher~up to three percent!, while the variation in thrust force
was even greater~up to ten percent!. The computed stress value
are estimated to be correct to within 15 percent of the yield str
of the material. This estimate on the accuracy is determined f
the stress values reported at free surfaces, and the values o
Mises stress reported above the maximum possible von M
stress according to the definition of the work-hardening charac
istics of the material. As in all other finite element analysis, err
at boundaries will be minimized if finer meshes are used.
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Fig. 12 Steady-state distribution of sxy . Hundred units of stress equals one MPa.
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6 Conclusions
It has been demonstrated that machining can be simulated

special type of wedge indentation using Lagrangian finite elem
analysis provided that the mesh near the cutting edge is
enough to represent the stress and strain gradients faithfully.
mesh representing the workpiece should be periodically rege
ated in order to preclude solution inaccuracies due to distortio
the mesh.

The principal zones where deformation occurs are in a para
ARCH 2000
as a
ent
fine
The
ner-

of

lel-

sided primary shear zone and a triangular secondary shear
near the rake face, similar to that postulated by various ot
researchers. The residual stress in the workpiece, when the
effects are ignored in the analysis, is found to be compress
The normal stress on the tool rake face is found to be uniform
high along the rake face except near the end of chip-tool con
where it rapidly decreases to zero. The hydrostatic stress is fo
to be highly compressive near the cutting edge of the tool. T
effects caused by variation of the coefficient of friction have a
Transactions of the ASME



w

a

e
at

ip-
r

r-

r-
.

u-
ts,’’

of

nd
tic-

a-

ed

-
ci.,

ous

-
o-

he

ter

tic
on

rgy

93,
r

o-

r-

ta-

n-

-

,’’

al

p.

the
ing
been studied. The results of the simulations are consistent
many observations pertaining to deformation occurring in the c
and the work surface.

Investigations are underway to conduct a wider range of an
ses with finer meshes, to better understand the mechanics o
process. Special emphasis will be placed on understanding
reasons for the curvature of the shear plane, which has b
shown to be the cause of the curvature of the chip.
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Fig. 13 Schematic representation of the primary and second-
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Forced Vibration Analysis for
Damped Periodic Systems With
One Nonlinear Disorder
The steady-state responses of damped periodic systems with finite or infinite degre
freedom and one nonlinear disorder to harmonic excitation are investigated by usin
Lindstedt-Poincare method and the U-transformation technique. The perturbation
tions with zero-order and first-order approximations, which involve a parameter n,
the total number of subsystems, as well as the other structural parameters, are de
When n approaches infinity, the limiting solutions are applicable to the system
infinite number of subsystems. For the zero-order approximation, there is an attenu
constant which denotes the ratio of amplitudes between any two adjacent subsystem
attenuation constant is derived in an explicit form and calculated for several values o
damping coefficient and the ratio of the driving frequency to the lower limit of the p
band.@S0021-8936~00!01101-6#
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1 Introduction
A detailed review of the dynamics of both linear periodic a

disordered periodic structures was given by Li and Benaroya@1#.
The studies on the dynamic responses of harmonically exc
nonlinear systems can be found in@2# and in references of the
book by Vakakis et al.@3#. A geometric theory was proposed t
analyze the mode localization and frequency loci veering with
reference to any specific systems~@4#!. The nonlinear localized
modes in a perfectly cyclic periodic system was examined w
the averaging method of multiple scales by Vakakis et al.@5#.
Forced localization in a periodic chain of nonlinear oscillators w
examined by using a ‘‘continuum approximation’’~@6#!. The
U-transformation technique~@7,8#! was applied to analyze the dis
ordered periodic systems with an infinite number of subsyste
for localized modes~@9#!. Recently, the localized modes of un
damped periodic systems with infinite degrees-of-freedom
having one or two nonlinear disorders were investigated~@10#! by
using the Lindstedt-Poincare~L-P! method ~@11#! and the
U-transformation technique.

In the present study, the primary resonance of the damped
riodic systems with finite or infinite degrees-of-freedom and o
nonlinear disorder is investigated by using the L-P method and
U-transformation technique. By applying theU-transformation to
the governing equation, the new governing equation in terms
the generalized displacements takes the standard form wher
linear terms are uncoupled. Then by applying the L-P method
the simultaneous equations with the standard form, the zero-o
and first-order perturbation solutions can be found in expl
form.

2 Governing Equations and Perturbation Solutions
Consider the system shown in Fig. 1~a! which consists ofn

number of subsystems connected to each other by means
linear spring having stiffnessekc . Each subsystem is made up
a massM connected to both a dashpot with a nondimensio
damping coefficientez0 and a spring with linear stiffnessK ~for

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
10, 1998; final revision, Dec. 28, 1998. Associate Technical Editor: W. K. L
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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ordered subsystems! or nonlinear stiffnessK1eg0x2 ~for disor-
dered one!, wheree is a positive small parameter. In Fig. 1~a!, s
denotes the ordinal number of the disordered subsystem anxj
denotes the longitudinal displacement of thej th mass.

In order to apply theU-transformation to uncouple the linea
terms of the governing equation, an equivalent system with cy
periodicity must be created. It is necessary to extend the orig
system by its symmetrical image and apply the antisymme
loading on the corresponding extended part as shown in Fig.~b!
in which the first and last (2nth) masses are imaginarily jointe
by a spring with stiffnessekc . This imaginary spring is not sub
jected to any load for antisymmetric vibration. If and only if th
dynamic response of the extended system is antisymmetric,
extreme end conditions of the original system are satisfied in
extended one, i.e., the extended system is equivalent to the o
nal one. The response of the first half~i.e., substructures 1;n! of
the equivalent system is the same as that of the original syste

Applying Newton’s second law to every mass in the equival
system, one can write the differential equations of motion as
lows:

Mẍj12Mv0ez0ẋ j1~K12ekc!xj2ekc~xj 111xj 21!5eF j

j 51,2, . . . ,2n (2.1)

and

F j5F j 0 cosVt j Þs, 2n2s11
(2.2)

F j5F j 0 cosVt2g0xj
3 j 5s, 2n2s11

where the superior dot denotes the derivative with respect to
time variablet, v0 denotes the natural frequency for the sing
ordered subsystem andx2n11[x1 , x0[x2n due to cyclic period-
icity, eF j 0 denotes the amplitude of the harmonic force acting
the j th massV denotes the driving frequency, andeg0 is the
coefficient of the cubic term of the nonlinear stiffness in the d
ordered subsystem. The external excitation for the equivalent
tem must satisfy the antisymmetry condition, i.e.,

F2n2 j 11,05F j ,0 j 51,2, . . . ,n (2.3)

whereF1,0;Fn,0 indicate the real excitation acting on the origin
system.

If the initial conditions are antisymmetric, then the dynam
displacements are also antisymmetric, i.e.,
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Fig. 1 Damped periodic system with a nonlinear disorder; „a… original sys-
tem with n number of subsystems, „b… equivalent system with cyclic period-
icity and 2 n number of subsystems
a

a

wer
tively,
x2n2 j 115xj j 51,2, . . . ,n. (2.4)

One can now apply theU-transformation to the governing Eq
~2.1!. TheU and inverseU-transformations may be expressed

xj5
1

A2n
(
m51

2n

ei ~ j 21!mcqm j 51,2, . . . ,2n (2.5a)

and

qm5
1

A2n
(
j 51

2n

e2 i ~ j 21!mcxj m51,2, . . . ,2n (2.5b)

with c5p/n and i 5A21, where 2n denotes the total number o
subsystems for the equivalent system. Noting that the displ
ments are always real variables, it can be proved that the ge
alized displacementsqm(m51,2, . . . ,2n) have the following
property:

q2n2m5q̄m m51,2, . . . ,2n (2.6)

and qn , q2n must be real variables, in which the superior b
denotes the complex conjugation.

By using theU-transformation, i.e., premultiplying both side
of Eq. ~2.1! by the operator 1/A2n( j 51

2n e2 i ( j 21)mc, Eq. ~2.1! be-
comes

q̈m12v0ez0q̇m1vm
2 qm5

e f m

M
(2.7)

where
anics
.
s

f
ce-
ner-

ar

s

f m5
2ei ~1/2!mc

A2n
F S (

j 51

n

cosS j 2
1

2DmcF j ,0D cosVt

2cosS s2
1

2Dmcg0xs
3~q1 ,q2 , . . . ,q2n!G (2.8)

vm
2 5

K12ekc~12cosmc!

M
(2.9)

vm(m50,1,2, . . . ,n21) is the (m11)th natural frequency for
the undamped periodic system without any disorder. The lo
and upper bounds of the passband can be expressed, respec
as

vL5v05AK

M
,

(2.10)

vU5AK14ekc

M
5v0A114

ekc

K
.

Introducing the time substitution

Vt5t1w (2.11)

into Eq. ~2.7! results in

qm9 1nm
2 qm5eS f m

MV22
2v0z0

V
qm8 D m51,2, . . . ,2n

(2.12)
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nm
2 5

vm
2

V2 5
v0

2

V2 1e
2kc~12cosmc!

MV2 (2.13)

where the prime symbol designates differentiation with respec
the new time variablet andw is an unknown phase angle.

Consider now the case of primary resonance, i.e.,V'v0 . By
letting

v0
2

V2 511eh0 . (2.14)

Equation~2.13! can be written as

nm
2 511ehm (2.15)

where

hm5h01
2kc~12cosmc!

MV2 . (2.16)

Inserting Eq.~2.15! in Eq. ~2.12! gives

qm9 1qm5eGm m51,2, . . . ,2n (2.17)

in which

Gm5
2ei ~1/2!mc

MV2A2n
F S (

j 51

n

cosS j 2
1

2DmcF j ,0D cos~t1w!

2cosS s2
1

2Dmcg0xs
3~q1 ,q2 , . . . ,q2n!G

2
2v0z0

V
qm8 2hmqm . (2.18)

According to the perturbation method~@11#!, we seek a solution
of Eq. ~2.17! in the form of a power series ine, not only for
qm(t), but also forw. Hence, let

qm~t!5qm0~t!1eqm1~t!1e2qm2~t!1¯ (2.19)

and

w5w01ew11e2w21¯ . (2.20)

Equation~2.19! is equivalent to

xj~t!5xj 0~t!1exj 1~t!1e2xj 2~t!1¯ (2.21)

with

xjr ~t!5
1

A2n
(
m51

2n

ei ~ j 21!mcqmr r 50,1,2, . . . . (2.22)

Substituting Eqs.~2.19! and ~2.20! into Eqs.~2.17! and ~2.18!,
the coefficients of equal powers ofe on both sides of Eq.~2.17!
must be equal, i.e.,

qm09 1qm050 (2.23a)

qm19 1qm15
2ei ~ /2!mc

MV2A2n
F S (

j 51

n

F j 0 cosS j 2
1

2Dmc D cos~t1w0!

2cosS s2
1

2Dmcg0xs0
3 G2

2v0z0

V
qm08 2hmqm0

(2.23b)
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t to

qm29 1qm25
2ei ~ /2!mc

MV2A2n
F S (

j 51

n

F j 0 cosS j 2
1

2Dmc D
3~2w1 sin~t1w0!!2cosS s2

1

2Dmc~3g0xs0
2 xs1!G

2
2v0z0

V
qm18 2hmqm1 . (2.23c)

.................

The solution of Eq.~2.23a! may be expressed as

qm05am0 cost1bm0 sint m51,2, . . . ,2n (2.24)

with a2n2m,05ām,0 and b2n2m,05b̄m,0 due to q2n2m,05q̄m,0 ,
wheream0 andbm0 (m51,2, . . . ,2n) are complex constants to b
determined.

The physical displacements corresponding toqm0 shown in Eq.
~2.24! can be obtained from Eq.~2.22! with r 50 as

xj 05Aj 0 cost1Bj 0 sint j 51,2, . . . ,2n (2.25a)

where

Aj 05
1

A2n
(
m51

2n

ei ~ j 21!mcam0 ,

(2.25b)

Bj 05
1

A2n
(
m51

2n

ei ~ j 21!mcbm0 .

Aj 0 and Bj 0 are real numbers andA2n2 j ,05Aj 0 , B2n2 j ,05Bj 0 ,
which leads tox2n2 j ,05xj ,0 .

Without loss of generality, we can assume that the initial v
locity for the disordered subsystem is zero besides the antis
metry for both initial displacement and velocity, which leads t

Bs050 (2.26)

and

xs05As0 cost. (2.27)

In order to prevent secular terms, the coefficients of cost and
sin t on the right side of Eq.~2.23b! must be zero. Introducing
Eqs.~2.24! and ~2.27! into Eq. ~2.23b!, letting the coefficients of
cost and sint be equal to zero, gives

2ei ~1/2!mc

MV2A2n
F S (

j 51

n

F j 0 cosS j 2
1

2Dmc D cosw0

2cosS s2
1

2Dmc
3g0

4
As0

3 G2
2v0z0

V
bm02hmam050

(2.28)

2ei ~1/2!mc

MV2A2n
F2S (

j 51

n

F j 0 cosS j 2
1

2Dmc D sinw0G
1

2v0z0

V
am02hmbm050 m51,2, . . . ,2n.

Consider now a specific loading condition as that there is
excitation acting on each subsystem except the disordered
i.e.,

F j 050 j Þs and j 51,2, . . . ,n Fs0Þ0. (2.29)

Introducing Eq.~2.29! into Eq. ~2.28!, the solution foram0 and
bm0 of simultaneous Eqs.~2.28! can be expressed as

am05
1

2kc

2

A2n
ei ~1/2!mc cosS s2

1

2Dmc
~D112cosmc!I 11CI2

~D112cosmc!21C2
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bm05
1

2kc

2

A2n
ei ~1/2!mc cosS s2

1

2Dmc
CI12~D112cosmc!I 2

~D112cosmc!21C2

(2.30)

in which

I 15Fs0 cosw02
3

4
g0As0

3 , I 25Fs0 sinw0 (2.31a)

C5
MVv0z0

kc
5

V

v0

ez0

~ekc /K !
(2.31b)

D5
K2MV2

2ekc
5F12S V

v0
D 2GY S 2

ekc

K D
C andD are two nondimensional parameters. They are depen
on the nondimensional frequency, stiffness, and damping c
stant, i.e.,V/v0 , ekc /K, andez0 . In Eq. ~2.31a!, As0 andw0 are
unknown variables.

Substituting Eq.~2.30! into Eq. ~2.25b! results in

Aj 05
1

2kc
~a j I 11b j I 2!

(2.32)

Bj 05
1

2kc
~b j I 12a j I 2! j 51,2, . . . ,2n

where

a j5
1

2n (
m51

2n F2 cosS j 2
1

2Dmc cosS s2
1

2Dmc

3
D112cosmc

~D112cosmc!21C2G
(2.33)

b j5
1

2n (
m51

2n F2 cosS j 2
1

2Dmc cosS s2
1

2Dmc

3
C

~D112cosmc!21C2G .
Consider now thesth set of simultaneous equations in E

~2.32!. Inserting j 5s and Eq.~2.26! in Eq. ~2.32! yields

I 15
2kcasAs0

as
21bs

2 , I 25
2kcbsAs0

as
21bs

2 . (2.34)

Noting the definitions ofI 1 and I 2 , shown in Eqs.~2.31a! and
~2.34!, may be rewritten as

Fs0 cosw05
3

4
g0As0

3 1
2kcasAs0

as
21bs

2

(2.35)

Fs0 sinw05
2kcbsAs0

as
21bs

2 .

From the above equation, we can find the phase angle
zero-order approximation as

w05tan21
2kcbs

2kcas1
3

4
g0As0

2 ~as
21bs

2!

(2.36)

and the frequency response curve as

S Fs0

As0
D 2

5
4kc

2

as
21bs

2 1
4kcas

as
21bs

2 S 3

4
g0As0

2 D1S 3

4
g0As0

2 D 2

(2.37)

in which as andbs are dependent onV. They can be expressed a
Journal of Applied Mechanics
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as5
1

2n (
m51

2n

2 cos2S s2
1

2Dmc
D112cosmc

~D112cosmc!21C2

(2.38)

bs5
1

2n (
m51

2n

2 cos2S s2
1

2Dmc
C

~D112cosmc!21C2 ,

where C and D are dependent onV/v0 besides the structura
parameters as shown in Eq.~2.31b!.

If the parameters of the system and loading are given, the
sponseAs0 for the loaded subsystem can be calculated from
~2.37!, and the otherAj 0 andBj 0 can be obtained by substitutin
Eq. ~2.34! into Eq. ~2.32! as

Aj 05
a jas1b jbs

as
21bs

2 As0

(2.39)

Bj 05
b jas2a jbs

as
21bs

2 As0 j 51,2, . . . ,2n.

The characteristic of the frequency response (uAs0u2(V/v0))
curve is similar to that for the single nonlinear subsystem, i.e.,
jump phenomenon may occur. For the specific case ofeg050.2,
ez050.2, ekc50.25, K52.5, andeFs0530 with n approaching
infinity, the frequency response curve is as shown in Fig. 2.

Introducing Eqs.~2.27! and ~2.24! into Eq. ~2.23b! and noting
the coefficients of cost and sint on the right-hand side of Eq
~2.23b! vanishing, yields

qm19 1qm152
2ei ~1/2!mc

MV2A2n
cosS s2

1

2Dmc
g0

4
As0

3 cos 3t.

(2.40)

The solution forqm1 of Eq. ~2.40! can be expressed as

qm15am1 cost1bm1 sint

1
g0As0

3

16MV2A2n
ei ~1/2!mc cosS s2

1

2Dmc cos 3t.

(2.41)

Substituting Eq.~2.41! into Eq. ~2.22! with r 51 results in

Fig. 2 The frequency response „zA s0zÀVÕv0… curve
MARCH 2000, Vol. 67 Õ 143
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xj 15Aj 1 cost1Bj 1 sint1
g0As0

3

16MV2

1

2n

3 (
m51

2n

ei ~ j 21/2!mc cosS s2
1

2Dmc cos 3t j 51,2, . . . ,2n

(2.42)

where

Aj 15
1

A2n
(
m51

2n

ei ~ j 21!mcam1 , Bj 15
1

A2n
(
m51

2n

ei ~ j 21!mcbm1 .

(2.43)

Noting the initial velocity vanishing for the nonlinear subsyste
and(m51

2n cos2(s2
1
2)mc[n, inserting j 5s into Eq. ~2.42! gives

xs15As1 cost1
g0As0

3

32MV2 cos 3t (2.44)

and

Bs15
1

A2n
(
m51

2n

ei ~s21!mcbm150. (2.45)

Substituting Eqs.~2.41!, ~2.44!, and ~2.27! into Eq. ~2.23c!, and
letting the coefficients of cost and sint on the right side of Eq.
~2.23c!, being equal to zero, gives

am15
1

2kcA2n
2ei ~1/2!mc cosS s2

1

2Dmc

3
~D112cosmc!I 1* 1CI2*

~D112cosmc!21C2

(2.46)

bm15
1

2kcA2n
2ei ~1/2!mc cosS s2

1

2Dmc

3
CI1* 2~D112cosmc!I 2*

~D112cosmc!21C2

in which

I 1* 52w1 sinw0Fs02
3

4
g0As0

2 S 3As11
g0As0

3

32MV2D
(2.47)

I 2* 5w1 cosw0Fs0 .

Introducing Eq.~2.46! into Eq. ~2.43! results in

Aj 15
1

2kc
~a j I 1* 1b j I 2* !

(2.48)

Bj 15
1

2kc
~b j I 1* 2a j I 2* !

in which the definitions ofa j andb j are as shown in Eq.~2.33!
Recalling Eq.~2.45! and insertingj 5s into Eq. ~2.48!, yields

I 1* 5
2kcasAs1

as
21bs

2 , I 2* 5
2kcbsAs1

as
21bs

2 . (2.49)

Introducing Eq.~2.47! into Eq. ~2.49!, gives

As152
3g0

2As0
5

128MV2Y F9

4
g0As0

2 1
2kc

as
21bs

2 ~as1bs tanw0!G
(2.50a)

w15
2kcbsAs1

~as
21bs

2!Fs0 cosw0
5

As1

As0
tanw0 . (2.50b)

Inserting Eq.~2.49! into Eq. ~2.48! yields
144 Õ Vol. 67, MARCH 2000
m

Aj 15
a jas1b jbs

as
21bs

2 As1 , Bj 15
b jas2a jbs

as
21bs

2 As1 . (2.51)

The forced response with first-order approximation can be
tained by substituting Eqs.~2.25a!, ~2.39!, ~2.42!, and~2.51! into
Eq. ~2.21!, as

xj5
a jas1b jbs

as
21bs

2 ~As01eAs1!cost

1
b jas2a jbs

as
21bs

2 ~As01eAs1!sint1e
g0As0

3

16MV2

3F 1

2n (
m51

2n

cosS j 2
1

2Dmc cosS s2
1

2DmcGcos 3t

j 51,2, . . . ,2n (2.52)

with t5Vt2(w01ew1).
Consider now the sum of series in the square brackets as

lows:

1

2n (
m51

2n

cosS j 2
1

2Dmc cosS s2
1

2Dmc

5
1

4n (
m51

2n

@cos~ j 1s21!mc1cos~ j 2s!mc#

5H 0 j Þs, 2n2s11

1

2
j 5s, 2n2s11.

(2.53)

Introducing the above result into Eq.~2.52!, and noting
a2n2 j 115a j andb2n2 j 115b j yields

x2n2 j 115xj5
a jas1b jbs

as
21bs

2 ~As01eAs1!cost

1
b jas2a jbs

as
21bs

2 ~As01eAs1!sint

j 51,2, . . . ,n and j Þs (2.54a)

x2n2s115xs5~As01«As1!cost1
«g0As0

3

32MV2 cos 3t.

(2.54b)

It is obvious that the forced vibration shown in Eqs.~2.54a,b!
satisfies the antisymmetric condition shown in Eq.~2.4!, i.e., the
solutionxj ( j 51,2, . . . ,n) is applicable to the original system.

In Eq. ~2.54a!, a j andb j are dependent on the total number
subsystems besides the parametersC and D. Consider now the
periodic system with an infinite number of subsystems. By lett
n approach infinity, the limit of the series summation on the rig
sides of Eq.~2.33! become the definite integral~@7#!, respectively,
i.e.,

a j5
1

2p E
0

2p

2 cosS j 2
1

2D u cosS s2
1

2D u

3
D112cosu

~D112cosu!21C2 du

5
1

2p E
0

2p

@cos~ j 1s21!u1cos~ j 2s!u#

3
D112cosu

~D112cosu!21C2 du (2.55a)

and
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Table 1 Attenuation constant j1„j2… for «k c ÕKÄ0.1. a… The numerical results in the round
brackets denote j2 ; b… Case of VÄvL ; c… Case of VÄvU .
o

r

q

e

en-
b j5
1

2p E
0

2p

@cos~ j 1s21!u1cos~ j 2s!u#

3
C

~D112cosu!21C2 du. (2.55b)

Since an infinite periodic system is an idealization, the imp
tant question is when a finite structure can be approximated by
infinite idealization. This question was first addressed
Skudrzyk@12,13#. Igusa and Tang@14# later determined a relation
between the total number and damping of the substructures
the accuracy of the Riemann integral idealization.

When a finite periodic system is considered, i.e.,n is a finite
number,a j and b j can be expressed exactly as the series fo
shown in Eq.~2.33!. The series form can be regarded as the re
angular integration formula for the definite integral shown in E
~2.55a! and ~2.55b!, where the integration interval@0, 2p# is di-
vided into 2n subintervals, i.e., each subinterval isc. If the inte-
gral form is adopted instead of the series form, the error is
agreement with that for rectangular integral formula, i.e.,O(n21).

Generally, there are infinite subsystems between the disord
subsystem and the extreme one at infinity, i.e., (j 1s21) is an
infinite number. Introducing the Riemann lemma into Eqs.~2.55a!
and ~2.55b! yields

as1k5
1

2p E
0

2p

cosku
D112cosu

~D112cosu!21C2 du,

k50,61,62, . . . (2.56a)
lied Mechanics
r-
the
by

and

ms
ct-
s.

in

red

bs1k5
1

2p E
0

2p

cosku
C

~D112cosu!21C2 du,

k50,61,62, . . . . (2.56b)

The above definite integrals can be expressed in terms of elem
tary functions, such as

as5~D11!E02E1 , bs5CE0

as215as115@~D11!21C2#E02~D11!E121
(2.57)

bs215bs115CE1

.........

where

E0[
1

2p E
0

2p du

~D112cosu!21C2

5@2~D212D1C21A@~21D !21C2#~D21C2!!#21/2

3S 1

AD21C2
1

1

A~21D !21C2D (2.58a)
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Table 2 Difference of phase angles Du1„Du2… „degree … for «k c ÕKÄ0.1. a… The numerical re-
sults in the round brackets denote Du2 ; b… Case of VÄvL ; c… Case of VÄvU .
he

tion

dis-

i.e.,
a-
les

eri-
E1[
1

2p E
0

2p cosudu

~D112cosu!21C2

5@2~D212D1C21A@~21D !21C2#~D21C2!!#21/2

3S 1

AD21C2
2

1

A~21D !21C2D . (2.58b)

All of as6k andbs6k(k51,2, . . . ) can beexpressed as the linea
combination ofE0 andE1 . Let us investigate the localized prop
erty of the forced vibration mode. The periodic response w
zero-order approximation shown in Eq.~2.25a! can be written as

xj5Aj 0 cost1Bj 0 sint5Xj cos~t2u j ! j 51,2, . . . ,̀
(2.59)

where

Xj5Aa j
21b j

2

as
21bs

2 As0 (2.60a)

u j5tan21
b jas2a jbs

a jas1b jbs
. (2.60b)

It is clear that

Xs5As0 and us50. (2.61)

Because ofas2 j5as1 j andbs2 j5bs1 j , we have

Xs2 j5Xs1 j and us2 j5us1 j (2.62)
7, MARCH 2000
r
-
ith

which indicate the symmetry of the forced vibration about t
nonlinear subsystem.

The localized level of the mode is dependent on the attenua
rate of the amplitudes. Let

jk[
Xs1k

Xs1k21
5A as1k

2 1bs1k
2

as1k21
2 1bs1k21

2 k51,2, . . .

(2.63a)

and

Duk[us1k2us1k21 k51,2, . . . . (2.63b)

Duk indicates the phase difference between the corresponding
placements in (s1k)th and (s1k21)th subsystems.jk andDuk
are only dependent on three nondimensional parameters,
V/v0 , «kc /K, and«z0 , and independent from the nonlinear p
rameter«g0 . The numerical results are given as shown in Tab
1 and 2.

The accurate numerical results show that

j[j15j25¯ (2.64a)

Du15Du25¯ , (2.64b)

which are in agreement with those obtained from the linear p
odic system.

By using the results shown in Eqs.~2.64a! and ~2.64b!, Eq.
~2.59! can be written as
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xs2k5xs1k5jkAs0 cos~t2kDu1! k50,1,2, . . . .
(2.65)

uju is always less than one except that«z050 andV lie in the
passband as shown in Table 1. The case ofuju51 indicates that the
corresponding mode is not localized.

Moreover let us consider the forced vibration with first-ord
approximation. By using the above results, Eqs.~2.54a! and
~2.54b! can be expressed as

xs2k5xs1k5jk~As01«As1!cos~t2kDu1!1
«g0As0

3

32MV2 cos 3tdk0

(2.66)

wheret5Vt2(w01«w1) anddk0 denote the Kronecker symbo
For the zero-order approximation shown in Eq.~2.65!, the am-

plitudes decay exponentially on either side of the nonlinear dis
der and for the first-order approximation shown in Eq.~2.66!, the
same conclusion can be obtained, except for the nonlinear
system. From the above property, the forced mode for the con
ered system looks like the linear one. On the other hand,
frequency response curve for every subsystem has the nonl
property as shown in Fig. 2.

Finally, let us discuss the results shown in Tables 1 and
Table 1 points to the following conclusions:~1! whenV lies far
from the passband,j is much less than one and the effect
damping onj is very weak;~2! whenV lies in the passband an
«z0 is very small,j is approximately equal to one butj decreases
rapidly with increasing«z0 . From Table 2, one comes to th
conclusion that,~3!, whenV25v0

2(11(2«kc /K)), Du1 is iden-
tically equal to 90°, which can be proved mathematically as f
lows: Inserting V25v0

2(11(2«kc /K)) into Eqs. ~2.31b! and
~2.58a!, yields D521 and E150, leading toas50 and bs11
50, then introducing these results into Eq.~2.60b! gives Du1
[us11590°, which is independent of the damping;~4! when
V2,v0

2(11(2«kc /K)), Du1 increases with increasing«z0 ; and
when V2.v0

2(11(2«kc /K)), Du1 decreases with increasin
«z0 .

3 Conclusions
The primary resonance of the damped periodic systems wit

arbitrary number of subsystems and one nonlinear disorder
been analyzed by using theL-P method. Applying the
U-transformation to the governing equation beforehand lead
the standard form of simultaneous differential equations. The
turbation solutions with zero-order and first-order approximatio
Journal of Applied Mechanics
er

.

or-

ub-
sid-
the
near

2.

f

e

ol-

an
has

to
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ns

have been derived. The solutions include explicitly the total nu
ber of subsystems as well as the other structural parameters.
total number of subsystems, i.e.,n, may be finite or infinite. By
letting n approach infinity, the limit of a solution is applicable t
a system with an infinite number of subsystems. It is interesting
note that the expression of the limiting solution is simpler th
that for the system with a finite number of subsystems.

The system considered possesses the properties of both the
linear and linear systems, i.e., there are jump phenomena in
nonlinear system and the wave propagation constant in the li
periodic system, which may be expressed as lnj2iDu1.

The effect of the damping and driving frequency on the wa
propagation constant has been examined numerically. It may
concluded that the effect is similar to that of a perfect perio
system.
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Equilibrium Solutions and
Existence for Traveling, Arbitrarily
Sagged Elastic Cables
The exact, closed-form, three-dimensional solutions for the steady motion of trav
sagged, elastic cables under arbitrarily distributed and concentrated loading are de
oped in this paper. Three components of displacement describing two equilibrium s
of an extensible traveling elastic cable are derived. These exact solutions apply to st
and sagged cables traveling under their own weight and uniformly distributed load
The exact solutions are also used to investigate the steady motion of three-dimen
traveling cables under the uniformly distributed and concentrated loading. Trave
elastic cables with large sag can be modeled approximately through the inexten
cable model when both the loading and the translation speed are very small. A sli
sagged cable must be modeled as extensible, rather than inextensible, even thoug
the loading and transport speed are very small. These solutions can be applied to
span cable structures.@S0021-8936~00!02601-5#
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1 Introduction
The equilibrium configuration, tension, and displacement

elastic cables under arbitrary loading are needed in the desig
cable structures. Rohrs@1# first modeled the vibration of a uni
form, inextensible suspended chain hanging freely under its o
weight and obtained the approximate natural frequencies and
sponses of the cable. Routh@2# considered the symmetric trans
verse vibration of a heterogeneous chain hanging in the form
cycloid, and application of this chain model to the uniform cha
yielded the Rohrs model when the sag ratio is small. The ch
was still modeled as inextensible. Pugsley@3# developed a semi-
empirical theory for the in-plane natural frequencies of the fi
three modes of a uniform, inextensible suspended chain. Sa
and Cahn@4# developed an asymptotic method for the natu
frequencies of the chain for large sag to span ratios. Simpson@5#
investigated the in-plane vibration of a stretched cable through
equilibrium and also determined the natural frequencies of mu
span, sagged transmission lines using the transfer matrix me
Irvine and Caughey@6# used a similar approach to investigate t
free vibrations of a sagged, stretched cable hanging under its
weight. Hagedorn and Schafer@7# showed that geometrical non
linearity is significant in the computation of natural frequencies
in-plane vibration of an elastic cable. Luongo et al.@8# analyzed
the planar, nonlinear free vibrations of sagged cables throug
perturbation method. Perkins@9# considered the three-dimension
nonlinear vibrations of elastic, sagged cables analytically and
perimentally, and gave a brief review of recent development
cable dynamics. For translating cables, Simpson@10# investigated
planar oscillations through the linearized equations of mot
around the equilibrium. Triantafyllou@11# used an alternative ap
proach to derive the linearized equations of motion at the equ
rium. Perkins and Mote@12,13# developed a three-dimension
cable theory for traveling elastic cables. The natural modes for
vibration and stability of translating cable at equilibria were o

1To whom correspondence should be addressed.
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Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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tained from the eigensolutions of discretized continuum mod
and also some experimental results were reported.

The nonstraight equilibria have been determined by appro
mate means. For stationary cables/strings, Dickey@14# investi-
gated a nonlinear string under a vertical force and gave tensile
compressive equilibrium solutions. Antman@15# extended the
Dickey investigation and investigated comprehensively the e
tence, multiplicity, and qualitative behavior of equilibrium fo
nonlinear elastic strings under different loads, and the translat
sagged string possesses two nontrivial equilibrium states bec
of centrifugal loading. O’Reilly and Varadi@16# investigated the
equilibria of translating elastic cables. In 1996 O’Reilly show
that if one used an observation due to Routh@2# for inextensible
strings, then the work of Antman@15# and Dickey@14# on static
equilibria for strings can be extended to examine the steady
tions of these strings. Healey and Papadopoulos@17# extended the
inextensible cable results to all the elastic strings. O’Reilly@18#
obtained the steady motion and stability of elastic and inextens
strings, and it was also shown that multiple steady motions w
possible. In the quantitative investigation of elastic cables, Irv
@19# used the method of Dickey@14# to determine the exact equi
librium configuration and the approximate displacements of tw
dimensional cables under positive tension. For a single conc
trated vertical load, the predicted displacement is constrained
the assumption that the equilibrium configuration is parabolic a
that the ends of the cable are fixed. For multiple concentra
masses, the solutions given by Irvine@19# require specificity of
the initial configuration. To overcome these limitations, Yu et
@20# followed Irvine’s procedure and computed the tension a
equilibrium configuration in three dimensions under uniform a
concentrated transverse loading. The aforementioned exact
tions describe the equilibrium but not the response because
initial configuration is not known.

The exact closed-form solution for the steady-state motion o
traveling, arbitrarily sagged elastic cable will be derived und
distributed and concentrated static loading in this paper. T
closed-form solutions under the uniformly distributed and conc
trated loading will be formulated, and discontinuity in tension a
equilibrium configuration caused by concentrated forces will
discussed as well.

2 Modeling

2.1 Equation of Motion. Consider a traveling, sagged ela
tic cable passing through two eyelets, as illustrated in Fig. 1. T
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li-
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horizontal and vertical separations of the eyelets areL and H,
respectively, and the length of cable isS. This cable travels at a
constant speedc̄. x̄, ȳ, and z̄ are fixed rectangular Cartesian c
ordinates;ȳ is colinear with gravitational acceleration. The fixe
end points B1 and B2 are positioned arbitrarily. q̄( i )

5$q̄x
( i ),q̄y

( i ),q̄z
( i )%5$q̄k

( i )% and F̄( i )5$F̄x
( i ),F̄y

( i ),F̄z
( i )%5$F̄k

( i )% for the
i th segment are distributed and concentrated forces on the c
and ū( i )5$ū( i ),v̄ ( i ),w̄( i )%5$ūk

( i )% is the displacement from the ini

tial configuration X̄( i )5$X̄( i ),Ȳ( i ),Z̄( i )%5$X̄k
( i )% to equilibrium

x̄( i )5$x̄( i ),ȳ( i ),z̄( i )%5$x̄k
( i )%. AX̄k,s̄

( i ) X̄k,s̄
( i ) 51 and ūk

( i )5 x̄k
( i )2X̄k

( i ) .

For straight cables,s̄5X̄1
( i )( s̄) and X̄2

( i )5X̄3
( i )50. The strain of

equilibrium under initial tensionT̄0 is

«~ i !5«0
~ i !1@A~X̄j ,s̄

~ i !1ū j ,s̄
~ i ! !~X̄j ,s̄

~ i !1ū j ,s̄
~ i ! !21#, ~summation on j !

(1)

where (•) ,s̄5](•)/] s̄, «0
( i )5T̄0 /EA, andE, A, ands̄ are Young’s

modulus, the cross-sectional area, and the arc length of the c
in the initial configuration. For inextensible cables (EA→`),
« ( i )50 becauseAX̄k,s

( i ) X̄k,s
( i ) 51 andūk

( i )50, $X̄k
( i )% depends on the

external loading except the initial tension. The tension in the ca
at equilibrium is

T̄~ i !~ s̄!5T̄01EA@A~X̄j ,s̄
~ i !1Ū j ,s̄

~ i ! !~X̄j ,s̄
~ i !1ū j ,s̄

~ i ! !21#. (2)

For the sake of general solutions, the nondimensionalizations

Fig. 1 Equilibrium and deformation of a traveling sagged
cable under arbitrary loading
Journal of Applied Mechanics
-
d

ble,

able

ble

s5
s̄

S
,xk

~ i !5
x̄k

~ i !

S
,Xk

~ i !5
X̄k

~ i !

S
,uk

~ i !5
ūk

~ i !

S
,qk

~ i !5
q̄k

~ i !

rAg
,

Fk
~ i !5

F̄k
~ i !

rAgS
,t5

cqt̄

S
,

cp5
1

cq
AE

r
,c05

1

cq

A T̄0

rA
,

c5
c̄

cq
,cq5AgS,T~ i !5

T̄~ i !

rAgS
,T0

~ i !5
T̄0

~ i !

rAgS
;

§
(3)

are introduced. The material is linear elastic, and the exact n
linear strain is modeled. Hence, as in Luo et al.@21#, the equations
of motion for a cable segment@si 21 ,si # between concentrated
forces F( i 21) and F( i ) ( i 51,...,n,n11), are obtained through
force balances of the deformed cable, and when the geomet
relations are used, the equations of motion become

~Xk
~ i !1uk

~ i !! ,tt5qk
~ i !

1H c0
21cp

2@A~Xj ,s
~ i !1uj ,s

~ i ! !~Xj ,s
~ i !1uj ,s

~ i ! !21#

A~Xj ,s
~ i !1uj ,s

~ i ! !~Xj ,s
~ i !1uj ,s

~ i ! !
~Xk,s

~ i ! 1uk,s
~ i ! !J

,s

.

(4)

The reactions at endsB1(s05sB1
50) andB2(sn115sB2

51) are

F(0) andF(n11). For traveling cables, the variableh is used as a
fixed coordinate system ands as a traveling coordinate system
Therefore, transformation ofs to h

h5s1ct, (5)

results in equations of motion for segment@h i 21 ,h i # mapped
from @si 21 ,si #

ruk,tt
~ i ! 12cuk,ht

~ i ! 1c2~Xk,hh
~ i ! 1uk,hh

~ i ! !

5qk
~ i !1H F cp

21
c0

22cp
2

A~Xj ,h
~ i ! 1uj ,h

~ i ! !~Xj ,h
~ i ! 1uj ,h

~ i ! !
G ~Xk,h

~ i ! 1uk,h
~ i ! !J . (6)

When s5X1
( i )5x and X2

( i )5X3
( i )50, Eq. ~6! reduces to the two-

dimensional straight cable model. The boundary conditions for
equilibrium displacement and initial configuration are

uk
~0!uh505ak ,uk

~n11!uh515bk and

Xk
~0!uh505Ak ,Xk

~n11!uh515Bk . (7)

From ~7! the ratio of the chord to arc length of the cable at init
configuration is determined through the nondimensionalized v
ablexB5A(Ak2Bk)(Ak2Bk). Continuity requires

uk
~ i !uh5h i

5uk
~ i 11!uh5h i

and Xk
~ i !uh5h i

5Xk
~ i 11!uh5h i

. (8)

2.2 Equilibrium

2.2.1 Existence. With vanishing of the time variations in~6!,
integration over@h i 21 ,h i # gives

F c0
22cp

2

A~Xj ,h
~ i ! 1uj ,h

~ i ! !~Xj ,h
~ i ! 1uj ,h

~ i ! !
1~cp

22c2!G ~Xk,h
~ i ! 1uk,h

~ i ! !

52E qk
~ i !dh1ck

~ i ! , (9)

whereck
( i )(k51,2,3) are integration constants. With the tensi

~2!, ~9! reduces to the model of Yu et al.@20# when q1
( i )5c50

and qk
( i )(kÞ1) are uniformly distributed. The Irvine two

dimensional model is also a special case of~9! obtained byq1
( i )

5q3
( i )5c50.
MARCH 2000, Vol. 67 Õ 149
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The squaring of both sides of~9! for eachk and summing of
them for allk leads to

A~Xj ,h
~ i ! 1uj ,h

~ i ! !~Xj ,h
~ i ! 1uj ,h

~ i ! !5
1

cp
22c2 F ~cp

22c0
2!

6AS E qj
~ i !dh2cj

~ i !D S E qj
~ i !dh2cj

~ i !D G . (10)

The translating cable in~10! possesses two equilibria. When th
translation speed equals the wave speed~i.e., c̄5AE/r), reso-
nance occurs and the stretch ratioA(Xj ,h

( i ) 1uj ,h
( i ) )(Xj ,h

( i ) 1uj ,h
( i ) ) be-

comes infinite. In~10! the stretch ratio increases with increasingc
for c,cp .

The substitution of~10! into ~2! with ~3! leads to

T~ i !5
1

cp
22c2 Fc2~cp

22c0
2!

6cp
2AS E qj

~ i !dh2cj
~ i !D S E qj

~ i !dh2cj
~ i !D G (11)

showing that the tension increases monotonically withc for c
,cp . For stationary cables, settingc50 in ~11! and choosing
T( i ).0 for all the segments gives

T~ i !5AS E qj
~ i !dh2cj

~ i !D S E qj
~ i !dh2cj

~ i !D . (12)

In the inextensible cable,A(Xk,h
( i ) 1uk,h

( i ) )(Xk,h
( i ) 1uk,h

( i ) )51 ~or
uk

( i )50), the stiffness in~9! becomes (T02rAc2) identical to
Routh @2#, and the tension is

T~ i !5c26AS E qj
~ i !dh2cj

~ i !D S E qj
~ i !dh2cj

~ i !D . (13)

Cable/string models require positive tension, i.e.,T( i ).0. There-
fore, a condition of existence of steady motion from~11! is

c0
2,cp

2F16
1

c2AS E qj
~ i !dh2cj

~ i !D S E qj
~ i !dh2cj

~ i !D G . (14)

A critical condition for the existence of steady motion is obtain
at T( i )50 or equality in~14!.

2.2.2 Displacement. Substitution of~10! into ~9! and inte-
gration gives three components of displacement

uk
~ i !5dk

~ i !2Xk
~ i !E H 2*qk

~ i !dh1ck
~ i !

~cp
22c2!

3F16
cp

22c0
2

A~*qj
~ i !dh2cj

~ i !!~*qj
~ i !dh2cj

~ i !!
G J dh, (15)

wheredk
( i )(k51,2,3) are constants. The boundary conditions~7!,

displacement continuity~8!, and force balances at eachF( i ) are
used to determine all coefficients in~9! and ~15!. The force bal-
ances are

S 2E qk
~ i !dh1ck

~ i !D U
h5h i

2Fk
~ i !5S 2E qk

~ i 11!dh1ck
~ i 11!D U

h5h i

.

(16)

The inextensible cable requirescp→`, and ~10! gives
AXk,h

( i ) Xk,h
( i ) 51 indicatinguk

( i )50. Substitution of thecp and uk
( i )

into ~15! gives the equilibrium configurationX̂k
( i ) .

X̂k
~ i !56E F 2*qk

~ i !dh1 ĉk
~ i !

A~*qj
~ i !dh2 ĉ j

~ i !!~*qj
~ i !dh2 ĉ j

~ i !!
Gdh1d̂k

~ i ! . (17)
150 Õ Vol. 67, MARCH 2000
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Similarly, ĉk
( i ) andd̂k

( i ) can be determined. Equation~16! and~17!

show thatX̂k
( i ) is independent of the initial tension. For the ine

tensible and elastic cables under the same loading, it is assu
that the two cables possess the same initial configuration. Fo
inextensible cable, its displacement is zero~i.e., uk

( i )50), which
implies that the equilibrium of the inextensible cable is the init
configuration ~i.e., Xk

( i )(h)5X̂k
( i )(h). Therefore from~15! and

~17! the displacement of the elastic cable is

uk
~ i !5E H 2*qk

~ i !dh1ck
~ i !

~cp
22c2!

3F16
cp

22c0
2

A~ *qj
~ i !dh2cj

~ i !!~ *qj
~ i !dh2cj

~ i !!
G J dh1dk

~ i !

7E F 2*qk
~ i !dh1 ĉk

~ i !

A~ *qj
~ i !dh2 ĉ j

~ i !!~ *qj
~ i !dh2 ĉ j

~ i !!
Gdh2d̂k

~ i ! . (18)

3 Applications

3.1 Uniformly Distributed Loading. Consider a sagged
cable traveling at constant speedc. The cable is subjected to
uniformly distributed loadq5$qx ,qy ,qz%. The chord ratio of the
cable isxB and a constant, initial tension isT0 . The superscripts
denoting the particular segment have been dropped. The boun
conditions are

ukuh505ukuh5150, Xkuh505Ak50 and Xkuh515Bk . (19)

The displacement is given by~18!

uk5
1

~cp
22c2!

S 2
1

2
qkh

21ckh D6
~cp

22c0
2!

~cp
22c2!

H 2
qk

q
Q~h!

1
~ckqj2cjqk!qj

q3 log@J~h!1Q~h!#J 1dk

7H 2
qk

q
Q̂~h!1

~ ĉkqj2 ĉ jqk!qj

q3 log@Ĵ~h!1Q̂~h!#J 2d̂k ,

(20)

where

Q~h!5Ah222
cjqj

q2 h1
cjcj

q2 ,

J~h!5h2
cjqj

q2 , q5Aqjqj

Q̂~h!5Ah222
ĉ jqj

q2 h1
ĉ j ĉ j

q2 , Ĵ~h!5h2
ĉ jqj

q2 .
6 (21)

The boundary conditions~19! with ~20! give

dk57
cp

22c0
2

~cp
22c2!

H 2
qk

q
Q~0!

1
~ckqj2cjqk!qj

q3 log@J~0!1Q~0!#J , (22)

ck6
~cp

22c0
2!~ckqj2cjqk!qj

q3 logFJ~1!1Q~1!

J~0!1Q~0!G
5Bk~cp

22c2!1
1

2
qk6

~cp
22c0

2!qk

q
@Q~1!2Q~0!#. (23)

The ck and dk in ~20! are determined through solution of th
nonlinear algebraic Eq.~22! and ~23!, and theĉk and d̂k for the
inextensible cable are determined from
Transactions of the ASME



g

o

r

at

e-
odel

t,

the
n

d̂k57H 2
qk

q
Q̂~0!1

~ ĉkqj2 ĉ jqk!qj

q3 log@Ĵ~0!1Q̂~0!#J , (24)

6
~ ĉkqj2 ĉ jqk!qj

q3 logF Ĵ~1!1Q̂~1!

Ĵ~0!1Q̂~0!
G5Bk6

qk

q
@Q̂~1!2Q̂~0!#.

(25)

The exact displacement solution is complete. The tension and
equilibrium configuration are

T~h!5
1

cp
22c2 @c2~cp

22c0
2!6cp

2qQ~h!#. (26)

xk5Xk1uk5
~2

1
2 qkh

21ckh!

~cp
22c2!

1dk6
~cp

22c0
2!

~cp
22c2!

3H 2
qk

q
Q~h!1

~ckqj2cjqk!qj

q3 log@J~h!1Q~h!#J .

(27)

For the inextensible cable, the equilibrium configuration is

X̂k~h!5d̂k6H 2
qk

q
Q̂~h!1

~ ĉkqj2 ĉ jqk!qj

q3 log@Ĵ~h!1Q̂~h!#J .

(28)

3.1.1 Special Cases.Consider a two-dimensional travelin
cable withq̄x50, q̄y52rAg5W/S, Bx5L/S andBy5H/S. The
substitution of~3!, ~22!, and ~23! into ~27! and use of inverse
hyperbolic functions leads to the equilibrium of the tw
dimensional deformed cable,

x̄~ h̄ !5
c̄1

~E2r c̄2!A
H h̄6

EA2T̄0

q̄y
Fsinh21S c̄2

c̄1
D

2sinh21S c̄22q̄yh̄

c̄1
D G J ,

ȳ~ h̄ !5
1

~E2r c̄2!A H S 2
1

2
q̄yh̄

21c2h̄ D
6

~EA2T̄0!c̄1

q̄y
FA11S c̄2

c̄1
D 2

2A11S c̄22q̄yh̄

c̄1
D 2G J .

§

(29)

The bar indicates dimensional variables and parameters. Fo
stationary cable (c̄50), let T̄050 and neglect the solution with
T̄<0, ~29! becomes

x̄~ h̄ !5
c̄1

EA
h̄1

c̄1S

W Fsinh21S c̄2

c̄1
D

2sinh21S c̄22Wh̄/S

c̄1
D G ,

ȳ~ h̄ !5FWh̄

EA S c̄2

W
2

h̄

2SD1

c̄1S

W SA11S c̄2

c̄1
D 2

2A11S c̄22Wh̄/S

c̄1
D 2D G .

§
(30)

which is the solution of Irvine@19#.
The inextensible, axially moving cable is obtained from~29! by

settingEA→`.

X̂̄~h!56
c̄1

q̄y
Fsinh21S c̄2

c̄1
D2sinh21S c̄22q̄yh̄

c̄1
D G ,

Ŷ~h!56
c̄1

q̄y
SA11S c̄2

c̄1
D 2

2A11S c̄22q̄yh̄

c̄1
D 2D ;

J (31)
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wherec̄1 andc̄2 are determined through the boundary condition
h̄5S. The equilibrium under nonpositive tension in~31! is un-

stable. SettingX̂̄05 c̄1 /q̄y sinh21(c̄2 /c̄1), ~31! becomes

Ŷ̄~ X̂̄!56
c̄1

rAg FcoshS rAg

c̄1
~ X̂̄2 X̂̄0! D2coshS rAg

c̄1
X̂̄0D G . (32)

Letting T̂̄1(0)56 ĉ̄156@ T̂̄0(0)2rAc̄2#cosu(0) where dX̂̄/

dh̄5cosu(h̄), ~32! is given by O’Reilly @18# ~see p. 188!. X̂̄0 is
determined by the boundary condition ath̄5S. If the inextensible

cable is sufficiently straight that cosu'1 and c̄1@ c̄2 , then X̂̄0
'0 and~32! becomes

X̂̄~ h̄ !56
c̄1

q̄y
sinh21S q̄yh̄

c̄1
D ,

Ŷ̄~ h̄ !56
c̄1

q̄y
S 12A11S q̄yh̄

c̄1
D 2D

57
c̄1

q̄y
FcoshS q̄yh̄

c̄1
D21G . 6 (33)

This stable solution is given by Simpson@10#. However,~33! does
not provide the equilibrium solution of the inextensible cable b
cause the boundary conditions are not satisfied. The linear m
of the straight cable gives

u52
qx

2~cp
22c2!

~h21!h, v52
qy

2~c0
22c2!

~h21!h. (34)

3.1.2 Illustrations. In all the figures to be referenced nex
the solid and dash lines represent the upper~1! and lower~2!
branches of the equilibrium configurations, respectively, and
dotted line denotes the unstable equilibrium of the cable wheT
<0. The longitudinal and transverse wave speeds arecp
5740.87 andc050.

Fig. 2 Longitudinal „upper … and transverse „lower … equilibrium
displacements of a straight elastic cable under q xÄ0 and q y
ÄÀ1 for cÄ10:c pÄ740.87 and c 0Ä0
MARCH 2000, Vol. 67 Õ 151
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Fig. 3 Displacement „upper … and tension „lower … versus trav-
eling speed of a sagged elastic cable „x BÄ0.8… for q xÄq yÄ
À1 with various transverse loads: c pÄ740.87 and c 0Ä0

Fig. 4 Multiple equilibrium configurations „upper … and tension
distributions „lower … of a sagged elastic cable „x BÄ0.8… under
its own weight „q yÄÀ1… and various longitudinal loads for c
Ä1:c pÄ740.87 and c 0Ä0
152 Õ Vol. 67, MARCH 2000
Consider a two-dimensional horizontal straight cable (Bx5xB
51, By5Bz50) hanging under its own weight (qx50, qy5
21). Two components of displacementu5x(h)2h and v
5y(h) computed from~20! at c510 are shown in Fig. 2. The
chain line denotes the linear prediction of displacement from~34!.
The maximum longitudinal displacement is 3.99831025 ~lower
branch! and 2.92331025 ~upper branch! at h50.21 and 0.79.
The linear prediction of the longitudinal displacement is zero
cause ofqx50. The maximum transverse displacement is 8.8
31023 ~lower branch! and 7.54731023 ~upper branch!, but
1.2531023 for the linear prediction. For the inextensible cab
two components of displacement are zero.

The maximum transverse displacement and minimum tens
in the two-dimensional sagged elastic cable (Bx5xB , By5Bz
50) for qx521 is plotted in Fig. 3 when the chord ratio isxB
50.8. The lower branch of the equilibrium configuration for a
traveling speed always exists, and the displacement and ten
increase with the transverse load and transport speed. The u
branch of equilibrium configuration is stable only when the tra
port creates positive tension.

The equilibrium configuration and tension of a cable under
own weight (qy521) and the longitudinal loads (qx50,21) are
illustrated in Fig. 4 atxB50.8 andc51. The equilibrium configu-
rations and tension distributions are symmetric forqx50. The
longitudinal and transverse displacements from the initial confi
ration to equilibrium of the sagged elastic cable are illustrated
Fig. 5. Unlike the straight cable in Fig. 2, the longitudinal di
placement of the sagged cable is the same order of magnitud
the transverse displacement.

The maximum transverse displacement and the related ten
versus the chord ratio are illustrated in Fig. 6 atc510. The
maxima occur atxB51. The results indicates that slightly sagge
cables (xB50.9;1) must be modeled as extensible to achieve

Fig. 5 Longitudinal „upper … and transverse „lower … displace-
ments of a sagged elastic cable at equilibrium „x BÄ0.8… under
its own weight „q yÄÀ1… and various longitudinal loads for c
Ä10:c pÄ740.87 and c 0Ä0
Transactions of the ASME
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accuracy for most applications. The sagged cable model red
to the straight cable model atxB51.

3.2 Concentrated Loading. Consider a three-dimensiona
sagged traveling cable carryingn21 concentrated loadsFk

( i ) ( i
51,2,...,n21 andk51,2,3 forx, y, z! which divide the cable into
n segments.qk

( i )( i 51,2,...,n) are uniformly distributed loads an
c0

2 is a constant initial tension. The boundary conditions sati
~19!. Three components of displacement from~19! are computed
through ~20! and ~21! when $uk ,qk ,ck ,dk ,J,Q,q% and
$ĉk ,d̂k ,Ĵ,Q̂% are replaced by$uk

( i ) ,qk
( i ) ,ck

( i ) ,dk
( i ) ,J ( i ),Q ( i ),q( i )%

and$ĉk
( i ) ,d̂k

( i ) ,Ĵ ( i ),Q̂ ( i )%.
The corresponding boundary condition in~19! at h50 be-

comes

dk
~1!57

cp
22c0

2

~cp
22c2!

H 2
qk

~1!

q~1! Q~0!

1
~ck

~1!qj
~1!2cj

~1!qk
~1!!qj

~1!

~q~1!!3 log@J~1!~0!1Q~1!~0!#J . (35)

The displacement continuity between thei th and (i 11)th seg-
ments (i 51,2,...,n21) is

6
~ck

~ i !qj
~ i !2cj

~ i !qk
~ i !!qj

~ i !

~q~ i !!3 log@J~ i !~h i !1Q~ i !~h i !#7
qk

~ i !

q~ i ! Q~ i !~h i !

1
1

cp
22c0

2S ck
~ i !h i2

1

2
qk

~ i !h i
2D

56
~ck

~ i 11!qj
~ i 11!2cj

~ i 11!qk
~ i 11!!qj

~ i 11!

~q~ i 11!!3

3 log@J~ i 11!~h i !1Q~ i 11!~h i !#7
qk

~ i 11!

q~ i 11! Q~ i 11!~h i !

Fig. 6 Displacement „upper … and tension „lower … versus chord
ratio of a sagged elastic cable with various transverse loads for
cÄ10:c pÄ740.87 and c 0Ä0
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ces

l

fy

1
1

cp
22c0

2S ck
~ i 11!h i2

1

2
qk

~ i 11!h i
2D1

cp
22c2

c0
22c2~dk

~ i 11!2dk
~ i !!,

(36)

and force balances in~16! give

2qk
~ i !h i1ck

~ i !2Fk
~ i !52qk

~ i 11!h i1ck
~ i 11! . (37)

The boundary condition in~19! at h51 produces

6
~ck

~n!qj
~n!2cj

~n!qk
~n!!qj

~n!

~q~n!!3 log@J~n!~1!1Q~n!~1!#

1~dk
~n!1ck

~n!!
1

cp
22c0

2

5Bk

cp
22c2

cp
22c0

2 1
1

cp
22c0

2

qk
~n!

2
6

qk
~n!

q~n! Q~n!~1!. (38)

The ck
( i ) anddk

( i ) are determined by solving 63n nonlinear alge-
braic Eq.~35!–~38!. Similarly, theĉk and d̂k for the inextensible
cable are determined by the following 63n nonlinear equations:

d̂k
~1!57H 2

qk
~1!

q~1! Q̂~0!1
~ ĉk

~1!qj
~1!2 ĉ j

~1!qk
~1!!qj

~1!

~q~1!!3

3 log@Ĵ~1!~0!1Q̂~1!~0!#J , (39)

Fig. 7 Equilibrium configuration „upper … and tension-jump
from segment 1 to segment 2 „lower … of a sagged elastic cable
„x BÄ0.8… under its own weight „q yÄÀ1… and a concentrated
force „FyÄÀ2… for cÄ10:c pÄ740.87 and c 0Ä0
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6,
n-
6
~ ĉk

~ i !qj
~ i !2 ĉ j

~ i !qk
~ i !!qj

~ i !

~q~ i !!3 log@Ĵ~ i !~h i !1Q̂~ i !~h i !#7
qk

~ i !

q~ i ! Q̂~ i !~h i !

1d̂k
~ i !56

~ ĉk
~ i 11!qj

~ i 11!2 ĉ j
~ i 11!qk

~ i 11!!qj
~ i 11!

~q~ i 11!!3 log@Ĵ~ i 11!~h i !

1Q̂~ i 11!~h i !#7
qk

~ i 11!

q~ i 11! Q̂~ i 11!~h i !1d̂k
~ i 11! , (40)

2qk
~ i !h i1 ĉk

~ i !2Fk
~ i !52qk

~ i 11!h i1 ĉk
~ i 11! , (41)

6
~ ĉk

~n!qj
~n!2 ĉ j

~n!qk
~n!!qj

~n!

~q~n!!3 log@Ĵ~n!~1!1Q̂~n!~1!#1d̂k
~n!

5Bk6
qk

~n!

q~n! Q̂~n!~1!. (42)

The exact closed form displacement for the equilibrium co
figuration of traveling sagged cables under the uniformly distr
uted and concentrated loading is complete. The computatio
tension equilibrium configuration for each segment of elastic
inextensible cables can be carried out from~26!–~28!.

To illustrate the equilibrium configuration and tension distrib
tion under concentrated loading, consider a two-dimensio
sagged cable (Bx5xB , By5Bz50) under its own weight and a
concentrated loadFx50, Fy522 whenc510 andxB50.8. The
equilibrium configurations and the tension from segment 1~S1! to
segment 2~S2! for the concentrated loading ath150.2 and 0.5
are plotted in Fig. 7. If the concentrated force is at the middle
cable (h150.5), the jump in tension vanishes. The slopes of
configuration and tension are discontinuous at the location of
concentrated force.

4 Conclusion
The exact closed-form displacements, configuration, and

sion for the steady-state motion of traveling, three-dimensio
sagged elastic cables under arbitrary loading are developed. T
eling cables with large sag can be modeled approximately thro
the inextensible cable model when the loading and traveling sp
are very small. However, a slightly sagged cable must be mod
as extensible even if both loading and transport speed are
small. For a stationary cable with large sag subjected to its o
weight, the equilibrium configuration and tension distribution c
be approximated by the ones of the inextensible cable model
154 Õ Vol. 67, MARCH 2000
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Mold Surface Wavelength
Effect on Gap Nucleation
in Solidification
A theoretical model that predicts the time and position of gap nucleation along
metal-shell interface during solidification of a pure metal on a sinusoidal mold surfac
presented. The ratio of the mold surface amplitude to its wavelength is assumed
much less than one and hence it is used as a perturbation parameter in the analysi
molten metal perfectly wets the mold surface prior to the beginning of solidification,
this leads to a corresponding undulation of the metal shell thickness. A nonuni
distortion develops in the shell due to the lateral temperature gradient induced by
modest spatial variation of the mold surface. This causes a variation in the con
pressure so that the growing shell pushes harder on the mold in some places, but in
places it starts to pull away from the mold. Gap nucleation is assumed to occur whe
contact pressure falls to zero. The conditions for gap nucleation in the surface tro
are examined since a corresponding increase in pressure at the crests signals the
bility of a growth instability in the shell at later stages of the process. A series expan
for the contact pressure is presented which is appropriate for early solidification tim
This reveals how the contact pressure varies with the mold surface wavelength.
solution is compared with a numerical solution for the contact pressure that is not lim
to early solidification times. Gap nucleation times are calculated for pure aluminum
iron shells for selected mold surface wavelengths. The associated mean shell thick
are calculated as a function of wavelength at selected mean molten metal pres
@S0021-8936~00!02901-9#
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1 Introduction
The most critical region during the earliest stages of metal c

ing processes is the mold-shell interface. It is through this in
face that heat is extracted from the molten metal resulting in
growth of the metal shell. Some of the most difficult proce
related problems are gap nucleation and subsequent gap gr
and remelting of the shell along the mold-shell interface. Ther
indeed a substantial body of experimental literature that consi
the nucleation and growth of gaps during solidification proces
~see, for example,@1#!.

Gap nucleation is largely caused by irregular thermomechan
distortion of the shell which leads to localized separation from
mold surface. The nonuniform thermal field that gives rise to
regular distortion can result from spatial variations in the h
extraction profile along the mold-shell interface~due, for example,
to mold surface topography, release agents, oxides, etc!. Evidence
of nonuniform shell growth due to irregular distortion is found
raised ‘‘humps’’ along the internal surface of the shell which a
apparent when solidification is interrupted and the residual mo
metal is decanted. The humps are a macromorphological phen
enon reaching several centimeters in span. They are a clear
cation of a shell growth instability which is most prominent du
ing the early to intermediate stages of casting. This type
irregular growth has been linked to a variety of problems with c
ingot surface quality, among the most significant of which ar
microstructure that is unsuitable for subsequent processing~such
as hot rolling! and surface cracks.

Previous experimental work on this cellular undulation ph

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
12, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: J. R. Bar
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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nomenon has led to the suggestion that the humps grow as a r
of gap nucleation at regions of the mold surface that lie bene
the thinnest regions of the shell~see, for example,@2–5#!. It is
likely that this is but one of several contributing factors to solid
fication growth instability since process-related phenomena, s
as superheat, mold velocity, mold distortion, meniscus behav
and fluid flow play prominent roles in the process~@6#!.

Richmond et al.@7# developed a beam theory model to explo
the onset of the proposed macroscale growth instability mec
nism assuming that thickness nonuniformity of a pure metal s
was due to a periodic heat extraction profile. This assumption
based upon the premise that small scale disturbances in the
extraction profile at the mold-shell interface led to larger sc
shell thickness nonuniformities via gap nucleation and growth
was proposed that gap nucleation occurred when the contact
sure along the mold-shell interface fell to zero. Richmond et
@7# found that gap nucleation occurred beneath the thinnest
gions of the shell, which presumably diminished further growth
these regions, with a corresponding increase in contact pres
beneath the thickest regions of the shell, the thicker regions s
sequently growing at a faster rate. The mismatch in growth ra
along the shell is what leads to the humps discussed above.
yond gap nucleation time, their model was no longer valid sinc
could not account for continued growth of the gaps and the sh
Li and Barber@8# extended this work using a stress function a
proach and found that the Richmond model was appropriate
the earliest stages of the casting when the shell is very thin. T
model assumed that the temperature and stress fields in the g
ing shell were coupled along the mold-shell interface throug
pressure-dependent thermal contact resistance. Additional mo
which address such added complexities as strain rate relaxa
due to viscous creep~@9#!, Stefan number~@10#!, and mold distor-
tion ~@11#!, have subsequently been developed.

All of the preceding theoretical work on the growth instabili
problem has assumed a perfectly smooth mold surface wit
superposed periodic cooling profile. In practice, no surface is p
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fectly smooth. Most ground finishes~for example! can be thought
of as nothing more than a mixture of spatial frequencies eac
which has an amplitude that is a perturbation on a smooth b
ground surface. It is therefore the purpose of the present wor
reformulate the model originally proposed by Richmond et al.@7#
for a pure metal solidifying on a sinusoidal mold surface of lo
aspect ratio~i.e., the ratio of the amplitude to wavelength is mu
less than one!. The stress function formalism of Li and Barber@8#
is followed which leads to solutions for the temperature and st
fields in the metal shell and the contact pressure along the m
shell interface. A series solution for the mold-shell contact pr
sure at early times in the solidification process is derived from
stress field in order to reveal how the contact pressure dep
upon key process parameters. This solution is compared wi
numerical solution for the contact pressure that is not limited
early solidification times. Gap nucleation in pure aluminum a
iron shells is explored for selected process parameters. The v
tion of the mean shell thickness with mold surface wavelength
gap nucleation time is examined at selected mean molten m
pressures.

2 The Thermal Problem
The system to be modeled is shown in Fig. 1. A pure me

shell solidifies from a quiescent bath of molten metal that
perfectly wet a sinusoidal mold surface. In the planar refere
coordinates, the mold surface is given byy5a cos(2px/l), where
a is the surface amplitude, andl is the wavelength or center-to
center spacing between adjacent crests. The mold, which is
sumed to be a rigid, perfect conductor, is held at a tempera
Tm , whereTm,Tf , andTf is the fusion temperature of the mo
ten metal.

The temperature problem in the shell is

]2T

]x2 1
]2T

]y2 5
1

k

]T

]t
(1)

]T

]y
5

Q

K
at y5 l e cos~mx! (2)

T5Tf at y5s (3)

]T

]y
5

rL

K

]s

]t
at y5s (4)

s5 l e cos~mx! at t50 (5)

where

QR5T at y5 l e cos~mx!. (6)

Note that

R~x,t !5R~P~x,t !! (7)

Fig. 1 Pure metal shell solidifying on a rigid mold with a sinu-
soidal surface
156 Õ Vol. 67, MARCH 2000
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is the thermal contact resistance~wherein we have assumed th
Tm50 without loss of generality! andP(x,t) is the contact pres-
sure along the mold-casting interface. We define

e5a/ l (8)

as the mold surface aspect ratio, wherel 5l/2p51/m. The aspect
ratio is a convenient perturbation parameter since we assume
!1. This is not an unrealistic assumption since a ground finish
practice might have~nominally! a'1.0mm andl'5.0 mm, and
hence,e5231024. We assume a negligible Stefan number m
terial, in which case Eq.~1! reduces to the steady-state heat eq
tion.

Note that Eq.~2! is more appropriately written as

n•“T5
Q

K
(9)

wheren is the unit normal vector to the mold surface at any poi
However, the difference between Eqs.~2! and~9! can be shown to
beO(e2) ~this relies in part on the fact that the unperturbed so
tion is independent ofx!. A similar comment also applies to Eq
~4!. The following perturbation analysis will only keep track o
terms toO(e), and hence we may retain Eq.~2! without loss of
generality.

2.1 Perturbation of the Thermal Problem. We assume the
following forms for T, Q, ands:

T~x,y,t !5To~y,t !1T1~x,y,t ! (10)

Q~x,y,t !5Qo~ t !1Q1~x,y,t ! (11)

s~x,t !5so~ t !1s1~x,t ! (12)

where terms with suffix 1 are implicitlyO(e). We insert Eq.~10!
into Eq. ~1! and separate the zeroth-order and first-order gove
ing thermal equations. We then expand Eqs.~2! and~6! in a Tay-
lor series abouty5 l e cos(mx) to O(e) and group terms corre
sponding to the zeroth-order and first-order conditions. Af
proceeding in a similar fashion with the other conditions, we se
rate expressions corresponding to the zeroth-order and first-o
thermal problems, which are written as follows:

The Zeroth-Order Problem.

]2To

]y2 50 (13)

]To

]y
5

Qo

K
at y50 (14)

T5Tf at y5so (15)

]To

]y
5

rL

K

dso

dt
at y5so (16)

so50 at t50 (17)

where

QoRo5To at y50 (18)

The First-Order Problem.

]2T1

]x2 1
]2T1

]y2 50 (19)

]T1

]y
5

Q1

K
at y50 (20)

s1

]To

]y
1T150 at y5so (21)
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]2To

]y2 1
]T1

]y
5

rL

K

]s1

]t
at y5so (22)

s15 l e cos~mx! at t50 (23)

where

Q1~x,0,t !5
1

Ro
F l e

]To

]y
cos~mx!1T12QoR1G at y50

(24)

R15
1

Qo
~T12Q1Ro!. (25)

2.2 The Zeroth-Order Solution. The procedure for solving
the zeroth-order problem may be found in Li and Barber@8#. We
therefore summarize the solution without proof:

To~y,t !5TfF y1KRo

so~ t !1KRo
G ; 0<y<so~ t ! (26)

Qo~ t !5F KTf

so~ t !1KRo
G (27)

so~ t !52KRo1AK2Ro
21

2KTft

rL
. (28)

Using Eq.~28!, we defineto(y) as the time when the mean me
line reaches the positiony; thus

to~y!5
yrL

2KTf
~y12KRo!. (29)

2.3 The First-Order Solution. The solution to the first-
order thermal problem may be written as

T1~x,y,t !5@A~ t !cosh~my!1B~ t !sinh~my!#cos~mx! (30)

whereA(t) andB(t) are unknown time functions. Application o
Eq. ~20! to Eq. ~30! gives

B~ t !cos~mx!5
Q1~x,0,t !

mK
. (31)

Application of Eq.~21! to Eq. ~30! gives

@A~ t !cosh~mso!1B~ t !sinh~mso!#cos~mx!52F s1~x,t !Tf

so~ t !1KRo
G .
(32)

At this point, the following definitions are convenient:

Q1~x,0,t !5Q1~ t !cos~mx! (33)

s1~x,t !5s1~ t !cos~mx! (34)

T1~x,y,t !5T1~y,t !cos~mx! (35)

R1~0,P~x,t !!5R8P1~ t !cos~mx! (36)

P~x,t !5Po1P1~ t !cos~mx! (37)

where the same symbol is retained for each of the perturba
quantities on the right-hand sides of Eqs.~33!–~37!. Note that Eq.
~36! comes from the Taylor series expansion

R~P~x,t !!5R~Po1P1~ t !cos~mx!!

5R~Po!1R8~Po!P1~ t !cos~mx! (38)

and

Ro5R~Po! ; R85
dR~Po!

dP
. (39)

Equation~24! may therefore be written as
Journal of Applied Mechanics
lt

f

tion

Q1~ t !5
1

Ro
F l e

]To~0,t !

]y
1T1~0,t !2Qo~ t !R8P1~ t !G . (40)

Substitution of Eqs.~26!, ~27!, and~31! into Eq. ~40! gives

A~ t !2mKRoB~ t !5
KTfR8P1~ t !

so~ t !1KRo
2

l eTf

so~ t !1KRo
. (41)

We next insert Eq.~30! into Eq. ~22!:

A~ t !sinh~mso!1B~ t !cosh~mso!5S rL

m D ds1~ t !

dt
. (42)

Solving Eq.~32! for B(t) and substituting the result into Eq.~42!
givesA(t), andB(t) follows. Substitution ofA(t) andB(t) into
Eq. ~41! gives

@so~ t !1KRo#@mKRo cosh~mso!1sinh~mso!# ṡ1~ t !

1
mKTf

rL
@mKRo sinh~mso!1cosh~mso!#s1~ t !

5
eKTf

rL
2

mK2TfR8P1~ t !

rL
(43)

which is a linear first-order differential equation ins1(t).

3 The Mechanical Problem
Based upon the form of the temperature field, we assume

the total stress field in the shell and the resulting contact pres
at the mold-shell interface have the following forms:

s i j ~x,y,t !5s i j o
~y,t !1s i j 1

~y,t !cos~mx! (44)

P~x,t !5Po1P1~ t !cos~mx! (45)

where

Po52syyo
; P1~ t !cos~mx!52syy1

(46)

at y5 l e cos(mx), and Po is the mean pressure from the molte
metal. The mechanical boundary conditions for frictionless c
tact at the mold surface are

snt50 ; y5 l e cos~mx! (47)

u̇n50 ; y5 l e cos~mx! (48)

wheresnt is the shear stress in the~n,t! coordinate system tha
rides along the mold surface~see Fig. 1! and u̇n is the normal
velocity. Equation~47! is appropriate for situations where th
shear strength of the interface is negligible, such as when a
lubricating film is applied to the interface. Note that Eq.~48! can
only be stated in terms of a time derivative since there is
reference state for displacement of the shell. Solidification at
freezing front is assumed to occur in a state of hydrostatic str

sxx5syy52Po , sxy50 ; y5s~x,t !. (49)

Once the stress field is determined, thenP1(t) is obtained from
Eq. ~46!.

3.1 The Particular Solution. The stress field correspondin
to the particular solution can be constructed in the form~see@12#!

2mu5“c (50)

where the scalar displacement potential,c(x,y,t), satisfies

¹2c5
2ma~11n!T

~12n!
; m5

E

2~11n!
(51)

andT is given by the sum of Eqs.~26! and ~30!. The stress and
displacement fields corresponding to the particular solution
then derived from
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sxx1

p 52
]2c

]y2 ; sxy1

p 5
]2c

]x]y
;

(52)

syy1

p 52
]2c

]x2 ; u̇y1

p 5
1

2m

]

]t S ]c

]y D
where the rate-dependent form of Eq.~50! has been used~as pre-
viously discussed! and the subscript ‘‘1’’ denotes a first-orde
component. A particular integral of Eq.~51! is

c5
ma~11n!

m~12n! Fmy2Tf

3 S y13KRo

so~ t !1KRo
D1y$A~ t !sinh~my!

1B~ t !cosh~my!%cos~mx!G . (53)

We can simplify the problem somewhat by adjusting Eq.~53! so
that the component of Eq.~48! corresponding to the particula
solution, u̇n

p , is satisfied automatically. We first express the d
placement normal to the mold surface in the planar reference
ordinates via the following transformation equation:

u̇n1

p 5u̇y1

p cos~f!2u̇x1

p sin~f! (54)

where

f5
dy

dx
52e sin~mx!. (55)

Sincef!1, Eq. ~54! can be written as

u̇n1

p 5u̇y1

p 1eu̇x1

p sin~mx!. (56)

Since the zeroth-order solution requires thatu̇n1

p 5u̇y1

p , it is true

that u̇x1

p is at least ofO(e) and hence the second term in Eq.~56!

is at least ofO(e2). We may therefore write

u̇n1

p 'u̇y1

p ; y5 l e cos~mx! (57)

since we are only interested in terms toO(e). Using the expres-
sion for u̇y1

p from Eqs. ~52!, along with Eqs.~53! and ~57!, we
obtain

u̇y
pu l e cos~mx!5

a~11n!

2m~12n!

d

dt F 2eKRoTf

so~ t !1KRo
1B~ t !Gcos~mx!

(58)

which results after we expand the hyperbolic functions in a Tay
series abouty5 l e cos(mx) and retain terms toO(e). We can
eliminate this unwanted velocity by superposing a suitable h
monic function ontoc in Eq. ~53!. Let

c i5C~ t !sinh~my!cos~mx! (59)

whereC(t) is an unknown function of time. The expression f

u̇y1

p from Eqs.~52! gives

u̇yi

p 5
d

dt FmC~ t !

2m
cosh~my!cos~mx!G . (60)

In order to eliminate the term on the right-hand side of Eq.~58!,
we write

C~ t !52
ma~11n!

m~12n! F 2l eKRoTf

so~ t !1KRo
1

B~ t !

m G (61)

and hence

u̇yi

p u l e cos~mx!52
a~11n!

2m~12n!

d

dt F 2eKRoTf

so~ t !1KRo
1B~ t !Gcos~mx!

(62)

since cosh(e cos(mx))'1. When Eq.~59! is superposed onto Eq
~53!, there results
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c5
ma~11n!

m~12n! Fmy2Tf

3 S y13KRo

so~ t !1KRo
D

2S 2l eKRoTf

so~ t !1KRo
D sinh~my!cos~mx!1H A~ t !y sinh~my!

1B~ t !Fy cosh~my!2
sinh~my!

m G J cos~mx!G , (63)

which provides a velocity field~corresponding to the particula
solution! that automatically satisfies Eq.~48!. The stress field cor-
responding to the particular solution,s i j 1

p , can now be derived via
Eqs.~52! and ~63!.

3.2 The Homogeneous Solution. We pose the following
form of the zeroth-order homogeneous solution

syyo

h 52Po ; sxxo

h 5F* ~y! ; sxyo

h 50 (64)

whereF* (y) is an unknown function of position. It is convenien
to transfer the zeroth-order term fromsxx

p ~determined from Eqs.
~52! and ~63!! to F* (y) by writing

sxxo

h 52
2maTf~11n!

~12n! F y1KRo

so~ t !1KRo
G1F~y! (65)

whereF(y) is also an unknown function of position. From Eq
~49!, we havesxxo

h (so)52Po . Hence,

F~y!52Po1
2maTf~11n!

~12n!
(66)

and the zeroth-order lateral stress corresponding to the hom
neous solution is

sxxo

h 52Po1
2maTf~11n!

~12n! F so~ t !2y

so~ t !1KRo
G . (67)

Also

sxyo

h 50 ; syyo

h 52Po . (68)

The first-order stress field corresponding to the homogeneous
lution is derived from

sxx1

h 5
]2F

]y2 ; sxy1

h 52
]2F

]x]y
; syy1

h 5
]2F

]x2 (69)

whereF is the Airy stress function, which is written as

F5@$b1~ t !y1b2~ t !%cosh~my!

1$b3~ t !y1b4~ t !%sinh~my!1g~y!#cos~mx!. (70)

Note that thebi are unknown functions of time andg(y) is a
time-independent function that represents residual stress~or the
stress field in the shell when it is cooled to a uniform temperat
and relieved of all boundary tractions!. The stress field corre-
sponding to the homogeneous solution,s i j 1

h , can now be derived
via Eqs.~69! and ~70! in terms of the unknownbi(t). The com-
ponents of the total stress field are obtained through superpos
of the particular and homogeneous stress fields via Eq.~44!.

3.3 Determination of the bi . The bi(t) in the s i j 1

h are de-
termined by requiring the total stress field to satisfy Eqs.~47! and
~49! and the homogeneous stress field to satisfy Eq.~48!. The total
shear stress in the mold surface system may be written in term
the planar reference via

snt5sxy~cos2~f!2sin2~f!!1~syy2sxx!sin~f!cos~f!
(71)

which, using Eq.~55!, may be written as

snt5sxy2~syy2sxx!e sin~mx!. (72)
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Equations~47!, ~52!, ~63!, ~72! and that forsxy1

h give

b1~ t !1mb4~ t !1g8~0!52
2maeTf~11n!

m~12n!
(73)

where we have retained terms toO(e). The elastic constitutive
law for plane strain~where the associated rigid-body displac
ments have been neglected! is

u̇y1

h 5
11n

E F ~12n!E ṡyy1

h dy2nE ṡxx1

h dyG . (74)

Application of u̇n
h50 at y5 l e cos(mx) from Eq. ~48!, usingsxx1

h

and syy1

h , gives b1(t). Equations~74! and that forb1(t) give
b4(t). Application of the boundary conditions at the freezin
front, Eqs.~49!, provides expressions forb2(t), b3(t) andg(y).
i

f
g
t
s

Journal of Applied Mechanics
e-

g

We expand each of Eqs.~49! in a Taylor series about the mea
position of the freezing front,so , beginning withsxx . Hence

sxx~s!5sxx~so!1~s2so!
]sxx~x,so ,t !

]y
1¯52Po . (75)

We have

]sxx~x,so ,t !

]y
52

2maTf~11n!

~12n!$so1KRo%
1O~e! (76)

wheresxx5sxx
p 1sxx

h is derived from Eqs.~52! and ~63!. Equa-
tion ~75! may therefore be written thus

sxx~s!5sxx~so!2
2mas1Tf~11n!

~12n!$so1KRo%
cos~mx!52Po . (77)

Substitution of the sum ofsxx
p andsxx

h into Eq. ~77! gives
F2b1~ t !

m
1b3~ t !so1b4~ t !Gsinh~mso!1Fb1~ t !so1b2~ t !1

2b3~ t !

m Gcosh~mso!1
g9~so!

m2

5
mae~11n!

m2~12n! F2Tf H s1~ t !2eKRo sinh~mso!

so1KRo
J 1$2 cosh~mso!1mso sinh~mso!%A~ t !1$sinh~mso!1mso cosh~mso!%B~ t !G .

(78)

Following the same procedure forsxy andsyy gives, respectively,

Fb1~ t !

m
1b3~ t !so1b4~ t !Gcosh~mso!1Fb1~ t !so1b2~ t !1

b3~ t !

m Gsinh~mso!1
g8~so!

m

5
ma~11n!

m2~12n! F $sinh~mso!1mso cosh~mso!%A~ t !1msoB~ t !sinh~mso!

2H 2eTfKRo

so1KRo
J cosh~mso! G (79)

@b1~ t !so1b2~ t !#cosh~mso!1@b3~ t !so1b4~ t !#sinh~mso!1g~so!

52
ma~11n!

m2~12n! F H 2eTfKRo

so1KRo
2msoA~ t !J sinh~mso!2$mso cosh~mso!2sinh~mso!%B~ t !G . (80)
the
lies
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ss
Elimination of b2(t) between Eqs.~78! and ~80! gives b3(t).
Substitution ofb3(t) into Eq. ~80! gives b2(t). Note thatb2(t)
andb3(t) are not reported here due to their lengths.

3.4 Differential Equations for P1„t… and s1„t…. Substitu-
tion of b2(t) and b3(t) into Eq. ~79! gives a single differential
equation relating the unknown functionsg(s0) ands1(t). By defi-
nition,

P1~ t !cos~mx!52syy~x,0,t !. (81)

Using Eqs.~44!, ~52!, ~63!, and that forsyy1

h , we find

P1~ t !5m2$b2~ t !1g~0!%. (82)

Substitution of Eq.~82! for P1(t) into Eq. ~43! gives a second
differential equation that relatesg(so) ands1(t). We shall present
each of these equations in dimensionless form in the follow
section since this will facilitate subsequent algebraic and num
cal manipulations.

3.5 Dimensionless Formulation for Perturbation Quanti-
ties. It will be necessary to examine each of the perturbat
quantities~i.e., P1 , Q1 , T1 , ands1! at sufficiently long times~in
the absence of a mean pressure!. Each quantity must tend
smoothly to zero as time increases since the mold-shell inter
will have a diminishing impact on the freezing front morpholo
as the shell thickens. Once it is verified that each perturba
quantity vanishes at sufficiently long times after the start of
ing
eri-

on

ace
y
ion
o-

lidification, then we can proceed with confidence to examine
short-time behavior of the contact pressure and what it imp
about the gap nucleation process for pure metals.

The coupled differential equations mentioned in the previo
section may be written in terms of the following dimensionle
variables:

t5
m2KTf

rL
t ; h5mso~ to~y!!5my ;

s̄1~to~h!!5
ms1~ to~y!!

e

ḡ~h!5
m2~12n!

EaeTf
g~y! ; R̄o5mKRo ; R̄85

EaTfR8

~12n!Ro

P̄1~h!5
~12n!

EaeTf
P1~ t ! ; b̄2~h!5

m2~12n!

EaeTf
b2~ t ! ;

w̄5tanh~h!

Q̄o~h!5
Qo~ t !

mKTf
; Q̄1~h!5

RoQ1~ t !

eTf
; T̄1~0,h!5

T1~0,t !

eTf
.

(83)

Hence
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1

2
~hw̄22h2w̄!ḡ9~h!1ḡ8~h!2

1

2
~hw̄21w̄2h!ḡ~h!

52
1

2
F H hw̄

h1R̄o
J s̄18~h!1H h1w̄

h1R̄0
J s̄1~h!

2
$2~12n!2hw̄%

~12n!cosh~h!
1

2R̄o

~h1R̄o!cosh~h!
G (84)

F hw̄R̄8

2 cosh~h!
G ḡ9~h!2

R̄8

cosh~h!
F11

hw̄

2
G ḡ~h!

5F w̄R̄oR̄8

h1R̄o

1H R̄8

2 cosh~h! S cosh~h!sinh~h!2h

h1R̄o
D

2cosh~h!2
sinh~h!

R̄o

J s̄18~h!

1H R̄8w̄ sinh~h!

2~h1R̄o!
2sinh~h!2

cosh~h!

R̄o

J s̄1~h!1
1

R̄o

2
R̄8

2~12n!
$h sech2~h!1w̄~122n!%G (85)

where the primes onḡ(h) and s̄1(h) denote differentiation with
respect toh, and we have used

S ds̄1~t!

dt D U
t5to~h!

5
s̄18~h!

h1Ro
. (86)

Note that we have setḡ(0)5ḡ8(0)50 since these are arbitrar
and will not affect the final results. The contact pressure per
bation is determined from

P̄1~h!5b̄2~h! (87)

whereb̄2(h) is listed in Appendix A.
An analytical solution is available fors̄1(h) from Eq. ~85! in

the uncoupled case (R̄850). Subsequently,ḡ(h) can be obtained
from Eq. ~84! by the method of Variation of Parameters in term
of indefinite integrals. However, the form of this is lengthy a
complicated, and in practice it is easier to solve Eq.~84! numeri-
cally.

4 Small h Solution for P̄1„h…

We seek an early time form ofP̄(h) using Eq.~87!. This can
be derived from Eqs.~84!, ~85!, and~A1! by assuming the follow-
ing truncated Taylor series expansions fors̄1(h) and ḡ(h):

s̄1~h!511(
i 51

N

Âih
i (88)

ḡ~h!5(
i 51

N

B̂i 11h i 11 (89)

whereh!1. Note that the time-independent term in Eq.~88! im-
plies that the thin shell is compliant to the mold surface at ini
time. The unknown constant coefficients,Âi andB̂i , are obtained
by first inserting Eqs.~88! and ~89! into Eqs.~84! and ~85!, and
then replacing each transcendental function with its series fo
and finally by writing
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1

h1R̄o

5
1

R̄o
S 12

h

R̄o

1
h2

R̄o
2
2¯ D . (90)

For N55, this gives~using Eqs.~87!, ~88!–~90!, ~A1!, and~B1!!
the early time form ofP̄1(h)

P̄1~h!5
h2

2R̄o

2
h3

2R̄o
2

1
~62R̄o

2!h4

12R̄o
3

2
~1522R̄o

2!h5

30R̄o
4

1
~72025~419R̄8!R̄o

2132R̄o
4!h6

1440R̄o
5

1¯ . (91)

The Âi andB̂i used to generate Eq.~91! are listed in Appendix B.
Note thatB̂2 was eliminated in the course of calculatingP̄1 .

5 Gap Nucleation at Early Solidification Times
In many casting processes, the molten metal pressure is in

ficient to prevent gap nucleation during the earliest stages of
lidification when the shell is very thin. It is therefore of interest
determine the conditions for gap nucleation to occur. This can
achieved through examination ofPtr , which is the ratio of the
total ~dimensional! contact pressure in the troughs,P, to the mean
pressure,Po , at the mold surface troughs. Hence

Ptr5
P

Po
512

P1

Po
. (92)

Gap nucleation at the troughs will indicate the possibility of
regular growth of the shell since contact will simultaneously
crease at the crests~the sign in front ofP1 will be positive, rather
than negative, due to the cos(mx) term in Eq.~45!!. Writing Eq.
~91! in dimensional form using Eqs.~83!, and inserting the resul
into Eq. ~92!, we obtain

Ptr512
2EaTfa

KRoPo~12n! S s̄o

L D 2

3F12 s̄o1S 322/L2

3 D s̄o
22S 1528/L2

15 D s̄o
3

1S 720220$419R̄8%/L21512/L4

720
D s̄o

42¯G (93)

where

s̄o5
so

KRo
!1 ; L5

l

pKRo
. (94)

If one neglects all terms except the lowest order term ins̄o , then
it is possible to make some cursory observations about the e
that key process parameters have onPtr for a specifics̄o ~or set
time!. For example, an increase inl ~holding all other parameters
constant!, causes a decrease inP1 , and a corresponding increas
in Ptr . An increase ina ~holding all other parameters constan!
causes an increase inP1 , and a corresponding decrease inPtr . An
increase inRo ~holding all other parameters constant! causes a
decrease inP1 and a corresponding increase inPtr . An increase in
the mean molten metal pressure,Po , causes a decrease inP1 , and
a corresponding increase inPtr . The contact resistance sensitivit
R̄8, first appears in the coefficient ofs̄o

6. Hence, for early solidi-
fication times, the contact pressure variation with time at the m
surface troughs is essentially controlled through uncoupled ph
ics since the sensitivity is more of a longer time effect. The
maining perturbation quantities are written in dimensional form
Appendix C.

Gap nucleation occurs when

Ptr50. (95)
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If Ptr.0 during the time frame of interest, then gaps will n
nucleate in the troughs.

At gap nucleation, we require that each of the perturbat
quantities be much less than one, except forP1 , which must be of
the same order asPo . This requires that Eq.~95! be subject to the
following restriction via perturbation of Eq.~6!:

2
R8Po

Ro
!1 (96)

~the derivation of Eq.~96! is found in Appendix D!. This limits
the present analysis to either weakly coupled systems, or the
treme case of a fully uncoupled system.

6 Results and Discussion
Prior to conducting an examination of gap nucleation for p

metal systems, we verified that at sufficiently long times, the
mensionless perturbation quantitiess̄1 , P̄1 , Q̄1 , and T̄1 tend
smoothly to zero. Following the method of Li and Barber@8#,
each quantity was numerically evaluated as a function of the
mensionless time variable,to(h) ~which is the dimensionless
form of Eq.~29!!, for selected mean contact resistances,R̄o , over
a range of 0.1,R̄o,50, for a fixed value of the dimensionles
contact resistance sensitivity,R̄8. It was verified that each quan
tity tended smoothly to zero for sufficiently largeto(h). As a
second test, each perturbation quantity was evaluated for a fi
value of R̄o , running through a range ofR̄8 from 20.1.R̄8.
2300. Again, each of the perturbation quantities tended smoo
to zero at sufficiently large values ofto(h). This provided the
confidence we needed to proceed to the gap nucleation anal

We wish to examine gap nucleation during the solidification
pure aluminum and iron shells. In particular, it is of interest
examine how the mold surface wavelength affects gap nuclea
time and the mean shell thickness at gap nucleation for these
materials. In order to accomplish this, we propose to fix the a
plitude, a, of the mold surface and vary the wavelength. As
consequence, a variation of the wavelength results in a varia
in the aspect ratio,e, given by Eq.~8!, and hence a variation in th
slope of the asperities relative to the planar reference results~see
Eq. ~55!!. The following question then remains: Why not fix th
wavelength,l, and vary the amplitude,a? In practice, either ap-
proach could be followed. From a theoretical standpoint, Eq.~C2!
shows that an increase inl ~holding the other process paramete
fixed! results in a corresponding decrease in the lowest-order t
of the heat flux perturbation,Q1 . A similar effect is at hand when
the amplitude,a, is decreased. However, it has generally been
case in the experimental literature on mold surface topogra
design, wherein groove-type surface morphologies are app
that the wavelength is varied while the amplitude of the topog
phy is held fixed~see, for example,@13#!. This is perhaps an
attempt to avoid inducing failure sites into thin molds that a
common to many commercial casting processes. In practice
molten metal will not perfectly wet the mold surface~i.e., it will
not completely fill the trough regions! due to surface tension ef
fects, and hence we anticipate a diminishing return from varia
of a.

Since the contact resistance sensitivity,R8, appears in the sixth-
order term in Eq.~93!, indicating that it is a longer time effect, w
choose to limit our analysis to the case of fully uncoupled s
tems. The elevated temperature material properties used in
calculations are specified in Table 1.

Figure 2 shows the variation ofPtr versust as predicted by the
short time solution and that due to numerical solution of Eqs.~84!
and ~85! ~followed by conversion to dimensional coordinates v
Eqs. ~83!!, for selected wavelengths~in millimeters!, during so-
lidification of pure aluminum. The solid curves are those due
the short time solution, given by Eq.~93!, and the dashed curve
are those due to the numerical solution. The process param
used to generate this figure werePo58000 Pa,a51 mm, and
Journal of Applied Mechanics
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Ro51023 m2 sec°C/J. Note that the turn around in each of t
short time curves, which denotes the limit of validity of the sho
time solution, is more sudden at the shorter wavelengths~over the
chosen time range!. Each of the curves predicted by the long tim
solution, however, proceeds to decrease in a linear fashion. T
intersections with thePtr50 axis denote a gap nucleation tim
~negative values ofPtr have no meaning in the present contex!.
For design purposes, reasonable estimates of the gap nucle
times can be obtained from the series solution by simply ignor
the turnarounds, and subsequently extending the linear portio
the curves toward thePtr50 axis. The resulting values overest
mate the gap nucleation time~with the estimates becoming pro
gressively worse with increasingl! compared with their counter
parts from the numerical solution.

Figure 3 shows the numerical solution forPtr versust for pure
aluminum and selected wavelengths. The process parameter
Po510,000 Pa,a51 mm, andRo51023 m2 sec°C/J. The smaller
wavelengths lead to faster gap nucleation, while larger wa
lengths, such asl550.0 mm, do not lead to gap nucleation ov
the time frame of interest. If metallurgical requirements are su
that the shell must retain contact with the mold during the first t

Fig. 2 Evolution of Ptr at selected l for pure aluminum as
predicted by short time solution and numerical solution. Po
Ä8000 Pa, aÄ1.0 mm, and RoÄ10À3 m2 sec°C ÕJ. Note that the
short time solution predicts a fictitious turn around in Ptr for all
cases.

Table 1 Material properties for pure aluminum and iron

Property

Material

Al

Fe

Value Fe Reference

Tf (°C) 660 1536 @14#

K S W

m•°CD 229.4 36.2 @15#

r S kg

m3D 2650 7265 @16#

L S 105
J

kgD 3.9 2.7 @17#

E (1010 Pa) 6.0 14.4 @18#
a (1026 °C21) 37.8 23.4 @19#
n 0.33 0.33 @18#
MARCH 2000, Vol. 67 Õ 161
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Fig. 3 Evolution of Ptr at selected l for pure aluminum solidi-
fication with PoÄ10,000 Pa, aÄ1.0 mm, RoÄ10À3 m2 sec°C ÕJ
„numerical solution …

Fig. 4 Evolution of Ptr at selected l for pure iron solidification
with PoÄ10,000 Pa, aÄ1.0 mm, RoÄ10À3 m2 sec°C ÕJ „numerical
solution …

Fig. 5 Mean shell thickness variation with l for pure alumi-
num solidification at selected Po for aÄ1.0 mm, RoÄ10À3

m2 sec°C ÕJ „numerical solution …
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seconds or so, then the present theory suggests that a mold su
having a wavelength ofl512.5 mm~or greater! might be a rea-
sonable choice.

Figure 4 shows the numerical solution forPtr versust for pure
iron with the same process conditions used for Fig. 3. It is int
esting to note that while the same observations made for Fig. 3
applicable to Fig. 4, there is one important difference betwe
pure aluminum and pure iron that is highlighted by Fig. 4: T
time to gap nucleation for pure iron is nearly an order-o
magnitude smaller than that for pure aluminum. This difference
largely controlled by the quantityEaTf /K for fixed a/PoRo ~see
Eq. ~93! and Table 1!.

Figures 5 and 6 showso evaluated at the gap nucleation time
a function ofl, at selectedPo . Note thatso(0)50 for all cases.
A linear variation withl is predicted for any given value ofPo .
Shell growth is improved at higher pressures and longer wa
lengths. Note that under the same process conditions,so for the
pure aluminum shell is of the order of millimeters, whereasso for
the pure iron shell is of the order of hundreds of microns.

7 Conclusions
A model of pure metal solidification on a sinusoidal mold su

face was developed for the purpose of examining the gap nu
ation process at the mold/shell interface. Gap nucleation was
sumed to occur when the contact pressure locally fell to zero.
contact pressure was found to consist of a superposition of
mean pressure from the molten metal and a time and posit
dependent perturbation which led to changes in the contact p
sure due to the evolving distortion. The evolving distortion of t
metal shell was initiated by the small lateral component of h
flux due to the geometry of the mold surface.

A series expansion for the contact pressure at the mold sur
troughs, which was limited to early solidification times, was d
rived and compared with a numerical solution which was app
priate for all times. The numerical solution predicted that the c
tact pressure always falls to zero at the troughs. However,
series solution was only valid over a limited time range prior
gap nucleation since it suffered a turnaround toward increas
values of the contact pressure. It was concluded that the se
solution could still provide an estimate of gap nucleation time
preliminary design purposes through a linear extrapolation to
time axis. An additional insight provided by the series soluti
was that coupling between the thermal and mechanical field
the metal-shell interface becomes important at longer solidifi
tion times.

Fig. 6 Mean shell thickness variation with l for pure iron so-
lidification at selected Po for aÄ1.0 mm, RoÄ10À3 m2 sec°C ÕJ
„numerical solution …
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It was found that increasing the mold surface wavelen
~while fixing the amplitude! led to longer gap nucleation times
Also, the mean shell thickness increased with increasing wa
length under the same conditions. Gap nucleation was faste
the iron shell than it was for the aluminum shell under identi
process conditions.

Although in the sinusoidal case the pressure perturbation
becomes zero at a trough, there is no reason why this sh
necessarily be the case for a non-sinusoidal profile. In this m
general case, a different criterion might be relevant~for example
the point of greatest curvature!, which happens to coincide with
profile trough in the special sinusoidal case examined in this
per.

The linearization of the resistance relation introduces a fa
severe restriction on the extent to which we can examine the
pling process at shorter times. With a slightly more numeri
treatment in the present theoretical framework, however, it sho
be possible to implement a more realistic expression for the c
tact resistance variation with pressure during directional solid
Journal of Applied Mechanics
th
.
ve-
for
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rst
uld
ore

pa-

rly
ou-
al
uld
on-
ifi-

cation. This could be achieved from data via experiments suc
those reported by Nishida and Matsubara@20#.

The present theory assumes that the metal shell is hypoela
Although the constitutive law can be modified to account
strain relaxation due to viscous creep, it is anticipated that, du
the early stages of solidification, creep effects will introdu
higher order corrections to the contact pressure similar to that
to the contact resistance sensitivity in the present model. We
pect that same to be true for the case of finite thermal diffusiv
~and hence nonzero Stefan number!.
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Appendix A

Expression for b̄2„h….

b̄2~h!5
1

2 cosh~h! F S 122n

12n
D Fh sech~h!

122n
1sinh~h!G1hw̄@ ḡ9~h!2ḡ~h!#22ḡ~h!

2
1

~h1R̄o!
$hw̄s̄1~h!12R̄o sinh~h!1@ s̄1~h!sinh~h!1 s̄18~h!cosh~h!#@sinh~h!2hsech~h!#%

G (A1)

Appendix B

Coefficients of Eqs.„88… and „89… for NÄ5.

Â150 ; Â252
1

2
; Â35

22R̄8

6R̄o

; Â452S 825R̄o
227R̄8

24R̄o
2 D

Â55
40212~32R̄8!R̄o

2247R̄8

120R̄o
3

; B̂2→Arbitrary ; B̂35
1

6~12n!

B̂45
2B̂2R̄o21

12R̄o

; B̂55
1813R̄o

225R̄82n~1825R̄8!

180~12n!R̄o
2

B̂65
30028R̄o

22155R̄8224B̂2R̄o
3

2880R̄o
3

(B1)

Appendix C

Expression for s1 , Q1 , and T1„0, t….

s15aF122S s̄o

L D 2H 12S 22R̄8

3
D s̄o1S 827R̄8220/L2

12
D s̄o

22S 40247R̄8248$32R̄8%/L2

60
D s̄o

3J 1¯G (C1)

Q15
4Tfa

KRo
2 S s̄o

L D 2F S 12
R̄8

2
D 2S 725R̄8

3
D s̄o1S 9628$82R̄8%/L2287R̄8

24
D s̄o

22S 3$2402259R̄8%24$256270R̄8%/L2

120
D s̄o

3

1S 8640210044R̄824$25122370R̄8245R̄82%/L2232$155116R̄8%/L4

1440
D s̄o

42¯G (C2)

T1~0,t !52
aTf

KRo
F11~124/L2!s̄o

22S 324$722R̄8%/L2

3
D s̄o

31S 62$96251R̄8%/L2164/L4

6
D s̄o

4

2S 3023$2402179R̄8%/L2116/L4

30
D s̄o

51S 9029$2402179R̄8%/L212$1256267R̄8%/L411240/L6

90
D s̄o

62¯G (C3)
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Appendix D

Derivation of Eq. „96…. Differentiation of the resistance rela
tion Eq. ~6! gives

T15Q1R~Po!1QoR8P1 . (D1)

Substitution of the following ratios

Q̃5
Q1

Qo
P̃5

P1

Po
T̃5

T1

To
(D2)

into Eq. ~D1! gives

ToT̃5QoQ̃Ro1QoR8P̃Po . (D3)

Dividing Eq. ~D3! by To , and using Eq.~18! gives

T̃5Q̃1
R8PoP̃

Ro
. (D4)

We impose the conditions thatT̃!1,Q̃!1, butP̃521 sinceP1 is
to be of the same order asPo . Based on these conditions, Equ
tion ~D4! gives

2
R8Po

Ro
!1. (D5)
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Interaction Between a
Semi-Infinite Crack and a Screw
Dislocation in a Piezoelectric
Material
The interaction between a semi-infinite crack and a screw dislocation under antip
mechanical and in-plane electrical loading in a linear piezoelectric material is studie
the framework of linear elasticity theory. A straight dislocation with the Burgers ve
normal to the isotropic basal plane near a semi-infinite crack tip is considered. In a
tion to having a discontinuous electric potential across the slip plane, the dislocatio
subjected to a line-force and a line-charge at the core. The explicit solution for the m
is derived by means of complex variable and conformal mapping methods. The cla
1/Ar singularity is observed for the stress, electric displacement, and electric field a
crack tip. The force on a screw dislocation due to the existence of a semi-infinite c
subjected to external electromechanical loads is calculated. Also, the effect of the
dislocation with the line-force and line-charge at the core on the crack-tip field
observed through the field intensity factors and the crack extension force.
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1 Introduction

Due to their intrinsic electromechanical coupling phenomen
piezoelectric materials are used widely in the device applicati
such as high-power sonar transducers, electromechanical a
tors, and piezoelectric power supplies. It is well known that
fects, such as dislocations, cracks, cavities, and inclusions,
adversely influence the performance of such piezoelectric dev
These defects carrying charges in piezoelectric semiconduc
for example, can be sources of internal electro-elastic fields~@1#!.
Therefore, to predict the performance and integrity of these
vices, it is important that the behavior of various defects in el
trical and mechanical fields is analyzed. Deeg@2# examined the
effect of a dislocation, a crack, and an inclusion on the coup
response of piezoelectric solids theoretically. Pak@3# considered
the problem of a finite crack in an unbounded piezoelectric m
dium subjected to far-field antiplane electromechanical loads
the paper, it was shown that the traditional square root st
singularities exist near the crack tip. Sosa and Pak@4# did a three-
dimensional eigenfunction analysis of a semi-infinite crack in
piezoelectric material, while Pak@5# considered a screw disloca
tion in a material and derived the generalized Peach-Koe
forces acting on a screw dislocation subjected to external lo
Kuo and Barnett@6# and Suo et al.@7# studied the singularities o
interfacial cracks in bonded anisotropic piezoelectric media.
cently, efforts have been made to develop inclusion models
piezoelectric material~@8–12#!. The results on the interaction be
tween defects in the piezoelectric media are very rare. Meguid
Deng @13# discussed the electro-elastic interaction between
screw dislocation and an elliptical inhomogeneity in piezoelec

1Presently at Daewoo Motor Technical Center, 199 Chongchon-Dong, Pupy
Gu, Inchon 403-714, Korea.
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media. But they obtained only the distributions of the fields, n
the direct interaction of forces acting on each other.

In the purely elastic case, however, many researchers con
ered such defect interaction problems. For example, Majum
and Burns@14# considered the screw dislocations positioned n
the crack tip, while Ohr et al.@15# studied the condition for the
emission of dislocations from a semi-infinite wedge crack to
termine the ductile versus brittle fracture behavior in metals.

Considered in this paper is a simple continuum model o
single screw dislocation near a semi-infinite crack in a hexago
piezoelectric crystal subjected to antiplane mechanical and
plane electrical loading. The analysis is carried out in the fram
work of linear elasticity theory without consideration of nonline
response due to domain wall motion in ferroelectric materi
~@16,17#!. The dislocation line is assumed to be straight and
located perpendicular to the isotropic basal plane in a hexag
crystal exhibiting 6-mm symmetry. An infinitely long screw dis
location suffering a finite discontinuity in the displacement and
the electric potential across the slip plane is modeled. The
placement jump across the slip plane corresponds to the Bur
vectorb, which is perpendicular to the basal plane. The jump
the electric potential ~‘‘electric-potential-dislocation’’! corre-
sponds to the electric dipole layer along the slip plane. The di
cation core is subjected to a line-force and a line-charge.

In this work, conformal mapping and complex variable a
proach are used to solve the governing equations. Using the
eralized Peach-Koehler force, we will calculate the forces act
on a piezoelectric screw dislocation near the semi-infinite cra
and discuss the effect of a screw dislocation and a line-fo
charge on the field intensity factors and the crack extension fo
acting on the crack tip. The relation between the crack extens
force and the field intensity factors will be presented.

2 A Screw Dislocation Near a Semi-Infinite Crack
Let us examine a piezoelectric material containing a char

screw dislocation near a semi-infinite crack, wherein the cr
front is parallel to thez-axis as shown in Fig. 1. Consider a scre
dislocation located at a point (x0 ,y0), which is assumed to be
straight and infinitely long in thez-direction, suffering a finite
discontinuity in the displacement and electric potential across

ng-
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li-
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slip plane. The dislocation has a line-force and a line-charge a
its core. In this configuration, the piezoelectric boundary va
problem is simplified considerably because only the out-of-pl
displacement and the in-plane electric fields exist such that

ux5uy50, uz5uz~x,y!,
(1)

Ex5Ex~x,y!, Ey5Ey~x,y!, Ez50.

In this case the constitutive relations become

szx5c44

]uz

]x
1e15

]f

]x
, Dx5e15

]uz

]x
2e11

]f

]x
,

(2)

szy5c44

]uz

]y
1e15

]f

]y
, Dy5e15

]uz

]y
2e11

]f

]y

where skz , Dk , (k5x,y), c44, e11, e15 and f are the stress
tensor, the electric displacement vector, the elastic modulus m
sured in a constant electric field, the dielectric permittivity me
sured at a constant strain, the piezoelectric constant and the
tric potential, respectively.

The governing equations are simplified to

c44¹
2uz1e15¹

2f50
(3)

e15¹
2uz2e11¹

2f50.

These simplified governing equations can be made in the for

¹2uz50, ¹2f50. (4)

We will consider four possible cases of far-field boundary co
ditions as follows:

Case 1: szy5t` and Dy5D` ,

Case 2: gzy5g` and Ey5E` ,
(5)

Case 3: szy5t` and Ey5E` ,

Case 4: gzy5g` and Dy5D` .

wheret` , g` , D` , andE` are an uniform shear traction, she
strain, electric displacement, and electric field, respectively.
boundary condition on the upper and the lower surfaces of
crack is free of the surface traction and the surface charge fo
cases of far-field loading conditions~@3#!

szy50, Dy50 at x,0, y50. (6)

The solution for the governing Eq.~4! can be found by letting
uz andf be the real parts of some analytic functions such tha

Fig. 1 A screw dislocation with a line-force and a line-charge
near a semi-infinite crack in a piezoelectric material
166 Õ Vol. 67, MARCH 2000
ong
ue
ne

ea-
a-
elec-

s

n-

r
he
the
all

t

uz5ReU~Z!, f5ReF~Z!, (7)

where

U~Z!5A1 log~AZ2AZ0!~AZ1AZ̄0!

1A2i log
AZ2AZ0

AZ1AZ̄0

1CiAZ,

(8)

F~Z!5B1 log~AZ2AZ0!~AZ1AZ̄0!

1B2i log
AZ2AZ0

AZ1AZ̄0

1DiAZ.

The first term corresponds to the line-force/charge and its
age, the second to the dislocation and its image, and the thir
the uniform external loads.A1 , A2 , B1 , B2 , C, andD are all real
constants which are determined by the displacement and ele
potential jump conditions across the slip plane, the force a
charge balance conditions at the core, and the far-field load
conditions at infinity.Z(5x1 iy) is a complex variable.

The strains, the electric fields, the stresses, and the electric
placements can then be expressed in the forms

gzx5
]uz

]x
5

]uz

]Z
5ReU8~Z!,

gzy5
]uz

]y
5 i S ]uz

]Z D52Im U8~Z!,
(9)

Ex52
]f

]x
52

]f

]Z
52ReF8~Z!,

Ey52
]f

]y
52 i S ]f

]Z D5Im F8~Z!.

szx5Re@c44U8~Z!1e15F8~Z!#,

szy52Im@c44U8~Z!1e15F8~Z!#,
(10)

Dx5Re@e15U8~Z!2e11F8~Z!#,

Dy52Im@e15U8~Z!2e11F8~Z!#.

Consider a contourC with the outer normal unit vector,ni ,
surrounding the dislocation core. Thez-component of the Burgers
vector is equal to the jump in the displacement across the
plane (x.x0 , y5y0):

b5Duz5uz~x,y0
2!2uz~x,y0

1!5Re@DU~Z!#, (11)

where D denotes the jump across the slip plane. Similarly,
jump in the electric potential,Df, across the slip plane is

Df5f~x,y0
2!2f~x,y0

1!5Re@DF~Z!#. (12)

From the Eqs.~10!–~12!, we obtain

A252
b

2p
, B252

Df

2p
. (13)

The z-component of the traction integrated along the contourC
must balance the line-force,p, applied at the core in the
z-direction:

2p5 R
C
sz jnjdl. (14)

From an infinitely narrow rectangle contourC containing the dis-
location, we obtain
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p522p@c44A11e15B1#. (15)

Similarly for the charge balance we obtain

q5 R
C
Dinidl52p@e15A12e11B1#. (16)

From these balance conditions we obtain
Journal of Applied Mechanics
A15
2e11p1e15q

2p~c44e111e15
2 !

, B152
e15p1c44q

2p~c44e111e15
2 !

. (17)

Extending the traditional concept of stress intensity factor,Ks,
to other field variables, we introduce the electric field intens
factor,KE, the strain intensity factor,Ks and the electric displace
ment intensity factor,KD. Using these field intensity factors, w
can represent the far-field loads as follows:
Ey5E`52ImF2
iK E

A2pZ
G , gzy5g`52ImF2

iK s

A2pZ
G ,

as Z→`.

szy5t`52ImF2
iK s

A2pZ
G , Dy5D`52ImF2

iK D

A2pZ
G ,

(18)
e
ads.

rated
At infinity we obtain

U8~Z!5
Ci

2AZ
, F8~Z!5

Di

2AZ
, as Z→`. (19)

Substituting Eqs.~18! and ~19! into Eqs.~9! and ~10!, we obtain

Case 1: C52A2

p

e11K
s1e15K

D

c44e111e15
2 ,

(20)

D52A2

p

e15K
s2c44K

D

c44e111e15
2

Case 2: C52A2

p
Ks, D5A2

p
KE (21)

Case 3: C52A2

p

Ks1e15K
E

c44
, D5A2

p
KE (22)

Case 4: C52A2

p
Ks, D52A2

p

e15K
s2KD

e11
.

(23)

From these four results, we can define the relationsKs5c44K
s

2e15K
E andKD5e15K

s1e11K
E.

Substituting Eqs.~13!, ~17!, and ~20! into Eq. ~10! and using
Eqs.~9! and ~10!, we can obtain the following field variables fo
Case 1:

szx5ReF2
p

2p
L~Z!2

c44b1e15Df

2p
iM ~Z!2KsiN~Z!G ,

(24)

szy52ImF2
p

2p
L~Z!2

c44b1e15Df

2p
iM ~Z!2KsiN~Z!G ,

gzx5ReF 2e11p1e15q

2p~c44e111e15
2 !

L~Z!2
b

2p
iM ~Z!

2
e11K

s1e15K
D

c44e111e15
2 iN~Z!G ,

(25)

gzy52ImF 2e11p1e15q

2p~c44e111e15
2 !

L~Z!2
b

2p
iM ~Z!

2
e11K

s1e15K
D

c44e111e15
2 iN~Z!G ,
r

Dx5ReF q

2p
L~Z!2

e15b2e11Df

2p
iM ~Z!2KDiN~Z!G ,

(26)

Dy52ImF q

2p
L~Z!2

e15b2e11Df

2p
iM ~Z!2KDiN~Z!G ,

Ex52ReF2
e15p1c44q

2p~c44e111e15
2 !

L~Z!2
Df

2p
iM ~Z!

2
e15K

s2c44K
D

c44e111e15
2 iN~Z!G ,

(27)

Ey5ImF2
e15p1c44q

2p~c44e111e15
2 !

L~Z!2
Df

2p
iM ~Z!

2
e15K

s2c44K
D

c44e111e15
2 iN~Z!G ,

where

L~Z!5S 1

AZ̄0

2
1

AZ0
D 1

2AZ
1

1

2AZ0

1

AZ2AZ0

2
1

2AZ̄0

1

AZ1AZ̄0

,

M ~Z!52S 1

AZ0

1
1

AZ̄0
D 1

2AZ
1

1

2AZ0

1

AZ2AZ0

1
1

2AZ̄0

1

AZ1AZ̄0

. (28)

N~Z!5
1

A2pZ
.

In Eqs. ~24!–~27!, the first term is related to the line-loads, th
second to the screw dislocation and the third to the external lo
The field variables of the Eqs.~24!–~27! reveal the classical 1/AZ
~or 1/Ar in the real coordinates! type of singularity near the crack
tip.

3 Force on a Dislocation
The forces acting on a dislocationS with a line-force and a

line-charge due to the stresses and the electrical fields gene
by a crackT are obtained from the following relations~@5#!:
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Fy52bszx

T 2DfDx
T1pgzy

T 1qEy
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The expressions forgzi
T , szi

T , Ei
T , andDi

T can be obtained by
subtracting the fields generated by the dislocation from Eqs.~24!–
~27! in the forms

gzx
T 5

1
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In the purely elastic case, Eqs.~30!–~33! are reduced to the
relations of Ohr et al.@15#. From Eqs.~29!–~33!, we obtain
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Fx5
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(35)

where a negative term contributes to the attractive force an
positive to the repulsive. In Eqs.~34! and~35! the first term is the
interaction between the line-loads and the free surface of
crack; the second, the interaction between a screw dislocation
the crack surface; the third, the effect of the crack surface on
force generated by the line-loads acting on the screw dislocat
and the fourth and the fifth are, respectively, the effects of
external loads on the interactions between the crack tip and
line-loads, and between the crack tip and the screw dislocation
case of no electrical and mechanical loads, Eqs.~34! and~35! can
be reduced to the solutions of Majumdar and Burns@14#. Also, in
case of no crack, the Eqs.~34! and ~35! can be reduced to the
solutions of Pak@5#.

Let us consider the case of a screw dislocation with the li
loads near the free surface parallel to they-axis, wherein the
forces can be calculated without using the conformal mapp
technique. The results are

Fx52
c44b

212e15bDf2e11Df2

4pd
1

c44q
212e15pq2e11p

2

4pd

1bt`1DfD` , (36)

Fy5
p~e11t`1e15D`!1q~c44D`2e15t`!

c44e111e15
2 . (37)

The interaction between the line-loads and the free surface sh
up in Fx , but vanishes inFy . The third terms in Eqs.~34! and
~35! do not appear in this case. Equations~36! and ~37! are re-
duced to the solutions of Pak@5# in the absence of external load

4 Stress and Electric Displacement Intensity Factors
The resultant stress and electric displacement intensity fac

can be calculated by the following relations, respectively,

KR
s5 lim

Z→0
@A2pZszy#, KR

D5 lim
Z→0

@A2pZDy#. (38)

Substituting Eqs.~24! and ~26! into Eq. ~38!, we obtain

KR
s5KL

s1Kd
s1Ks, (39)

KR
D5KL

D1Kd
D1KD, (40)
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Table 1 Crack-tip shielding effect induced by a line-force, a line-charge, and
a screw dislocation when b ,Df,p ,q are positive „¿… „*:shielding, Š:anti-
shielding …
p
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e
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rnal
ase,
ics:

sion
ial.
n
r a
where

KL
s5

p

A2pr 0

sin
u0

2
, KL

D52
q

A2pr 0

sin
u0

2
,

Kd
s52

1

A2pr 0

~c44b1e15Df!cos
u0

2
, (41)

Kd
D52

1

A2pr 0

~e15b2e11Df!cos
u0

2
.

In the purely elastic case,Kd
s in Eq. ~41! becomes the solutions o

Majumdar and Burns@14#.
Examining Eqs.~39! and ~40! one can observe the crack-ti

shielding effect due to the line-force, the line-charge and
screw dislocation. In case of the Burgers vector,b, the electric
potential jump,Df, the line-force and the line-charge to be a
positive,KR

s and KR
D are not affected by the line-charge and t

line-force, respectively, as shown in Table 1. The line-force
creases the crack- tip antishielding effect in the upper-half pl
(0,u0,p), since it adds to the far-field mechanical load. But
decreasesKR

s in the lower-half plane (2p,u0,0). The screw
dislocation ~b and Df! decreasesKR

s in any position, which is
same as the result of Majumdar and Burns@14# in the purely
elastic case. On the contrary, the line-charge,q, placed in the
upper half-plane (0,u0,p) decreasesKR

D , since the line-charge
induces an adverse electric field to the applied electrical load
the crack tip. But, in the lower-half plane it increasesKR

D . Re-
gardless of the location of the dislocation,b decreasesKR

D but Df
increases it.

5 Crack Extension Force
The crack extension force can be obtained by considering

work done in closing the crack tip over an infinitesimal distanced:

DW52E
0

d 1

2
szyDuz,ddx12E

0

d 1

2
DyDfddx, (42)

whereDuz,d and Dfd represent the change in the displacem
and the electric potential due to the virtual extension of the cra
respectively,

Duz,d5uz~x2d!2uz~x!, Dfd5f~x2d!2f~x!. (43)

The crack extension force,G, can then be calculated as follows

G5 lim
d→0

DW

d
. (44)

To simplify the calculation, we first consider the screw dislocat
positioned at a distance,d, along thex-axis from the crack tip. The
changes in the displacement and the electric potential are
hanics
f

the

ll
e

in-
ne
it

ear

the

nt
ck,

:

on

Duz,d5A1 logS 11
d

d2xD12A2 tan21Ad2x

d
1C8A2

p
Ad2x,

(45)

Dfd5B1 logS 11
d

d2xD12B2 tan21Ad2x

d
1D8A2

p
Ad2x.

The stress and the electric displacement are

szy5
c44b1e15Df

2p

Ad

Ax~x2d!
1

Ks

A2px
,

(46)

Dy5
e15b2e11Df

2p

Ad

Ax~x2d!
1

KD

A2px
.

From Eqs.~42!–~46! along with Eq.~34!, we obtain the crack
extension force in the form

G52Fx1
e11K

s2
12e15K

DKs2c44K
D2

2~c44e111e15
2 !

. (47)

The second term is the crack extension force due to the exte
loads in the absence of the dislocation. For the purely elastic c
Eq. ~47! becomes the solution of linear elastic fracture mechan

G5
Ks2

2m
. (48)

Letting u050 and r 05d in Eqs. ~39! and ~40!, G can be rear-
ranged from Eq.~47! as follows:

G5
e11KR

s2
12e15KR

DKR
s2c44KR

D2

2~c44e111e15
2 !

. (49)

This result is in the same form as the second term in Eq.~47!.
Therefore, this is the general relation between the crack exten
force and the field intensity factors in linear piezoelectric mater
From Eq. ~47! or ~49!, we can now obtain the crack extensio
force in the case of a screw dislocation at any position nea
crack tip in the form

G52
c44q
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sin2
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e11K
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2~c44e111e15
2 !

.

(50)

A lead zirconate titante~PZT-5H! ferroelectric piezoceramic is
considered. The material properties are given by~@3#!:
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(51)

e115151310210
C

Vm
,

Gcr55.0
N

m
,

where N is the force in Newtons, C is the charge in coulombs
is the electric potential in volts, m is the length in meters, andGcr
is the critical crack extension force.

Assuming thatr 051 mm, Ks5106 NAm/m2 and KD51.1349
31023 CAm/m2 so that the value of the sixth term in Eq.~50! is
the same as the one ofGcr and the line-loads, and the Burge
vector, or the electric potential jump is a positive value, the ra
of G to Gcr with respect to the angleu0 is plotted in Fig. 2. It does
not represent the coupled effect ofp, q, b, and Df because we
give only one parameter a positive value and set others to zer
is noted that the fourth, fifth, and sixth terms in Eq.~50! have the
dominant effect on the resultant crack extension force and, in
result,G/Gcr varies linearly withp, q, b, andDf. The fifth term
shows that a positive screw dislocation always decreases the c
extension force when the positive external load is applied.
effect is very small because there is only one screw dislocatio
this analysis. However, since a realistic zone of a crack tip c
sists of a number of dislocations, its effect is expected to be c
siderably large.

By ignoring the first, second, and third terms and differentiat
G with respect to the angle of the position, we obtain the locat
of the dislocation,u0

min , at which the crack extension force be
comes minimum in the form

u0
min52 ArctanF ~bKs1DfKD!~c44e111e15

2 !

~pe112qe15!K
s1~pe151qc44!K

DG2p.

(52)

Fig. 2 The effect of the line-loads, the Burgers vector, and the
electric potential jump on the resultant crack extension force
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With no line-force-charge (p50, q50), the position for the mini-
mum isu0

min50. As the values of the Burgers vector and elect
potential jump increase,u0

min approaches zero, while it approach
2p with increase of the line-loads.

6 Conclusions
A theoretical analysis was performed for a screw dislocat

with a line-force and a line-charge near a semi-infinite crack i
hexagonal piezoelectric crystal subjected to far-field antiplane
chanical and in-plane electrical loads. The solution was obtai
by complex variable and conformal mapping technique. The c
sical 1/Ar singularity was observed for stress, electric displa
ment, and electric field near the crack tip. The forces acting on
dislocation were obtained, which were in agreement with the p
vious works. The effects of the screw dislocation and the lin
loads on the stress and the electric displacement intensity fac
were calculated. The crack extension force was also calcula
which consists of the force obeying the law of action-reaction a
the force acting on the crack directly by the external loads. T
general relation between the crack extension force and the
intensity factors was presented. In the limiting case of vanish
electrical quantities, all the results obtained in this paper was
duced to those for the purely elastic case.
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Stability of Rectangular Plates
With Free Side-Edges in
Two-Dimensional Inviscid
Channel Flow
The linear stability of rectangular plates with free side-edges in inviscid channel flo
studied theoretically. The Galerkin method and Fourier transform technique are
ployed to solve the plate and potential flow equations. A new approach is introduc
treat the mixed fluid-plate interaction boundary condition, which leads to a sing
integral equation. Divergence, single-mode flutter, and coupled-mode flutter are foun
plates supported differently at the leading and trailing edges. In some cases, single-
flutter at vanishingly small flow velocity is predicted. The effects of mass ratio
channel-height-to-plate-length ratio on critical velocity are studied. An energy bala
analysis shows how different types of instability arise for plates with different supp
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1 Introduction
Stability of plates in axial flow is a problem of practical impo

tance in aerospace and nuclear engineering and has been e
ined by many investigators. For parallel-plate assemblies use
core elements in some nuclear research and power reacto
theory was first presented by Miller@1# for predicting the critical
flow velocity for divergence, later improved by Johansson@2# and
many others~@3#!. Other investigators have studied the flutter o
panel in subsonic or incompressible flow; e.g., Dugundji et al.@4#,
Dowell @5#, Weaver and Unny@6,7#, and Epstein et al.@8#. More
recently, a plate in axial flow has even been chosen as a mod
study human snoring~@9#!!

However, compared with the stability of pipes conveying flu
a similar problem now becoming a paradigm in dynamics~@10#!,
our understanding of the stability of plates in axial flow is far fro
complete, and some controversial problems such as postd
gence flutter still remain to be resolved~@11#!. No theory is avail-
able to explain why and under what conditions different types
instability exist in different cases.

The purpose of this paper is to investigate some fundame
characteristics of the instability of plates in axial flow. To conce
trate on the fundamental aspects of the problem, we consid
finite length rectangular plate with free side-edges in a chan
~Fig. 1!, and treat the plate as one-dimensional and the cha
flow as two-dimensional~a three-dimensional model has been p
sented by the authors for a similar problem; see@3#!. In the analy-
sis, the Galerkin method is employed to solve the plate equa
while the Fourier transform technique is used to obtain the per
bation pressure from the potential flow equations. The mix
fluid-plate interaction boundary condition along the plate and
up and downstream extensions leads to a singular integral e
tion, which is solved numerically. Investigated in this paper are~i!
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types of instability for plates with different support conditions
the leading and trailing edges and~ii ! effects of fluid density and
channel height on the critical flow velocity.

2 Governing Equations and Boundary Conditions
The one-dimensional equation of motion of an elastic plate

given by

D
]4w

]x4 1rphp

]2w

]t2 1p50, (1)

where D5Ehp
3/@12(12n2)# is the plate stiffness,E being

Young’s modulus,n Poisson’s ratio,hp the plate thickness,rp the
plate density,w[w(x,t) its lateral deflection, andp[p(x,t) the
net load per unit area on the plate, equal to the difference betw
the perturbation pressures on the upper and lower surfaces o
plate caused by its deflection. Because of antisymmetry with
spect to the plate, these perturbation pressures must be equ
magnitude but opposite in sign.

Assuming an inviscid, incompressible two-dimensional flo
the perturbation pressures can be given by the unsteady Bern
equation,

p522rF]w

]t
1U

]w

]x G
z50

, (2)

wherer is the fluid density, andU the unperturbed flow velocity
in the channel. The perturbation velocity potentialw must satisfy
the Laplace equation

]2w

]x2 1
]2w

]z2 50. (3)

an,
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9;
sion
s T.
on,
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Fig. 1 Schematic of a plate in two-dimensional channel flow
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To put these equations in dimensionless form and to analyze
problem in the frequency domain, we let

x5 l x̄, z5hz̄, c5
h

l
, m5

r l

rphp
,

v5
1

l 2A D

rphp
v̄, U5

1

l
A D

rphp
Ū,

(4)

w~x,z,t !5A D

rphp
w̄~ x̄,z̄!eivt, p~x,t !5

D

l 3 p̄~ x̄!eivt,

w~x,t !5 lw̄~ x̄!eivt.

Inserting these into~1!–~3!, and dropping the overbars for sim
plicity ~only valid in this section and in Section 3!, we obtain the
dimensionless governing equations of the problem in the
quency domain:

d4w

dx4 2v2w1p50, (5)

p522mF ivw1U
]w

]x G
z50

, (6)

]2w

]x2 1
1

c2

]2w

]z2 50. (7)

The boundary conditions for solvingw are given as

wux→6`50, (8)

]w

]zU
z51

50, (9)

1

c

]w

]zU
z50

5 ivw1U
dw

dx
, 0<x<1, (10a)

p522mF ivw1U
]w

]x G
z50

50, x,0, x.1, (10b)

in which the antisymmetry with respect to the plate~and its ex-
tensions to infinity! is taken into account.

3 Solution
Galerkin’s method is used to solve the plate Eq.~5!. The di-

mensionless plate deflection is expressed as

w~x!5 (
m51

M

Amwm~x!, (11)

where wm(x) are the beam eigenfunctions satisfying the pl
boundary conditions at the leading and trailing edges.

Because the perturbation pressurep is dependent on the plat
deflection w through ~6!–~10!, to solve Eq.~5!, we must first
determine their relationship.

3.1 Solution for Perturbation Pressure. For a given plate
deflectionw(x), we must now find the corresponding perturbati
pressurep(x).

By applying the Fourier transform tow(x,z) with respect to the
variablex, Eq. ~7! and boundary condition~9! become

1

c2

]2w̃~a,z!

]z2 2a2w̃~a,z!50, (12)

]w̃~a,z!

]z
U

z51

50, (13)

where
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w̃~a,z!5
1

2p E
2`

`

w~x,z!e2 laxdx. (14)

The solution of~12! satisfying~13! is given by

w̃~a,z!5B~a!@e2cuauz1ecuau~z22!#. (15)

Taking the inverse Fourier transform for~15!, we get

w~x,z!5E
2`

`

B~a!@e2cuauz1ecuau~z22!#eiaxda. (16)

With this expression, condition~8! is satisfied automatically, and
only the mixed boundary condition~10! is yet to be satisfied.

Inserting~16! into ~6!, we obtain the expression of perturbatio
pressure,

p~x!5E
2`

`

B~a!~22m!i ~v1aU !~11e22cuau!eiaxda.

(17)

Substitution of~17! into ~10! yields a pair of dual integral equa
tions for the unknownB(a). In order to reduce the dual integra
equations to a single one, we usep8(x) as the basic unknown
From ~17!, it follows that

p8~x!5E
2`

`

B~a!~2m!a~v1aU !~11e22cuau!eiaxda.

(18)

Taking the inverse Fourier transform of~18!, incorporating
~10b!, we obtain

B~a!5
1

4pma~v1aU !~11e22cuau! E0

1

p8~j!e2 iajdj.

(19)

From ~16! and ~19!, we have

1

c

]w

]zU
z50

5E
2`

`

B~a!uau~211e22cuau!eiaxda

5E
0

1

H~x,j!p8~j!dj, (20)

where

H~x,j!52
1

4pm E
2`

` uautanh~cuau!
a~v1aU !

eia~x2j!da. (21)

Substitution of~20! into ~10a! yields an integral equation fo
p8(x):

E
0

1

H~x,j!p8~j!dj5 ivw~x!1Uw8~x!, 0<x<1. (22)

Premultiplying Eq.~22! by iv1U(d/dx), we have

E
0

1

G~x,j!p8~j!dj52v2w~x!1 i2vUw8~x!1U2w9~x!,

~0<x<1!, (23)

in which
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G~x,j!5 ivH~x,j!1U
]H~x,j!

]x

52
i

4pm E
2`

` uautanh~cuau!
a

eia~x2j!da

5
1

2pm H 1

x2j
1E

0

`

@ tanh~ca!21#sina@~x2j!#daJ .

(24)

Equation~23! is a Cauchy-type singular integral equation, fro
which p8(x) can be obtained numerically by the Gaus
Chebyshev method~@12#!. Thenp(x) can be obtained by integrat
ing p8(x).

The perturbation pressurep(x) can be expressed as

p~x!52v2p~M !~x!1 i2vUp~G!~x!1U2p~K !~x!, (25)

in which p(M )(x), p(G)(x), and p(K)(x) are the components o
p(x) obtained by retaining on the right-hand side of Eq.~23!
terms associated withw(x), w8(x), andw9(x), respectively.

3.2 Solution for Plate Deflection. Applying Galerkin’s
method to Eq.~5! gives

E
0

1

(
m51

M

Am@wm99~x!2v2wm~x!1pm~x!#wr~x!dx50,

~r 51,2, . . . ,M !, (26)

in which pm(x) is the perturbation pressure corresponding
wm(x).

Inverting the integration and summation order and rearrang
we can rewrite~26! as

(
m51

M

@2v2~Mmr
~p!1Mmr

~ f !!1 i2vUGmr
~ f !1Kmr

~p!1U2Kmr
~ f !#Am50,

~r 51,2, . . . ,M !, (27)

in which

Mmr
~p!5E

0

1

wm~x!wr~x!dx, Kmr
~p!5E

0

1

wm99~x!wr~x!dx,

Mmr
~ f !5E

0

1

pm
~M !~x!wr~x!dx, Gmr

~ f !5E
0

1

pm
~G!~x!wr~x!dx,

(28)

Kmr
~ f !5E

0

1

pm
~K !~x!wr~x!dx.

The first two integrals in~28! can be evaluated analytically an
the last three numerically.

4 Numerical Results and Discussion
To obtain an overall understanding of the problem, we ha

studied plates with every possible combination of classical s
ports at the leading and trailing edges: clamped-clamped, pin
pinned, free-free, clamped-pinned, pinned-clamped, clamped-
free-clamped, pinned-free, and free-pinned. For clamp
clamped, pinned-pinned, clamped-free, and free-clamped plat
the limit of large channel height, some results have been obta
previously by Dowell@13# and Kornecki et al.@14#.

To test for the convergence of the Galerkin solution, the low
three eigenfrequencies at zero flow velocity and the critical ve
ity for first-mode divergence, of a clamped-pinned plate, w
calculated with a different number of terms in Eq.~11!. The re-
sults show that both the eigenfrequencies and the critical velo
converge rapidly. Even with only one term, the accuracy for
Journal of Applied Mechanics
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first-mode eigenfrequency and the critical velocity of first-mo
divergence is fairly good~to within 0.2 percent!. In spite of this,
we have taken ten terms in the calculations.

For symmetrically supported~clamped-clamped, pinned
pinned, and free-free! plates, we have obtained four complex co
jugate modes for the eigenvalue parameter,l5 iv; otherwise,
only two have been found. This conclusion can be proved ma
ematically from Eq.~27!. In the figures, only those modes with
non-negativevR have been plotted.

4.1 Clamped-Clamped, Pinned-Pinned, and Clamped-
Pinned Plates. Figure 2 is a typical diagram of the first an
second-mode dimensionless complex eigenfrequenciesv̄ versus
the dimensionless flow velocityŪ for a clamped-clamped plate
The solid and dotted lines represent the real and imaginary p
of the complex eigenfrequencies, respectively. It is clear that
plate first diverges in the first mode, it is then restabilized a
shortly after that, it undergoes coupled-mode flutter involving
first and second modes. For a pinned-pinned plate, results
similar to Fig. 2 have been obtained.

Figure 3 is for a clamped-pinned plate. It is different from F
2 in two respects:~i! the imaginary parts are nonzero prior
divergence and~ii ! after first-mode divergence, the first an
second modes interact in some way, but they do not comb
into one, so it is hard to say whether the flutter is single
coupled-mode.

Calculations have shown that clamped-clamped and pinn
pinned plates lose stability by first-mode divergence for any m
ratio m and channel-height-to-length ratioc. This is also true for
clamped-pinned plates with relatively largem and c; otherwise,
stability is lost by single-mode flutter at vanishingly small flo
velocity.

For divergence, the dimensionless critical velocityŪcr is in-

Fig. 2 Dimensionless complex eigenfrequencies versus flow
velocity for a clamped-clamped plate; cÄ1, mÄ1

Fig. 3 Dimensionless complex eigenfrequencies versus flow
velocity for a clamped-pinned plate; cÄ1, mÄ1
MARCH 2000, Vol. 67 Õ 173
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versely proportional toAm. ŪcrAm increases with increasingc,
and then tends asymptotically to a constant asc tends to infinity,
as seen in Fig. 4.

4.2 Free-Free Plate. Figure 5 shows the complex eigenfre
quencies for a free-free plate. If we do not consider the rigid-b
modes~the eigenvalue frequency corresponding to the rigid-bo
mode in translation is zero, and that in rotation is pure imagina
v I is positive and proportional to the flow velocity!, a free-free
plate loses stability by coupled-mode~classical! flutter. Which
modes are involved depends on the parameters. Figure 6 s
the lowest flutter critical velocity as a function ofm/(11m) and
c. ŪcrAm does not change monotonically with eitherm/(11m) or

Fig. 4 Critical flow velocity of first-mode divergence versus
channel-height-to-plate-length ratio for clamped-clamped,
clamped-pinned, and pinned-pinned plates

Fig. 5 Dimensionless complex eigenfrequencies versus flow
velocity for a free-free plate; cÄ1, mÄ1

Fig. 6 Critical flow velocity versus mass ratio for a free-free
plate with different channel-height-to-plate-length ratios
174 Õ Vol. 67, MARCH 2000
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c; however, it tends to a constant asc tends to infinity. The
‘‘jump’’ and ‘‘plummet’’ on the curve for c50.1 are due to a
change in the modes involved in flutter, which are the second
third ones for 0.69,m/(11m),0.84, and the first and second fo
the rest. Forc>0.2, the lowest flutter velocity is always that o
coupled-mode flutter involving the first and second modes.

4.3 Clamped-Free and Pinned-Free Plates.Figure 7
shows that a clamped-free plate loses stability by single-m
flutter. Although the real part of the first-mode eigenfrequen
becomes zero at some ‘‘critical’’ velocity, no divergence occu
because the two branches of the bifurcated imaginary part rem
positive. The imaginary part of the second-mode eigenfreque
changes sign as flow velocity increases. The lowest velocity
which it changes from positive to negative is the critical veloc
for single-mode flutter. For clamped-free plates, second-m
flutter is prevalent. For pinned-free plates, the diagrams are s
lar, but first-mode flutter occurs most often.

Figure 8 shows the lowest flutter critical velocity as a functi
of m/(11m) andc for clamped-free plates. TheS-shaped jumps
of the critical velocity are also due to the shift of modes involv
in the flutter. ŪcrAm increases with increasingm/(11m) and
tends to a constant asc tends to infinity. For pinned-free plates
similar results have been obtained.

It can be seen from Fig. 8 that if the fluid density is sm
enough, the critical velocity becomes zero! Calculations ha
shown that this kind of zero-critical-velocity instability is ver
weak because the imaginary part of the eigenfrequency of
fluttering mode is very small, so it disappears when damping
taken into account, as shown in Fig. 9, in whichg is the viscoelas-

Fig. 7 Dimensionless complex eigenfrequencies versus flow
velocity for a clamped-free plate; cÄ1, mÄ1

Fig. 8 Critical flow velocity versus mass ratio for a clamped-
free plate with different channel-height-to-plate-length ratios
Transactions of the ASME
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tic damping coefficient~in this case, a factor (11 ivg) should be
added in front ofKmr

(p) in Eq. ~27!. This phenomenon no doubt is
related to the limitations of inviscid flow theory. A similar resu
related to ‘‘aspirating’’ pipes~originally thought to lose stability
at vanishingly small flow velocity! was resolved~@15#!—but vis-
cous flow theory was used all along.

This same phenomenon also exists in the case of clamp
pinned plates. In Fig. 10 are given the boundaries separating
zero-critical-velocity flutter region and nonzero-critical-velocit
region in the plane of parameters lg(c) and m/(11m), for the
aforementioned three types of plates.

4.4 Pinned-Clamped, Free-Clamped, and Free-Pinned
Plates. For pinned-clamped, free-clamped, and free-pinn
plates, calculations have shown that the eigenfrequencies are
jugates of those of clamped-pinned, clamped-free, and pinned-
plates, respectively, with the same parameters and at the s
flow velocity. For a clamped-pinned, clamped-free, or pinned-fr
plate at any flow velocity, there exists at least one mode with
positive imaginary part of eigenfrequency, therefore, a pinne
clamped, free-clamped, or free-pinned plate will flutter at vanis
ing flow velocity. When external viscous damping or internal vi
coelastic damping is taken into account, calculations have sho

Fig. 9 Effect of viscoelastic damping on critical flow velocity
for a clamped-free plate; cÄ1

Fig. 10 Stability boundaries for „1… clamped-pinned, „2…
clamped-free, and „3… pinned-free plates
Journal of Applied Mechanics
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that the critical velocity is nonzero, proportional to the dampi
coefficient, inversely proportional tom, and that increases with
increasingc; see also other comments in Section 4.3.

5 Energy Balance Analysis of Instability
From Eq.~23!, we can expressp̄( x̄) ~using again overbars fo

dimensionless terms! as

p̄~ x̄!52v̄2m̄1~ x̄!w̄~ x̄!1 i2v̄Ūm̄2~ x̄!w̄8~ x̄!1Ū2m̄3~ x̄!w̄9~ x̄!,
(29)

in which m̄1( x̄), m̄2( x̄), and m̄3( x̄), depend on the shapes o
w̄( x̄), w̄8( x̄), and w̄9( x̄), respectively; from~24!, they are pro-
portional tom. The perturbation pressure can be expressed as

p~x,t !5m1~x!
]2w

]t2 12Um2~x!
]2w

]x]t
1U2m3~x!

]2w

]x2 ;

(30)

the three terms on the right-hand side are the inertial, Coriolis
centrifugal forces of the fluid on the plate, consecutively. W
Eq. ~30! as the expression forp(x,t), Eq. ~1! is similar to the
equation of motion of a pipe conveying fluid~@15#!, except that,
for the latter,m1(x)5m2(x)5m3(x)5m05real constant.

The rate of work done on the plate by the fluid-dynamic forc
the only possible source of energy input, is given by

dW

dt
52E

0

l

p~x,t !
]w~x,t !

]t
dx. (31)

For periodic oscillation, we expressw(x,t) in real form

w~x,t !5wc~x!cosvt1ws~x!sinvt; (32)

then, the perturbation pressure is

p~x,t !5@2v2mc1wc12vUms2ws81U2mc3wc9#cosvt

1@2v2ms1ws22vUmc2wc81U2ms3ws9#sinvt.

(33)

Hence the work done by the fluid forces over a cycle of perio
oscillation of periodT52p/v is

DW52E
0

TE
0

l

p~x,t !
]w~x,t !

]t
dxdt

52pF2v2E
0

l

~mc12ms1!wcwsdx

12vUE
0

l

~mc2wc8ws1ms2ws8wc!dx

1U2E
0

l

~mc3wc9ws2ms3ws9wc!dxG . (34)

If the constraints at the leading and trailing edges of the p
are the same, then one ofwc(x), ws(x) is symmetric and the othe
antisymmetric with respect tox5 l /2. From Eqs.~23!, ~24!, and
~30!, it can be concluded thatmc1(x), . . . ,ms3(x) are symmetric
with respect tox5 l /2. Hence,DW50. Thus, in these cases, n
single-mode flutter~Hopf bifurcation! can occur. Divergence
~pitchfork bifurcation! and coupled-mode flutter~either a Hamil-
tonian Hopf bifurcation or so-called Paı¨doussis flutter! may exist.

For other cases, generallyDW does not vanish. If for some
modes and at some velocities,DW,0, then the vibrations of these
modes will be damped out; ifDW.0, the plate will gain energy
from the fluid and single-mode flutters will occur.

If we exchange the constraints at the leading and trailing ed
of the plate, or, more easily, change the direction of the flow, th
wc(x) andws(x) will exchange their positions in Eq.~32!. Chang-
ing the sign ofU and exchanging the subscriptc with s in Eq.
MARCH 2000, Vol. 67 Õ 175
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~34!, we get the opposite sign inDW. So, if a plate with clamped-
pinned or clamped-free constraints at the leading and trai
edges is stable at very low velocities, then a pinned-clampe
free-clamped plate is unstable, even when the velocity tend
zero—at least according to inviscid theory!

These conclusions can also be reached via Eq.~27!. If we
change the sign of the flow velocityU, the sign of the imaginary
part of eigenfrequencyv will also change. Then, if the plate i
symmetrically supported, there are only two possibilities rega
ing the roots ofv in Eq. ~27!: ~i! the imaginary part is zero, which
represents neutral stability; or~ii ! a pair of conjugates exist, which
represents coupled-mode flutter~for vRÞ0! or divergence~for
vR50!.

For a pipe conveying fluid, if the ends of the pipe are positiv
supported~clamped or pinned!, one obtainsDW50 ~@15#!. There-
fore, for a clamped-pinned or pinned-clamped pipe, the vibrati
will be neither damped nor amplified, and single-mode flutter w
not occur. But for a clamped-pinned or pinned-clampedplate, and
also most probably for other similar structures such as cylind
and shells in external axial flow, both are possible~@16#!.

6. Conclusions
Different types of instability exist for plates with different sup

ports at the leading and trailing edges. Divergence and coup
mode flutter may occur for plates with any type of end suppo
while single-mode flutter only arises for nonsymmetrically su
ported plates. For clamped-clamped and pinned-pinned pla
first-mode divergence always occurs prior to other types of in
bility. For clamped-pinned plates, if the mass ratiom and the
channel-height-to-length ratioc are relatively large, the first-mod
divergence is also the predominant type of instability. Free-f
plates always lose stability by coupled-mode flutter, mostly
volving the first and second modes. Clamped-free and pinned-
plates lose stability by single-mode flutter, usually in their seco
mode for the former and the first mode for the latter. Ifm or c are
small, clamped-pinned, clamped-free, and pinned-free plates
experience very weak single-mode flutter at very small veloc
~the critical velocity is zero!. Pinned-clamped, free-clamped, an
free-pinned plates always lose stability by single-mode flutte
very low flow velocity, at least according to inviscid flow theor

For divergence, the dimensionless critical velocityŪcr is in-
versely proportional toAm and increases with increasingc. For
176 Õ Vol. 67, MARCH 2000
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single-mode flutter,ŪcrAm generally increases with increasingm
and c. For coupled-mode flutter,ŪcrAm does not change mono
tonically with eitherm or c. However, for all types of instability,
ŪcrAm tends asymptotically to a constant asc tends to infinity
(c51;5 is a fairly good approximation forc→`!.
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Aerodynamic Characteristics
of Pressure-Pad Air Bars
Air-flotation ovens are widely used for noncontact support and drying of coated p
and plastic films (generically called webs). The main components in typical air-flota
ovens are air bars which have slot nozzles or holes through which hot air jets are eje
Problems in air-flotation drying techniques include sideward motion of the web,
flutter, and contact between the web and air bars. The key to analyzing these proble
to determine the aerodynamic forces on the web. This paper discusses the aerody
forces generated by pressure-pad-type air bars, each of which has two slot no
Ground-effect theories, which were originally developed for the design of hovercraft
re-examined. The theories are compared with the measured values of the aerody
forces for typical air bars. It is shown that ground effect theories can be applied
pressure-pad-type air bars if we properly define the equivalent values of the ground
variables, which include thickness of the air jet, flotation height, ejection angle of the
jet, and the effective total pressure of the air jet.@S0021-8936~00!02801-4#
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Introduction
When web materials such as paper and plastic films are coa

they need to be dried without contact while they are continuou
moving. A variety of aerodynamic methods have been develo
for effective drying without damaging the coatings. One metho
to use air-flotation ovens having two~upper and lower! rows of air
bars, as sketched in Fig. 1. Each air bar has two slot noz
through which hot air is ejected toward the translating web.
bars of this type are called pressure-pad air bars because o
nearly uniform cushion pressure developed between the air
and the web. Hot air jets are used for both drying and noncon
support of the web. Typically, air bars are arranged in such a
that the web path in an oven is sinusoidal. The depth of the s
soidal curve~amplitude of vertical deformation of the web! de-
pends on the width and arrangement of the air bars, bending s
ness of the web, and operating conditions, such as supply
pressure and web tension. For example, thick aluminum foils
steel plates stay nearly flat in an oven. Bezella@1#, Fraser@2,3#,
and Krizek @4# provide good summaries of applications of a
flotation ovens.

Aerodynamic forces~pressure distributions! on a rigid station-
ary web were measured by Pinnamaraju@5# for various air bars.
He studied the effects of flotation height~distance between the a
bar surface and the rigid web! on the aerodynamic forces an
explained the out-of-plane stability characteristics of an air-floa
web. Nisankararao@6# repeated and extended Pinnamaraju’s
periments, and studied the effects of cross-directional tilt angl
a rigid web. Even though these tests were limited to a rigid a
stationary web, the results help us understand the aerodyn
characteristics of air bars and the behavior of air-floated web

In this paper, ground effect theories, which were originally d
veloped in connection with the development of hovercraft in
1950s and 1960s, are re-examined and applied to pressure
type air bars. The theories and the air bar test results are c
pared, and it is shown that ground effect theories can be us
tools for the analysis of the aerodynamic characteristics of
flotation bars.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
1, 1999; final revision, Sept. 10, 1999. Associate Technical Editor: R. C. Ben
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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Ground Effect Theories

Thin Jet Model. The basic ground effect model is shown
Fig. 2 and Fig. 3. For hovercraft, Fig. 2 represents the cross
tion of a circular or elliptical three-dimensional body. Our ma
interest, however, is in air bars, so that Fig. 2 should be und
stood as the cross section of a two-dimensional body. This mo
assumes that the thickness of jet flow is much smaller than
flotation height (b/h!1), the thickness of jet flow does no
change along the path of the jet, the flow profile across the je
uniform, the jet speed does not change along the path of the
the path of the jet flow has a constant curvature and is tangen
the ground, and the pressure in the region surrounded by the
streams of air jet is constant.

The validity of these assumptions and the derivation of
ground effect equations are discussed in Mair@7#, Jaumotte and
Kiedrzynski @8#, and Davies and Wood@9#. The key concepts
involved in the classical thin jet model are briefly explained b
low. The horizontal force balance for the air jet requires

rbVj
2~11cosu!5pch (1)

wherer is the air density,b is the width of the air jet,Vj is the
velocity of the air jet, andpc is the cushion pressure~page pres-
sure!. The effective total pressure~gage pressure! of the air jet
after the nozzle is

pj5
pc

2
1

rVj
2

2
(2)

where the static pressure is assumed to be the average o
ambient pressure and the cushion pressure because these two
sures are acting on the two sides of the air jet. From Eqs.~1! and
~2! we obtain the pressure ratio

n.
on.

essor
on,
li-

Fig. 1 Cross section of air bars and the web in oven
000 by ASME MARCH 2000, Vol. 67 Õ 177
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pc

pj
5

2~11cosu!

h/b111cosu
. (3)

Note that all pressures are gage pressures. The lift force per
length of air bar is

F5pcw12rbVj
2 sinu (4)

wherew indicates the distance between the two slot nozzles.
last term in the above equation is the change of momentum o
two air jets in the vertical direction. By eliminatingpc andrbVj

2

from Eq. ~4! using Eqs.~1! and ~3!, we obtain

F

pjb
5

pc

pj
S w

b
1

h

b

2 sinu

11cosu D . (5)

Recall that the flotation heighth is assumed much larger than th
jet thicknessb. We can show that, when (b/h)(11cosu).1, Eq.
~3! predicts a cushion pressure higher than the total pressure o
air jet. As an extreme case, when the flotation height approa
zero, Eq.~3! predictspc /pj52.

Thick Jet Models. Following Crewe and Eggington@10#, if
we assume that the static pressure varies across the air je
force balance for an infinitesimal element shown in Fig. 4 can
written as

dp

dr
5

rVj
2

r
(6)

where the radiusr is a variable, and the flow velocity is assume
to be uniform. The total pressure at radiusr can be written as

pj5p1
rVj

2

2
(7)

From Eqs.~6! and ~7!,

E
0

pc dp

pj2p
5E

r o

r o1b 2dr

r
. (8)

Fig. 2 Schematic of ground effect model

Fig. 3 Thin jet model

Fig. 4 Thick jet model
178 Õ Vol. 67, MARCH 2000
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By performing the integrations and using the geometrical relati
ship h5b1r o(11cosu), we obtain

pc

pj
512S h/b21

h/b1cosu D 2

. (9)

This pressure ratio approaches 1 when the ratioh/b approaches 1.
When the flotation height is very small, Eq.~9! predicts that the
cushion pressure can be negative.

Another thick jet model is obtained when we treatr in Eq. ~8!
as a constant and write the right-hand side term as 2b/r ~@8#!. This
concept does not seem to be accurate, but yields the follow
cushion pressure equation which agrees well with Stanton Jo
experimental results cited by Mair@7#:

pc

pj
512e22~b/h!~11cosu! (10)

The pressure ratio predicted by Eq.~10! approaches 1 when th
flotation height approaches zero. Even though none of these t
ries accounts for the case where the flotation height is smaller
the nozzle opening~jet thickness!, Eq. ~10! seems to be a reason
able choice if we want to analyze ground-effect problems in
wide range of flotation height. Strand@11# provides additional
discussion of a thick jet model.

Other Ground Effect Models. Alexander@12# attempted to
improve the ground effect models mentioned above for the c
where the flotation height is small; that is, whenh/b,1. Alex-
ander’s inviscid theory assumes that the total pressure of the
jet does not change even after it touches the wall. This assump
results in an equation which predicts the cushion pressure alw
higher than the earlier thin jet model, which already overpred
the cushion pressure whenh/b is small. Alexander’s equation is

pc

pj
5

2~11cosu!

h

b
1

1

2
1cosu

. (11)

Another attempt was made by Bradbury@13# to improve the
earlier ground effect models. Bradbury’s analytical model tak
into account the mixing phenomenon and is based on the stud
reattachment of a plane jet to an adjacent surface~@14#!. The
resulting equation is

pc

pj
5

2~cosu1cosg!

h

b
1

1

2
cosu1cosg

(12)

whereg is the angle that the extended jet centerline makes w
the horizontal plane as shown in Fig. 5. Unlike the jet eject
angleu which is a geometric property of the nozzle, the angleg is
difficult to determine. The equation overpredicts the cushion wh
the ratioh/b is smaller than approximately 4.

Comparison of Theories. Effects of flotation height and
ejection angle of the air jet on the cushion pressure are plotte
Fig. 6 and Fig. 7, respectively, for the various theories presen
above. In Fig. 6, the ejection angle of the air jet is assumed to
60 deg. The differences among the different theories are sm

Fig. 5 Definition of angle g
Transactions of the ASME
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whenh/b.4. It is apparent that Eqs.~3! and~11! overpredict the
cushion pressure when the flotation height is small. Among
two thick jet equations, Eq.~10! appears to be more reasonable
use for a wide range of flotation heights because Eq.~9! predicts
a sudden drop~to a negative value! of cushion pressure when th
flotation height approaches zero. Figure 7 shows that the effe
the ejection angle of the air jet on the cushion pressure is w
when the angle is small, but its effect becomes prominent a
approaches 90 deg.

Air Bars With Vent Holes. Some commercial air bars hav
vent holes through which the air in the gap between the web
the air bar can escape to the ambient. The air bar used in
study has two rows of holes as sketched in Fig. 8 and Fig. 9.
vent holes are connected to a large channel, the two ends of w
are open to the ambient. For a typical air bar, the channel are
approximately 250 times larger than the area of a hole. When
flotation height is large, the effects of the vent holes on the cu
ion pressure profile may be negligible because the cushion p

Fig. 6 Effects of flotation height on cushion pressure

Fig. 7 Effects of jet ejection angle on cushion pressure

Fig. 8 Down view of typical air bar with vent holes
Journal of Applied Mechanics
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sure is low and the pressure gradient along the width of the air
is small even if a small amount of air escapes through the v
holes. When the flotation height is small, on the other hand
large pressure gradient is developed along the width of the air
and the cushion pressure profile can be strongly affected by
vent holes. If we assume that the flotation height is uniform a
small, and the flow in the gap between the web and the air ba
laminar, the pressure drop in the gap can be expressed as~@15#!

Dp15
12mQL

h
*
3 (13)

whereQ is the flow rate in the gap per unit length the air bar~or
per unit width of the web!, L is the distance between the nozz
and the vent holes, andh* is the height of the gap. The air flow
through the vent holes can be approximated as~@15#!

Q5NCd

pd2

4
A2Dp2

r
(14)

where Dp2 is the pressure drop across the vent holes,N is the
number of holes in a row per unit length of air bar,Cd is the
discharge coefficient, andd is the diameter of the holes~Fig. 8 and
Fig. 9!. The cushion pressure near the nozzle is the sum of the
pressure losses:

pc5Dp11Dp2 . (15)

Since the flow rate in the gap between the web and the air
must be the same as the total flow rate through one row of ho
the value ofQ must be the same in Eqs.~13! and ~14!. If we
eliminateQ andDp2 from Eqs.~13!, ~14!, and~15!, the pressure
drop in the gap (Dp1) becomes

Dp1

pc
5

p*
pc

SA112
pc

p*
21D (16)

where

p* 5
1

r S 3pNCdd2mL

h
*
3 D 2

. (17)

The lift force per unit length of air bar is

F5~pc2Dp1!~w22L !1~pc2Dp1/2!2L12rbVj
2 sinu

5pcw1Dp1~L2w!12rbVj
2 sinu. (18)

If we assume that the cushion pressure near the nozzle is
affected by the vent holes, and only a small fraction of the
ejected from the nozzle is vented through the holes, then the c
ion pressure near the nozzle is predicted by Eq.~10!. The lift force
can be rewritten in nondimensional form, by combining Eq.~18!
and Eq.~1!, as

F

bpj
5

pc

pj
S w

b
1

h

b

2 sinu

11cosu
1

L2w

b

Dp1

pc
D (19)

where pc /pj is given by Eq.~10! and Dp1 /pc is given by Eq.
~16!.

Fig. 9 Cross section of typical air bar with vent holes
MARCH 2000, Vol. 67 Õ 179
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Comparison of Theories and Air Bar Experiments

The experimental data reviewed in this paper are from Pin
maraju @5# and Nisankararao@6#. Two air bars, schematically
shown in Fig. 10, were used for the measurement of the air p
sure profile on a rigid stationary web. The two air bars are diff
ent mainly in their widths~w! and nozzle openings~b!, and they
are approximately 0.36 m~14 in.! in length. A rigid plate,
12.7-mm thick piece of Plexiglas, was placed against the work
surface of the air bar. The plate was mounted on slide bearing
that the pressure profile could be measured while the plate
traversed. The plate was larger than it appears in Fig. 10 so th
covered the whole surface area of the air bar at all locations of
plate. The main test variable is the distance between the rigid
and an air bar. The blower used for air supply could deliver 17
Pa~seven inches of water! of air pressure when the flow rate wa
zero, and the flow rate was approximately 0.028 m3/min ~580
CFM! when the blower’s inlet and outlet were open to the am
ent. The flow valve was always fully open during the tests, and
flow rate was not controlled.

Typical pressure measurement results are shown in Fig. 11
Fig. 12. Note thatx50 corresponds to the center of the air ba
The air pressure on the web is nearly uniform in a wide reg
surrounded by the air jets, and high peak pressures appear ne
slot nozzles. When the air gap between an air bar and the we
large, a drop of cushion pressure is observed adjacent to the
peak pressures. This pressure drop implies that the main strea
jet flow induces a strong vortex in the pressurized region.

Comparison of the test results with the ground effect theo
requires some care, because the geometry of the tested air b
different from the basic geometry of the ground effect model.
order to compare the theories with the test results, we nee
180 Õ Vol. 67, MARCH 2000
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define equivalent values of the ground effect variables, which
clude thickness of the air jet, the ejection angle of the air
flotation height, and the total pressure of jet flow at the nozz
First, the thickness of the air jet can be defined as the no
opening. Second, the ejection angle of the air jet and the loca
of flow separation on the air bar surface are uncertain for
tested air bars. As sketched in Fig. 10, the surface of each te
air bar has curved corners near the slot nozzles. Note that ther
various types of commercial air bars having geometries differ
from the air bars discussed in this paper. It is believed that w
the flotation height is large~when the cushion pressure is sma!
the air stream follows the curved surface up to a certain point
then separates from the air bar surface with an angle smaller
90 deg. When the flotation height is small, however, the air
may separate from the air bar surface with an angle of nearly
deg. For comparison with the theories, it is assumed that the e
tion angle of the air jet is 90 deg for all cases. Definition of t
flotation height is also uncertain because the exit of the air je
lower than the top surface of the air bar. It seems reasonab
define the flotation height as the distance between the web an
exit of the jet~h! rather than the distance between the web and
top surface of the air bar (h* ). The effective total pressure of th
air jet is described by a nozzle coefficient, which is defined as
ratio of the effective total pressure of the air jet after the nozzle
the total pressure inside the air bar (C[pj /po). It is easy to
measure the supply air pressure inside the air bar, but the effe
total pressure of the air jet after the nozzle cannot be determ
by simply measuring the total pressure at the nozzle. The no
coefficient accounts for the effects of flow contraction and
effects of mixing and surface friction. It is found that the me
squared error between Eq.~10! and the test data becomes min
mum whenC[pj /po50.85. If we consider the thin jet theory
Fig. 10 Schematic of test setup
Fig. 11 Effects of flotation height on pressure distribution for
air bar 1
Fig. 12 Effects of flotation height on pressure distribution for
air bar 2
Transactions of the ASME
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Eq. ~3!, the error becomes minimum when the nozzle coeffici
is 0.80. In Figs. 13, 14, and 15 it is assumed that the noz
coefficient is 0.85.

The effects of vent holes on pressure profile and lift force w
measured. The geometric properties of the tested air bar
w50.127 m (w/b538.5), b5s50.0033 m (s/b51),
d50.0032 m (d/b50.97), B5H50.0127 m, andN578.7 holes
per meter~for each row!. The discharge coefficientCd is a func-
tion of Reynolds number, which in turn depends onDp2 . For
simplicity, we will assumeCd50.6, which is a reasonable ap
proximation when Red 5rVventd/m.20 or Vvent.0.1 m/s, where
Vvent is the flow velocity at the holes. As shown in Fig. 16, th
thick jet model far overpredicts the lift force when the flotatio
height is small where the vent holes play an important role. T
analytical model for air bars with vent holes~Eq. ~19!! follows the

Fig. 13 Comparison of theories and experiments for cushion
pressure

Fig. 14 Comparison of theories and experiments for lift force

Fig. 15 Comparison of theories and experiments for lift force
Journal of Applied Mechanics
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trend of the measurement data, but it seems to predict the u
limit of measured lift force. Note thath is the distance between
the plate and the exit of air jet, and the plate is in contact with
air bar surface (h* 50) whenh/b51 for the tested air bar. It was
observed in a pilot air-flotation oven that, when a flexible w
under tension was pushed by hand toward an air bar with v
holes, the web suddenly contacted the whole surface area o
air bar. When the web was pushed away from the air bar by ha
it suddenly popped up, away from the air bar surface. This p
nomenon could not be observed with any air bars without v
holes. These observations agree, qualitatively, with the predic
model and the rigid web experiments.

Discussion
Richardson et al.@16# measured the effects of Reynolds numb

(rVjb/m) and nozzle opening~b! on the cushion pressure. The
results show that the inviscid theory overestimates the cush
pressure up to 40 percent at small jet thicknesses, low Reyn
numbers, and large flotation heights. The error is reduced to a
five percent~still the theory overestimates! at large jet thicknesses
high Reynolds numbers, and small flotation heights. The noz
sizes for our air bar experiments were 1.65 mm and 3.30
(h/b51.2– 5.4 andh* /b50.15– 3.0! while Richardson’s nozzle
sizes were 2.54 mm and 5.08 mm~h/b50.3– 6.0 andh* /b
5undefined!. The Reynolds number for our air bar experimen
ranged approximately from 4000 to 6000, which is close to
lower limit of Richardson’s test range. The ranges of the air
test parameters fall on the side where Richardson observed
biggest differences between the theoretical prediction and m
surement of cushion pressure. Crewe and Eggington@10# also
report that their measured cushion pressure is lower than the
dicted, and that the error increases as the air nozzle thickne
reduced. They attribute the error to a ‘‘scale effect’’ related to
development of boundary layers inside the nozzle. A good co
lation was obtained when they corrected the total pressure of
air jet at the nozzle aspj85pj (12Db/b), whereb is the nozzle
thickness andDb51.27 mm. For our air bar experiments, whe
the two air bars have much different nozzle openin
(b51.65 mm and 3.30 mm!, only the nozzle coefficient
(C[pj /po) needed to be introduced as correction factor.

Hope-Gill @17# analyzed the effects of high-speed jet flow a
found that the coefficient of cushion pressure decreases as
Mach number increases. For example, when the flotation heigh
jet thickness ratioh/b is 2 and 4, the coefficient of cushion pre
sure at sonic speed of jet flow is reduced by two percent and
percent respectively, compared to the values at low subs
cases. For our air bar experiments, the flow speed was lower
42 m/s (M50.12). In most cases, the air speed at the nozzle o
air bar is less than 100 m/s (M50.29). Therefore, the effect o
Mach number is negligible for most air-flotation applications.

Fig. 16 Lift force per unit length of air bar with vent holes
MARCH 2000, Vol. 67 Õ 181



l

p

,’’

&
–

&
2–

ng

the
rt,

of

ft

ir

ta-

ept

ral

at

et

o-

w-
port

C

Closing Remarks
Ground effect theories are proved to be useful tools for ana

ing the aerodynamic characteristics of pressure-pad air bars.
aerodynamic characteristics of pressure-pad air bars are d
mined by four factors: the ejection angle of the air jet, thickness
the air jet, width of the air bar, and the effective total pressure
the air jet after the nozzle. By properly defining the equivale
values of these variables we can predict the aerodynamic fo
on the web floated by an air bar. The effect of the vent holes
pressure-pad air bars is analyzed, and the proposed simple m
is found to agree reasonably well with rigid-web test results.
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Nomenclature

b 5 width of air jet; width of slot nozzle
C 5 nozzle coefficient,pj /po

Cd 5 discharge coefficient of vent holes on air bar surface
d 5 diameter of vent holes
F 5 lift force per unit length of air bar
h 5 effective flotation height

h* 5 gap between top surface of air bar and rigid web
L 5 channel length; distance between slot nozzle and the

closest row of vent holes
M 5 Mach number
N 5 number of vent holes in each row of holes per unit

length of air bar
p 5 pressure~gage pressure!

pc 5 cushion pressure~gage pressure!
pj 5 effective total pressure of air jet~gage pressure!
po 5 supply pressure measured inside air bar~gage pressure!
Q 5 flow rate per unit length
r 5 radius of curvature

Vj 5 speed of jet flow
182 Õ Vol. 67, MARCH 2000
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w 5 width of air bar; distance between two slot nozzles
g 5 angle between extended jet centerline and horizontal

plane
m 5 dynamic viscosity of air
u 5 jet ejection angle
r 5 air density
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The Tip Region of a Fluid-Driven
Fracture in an Elastic Medium
The focus of this paper is on constructing the solution for a semi-infinite hydraulic c
for arbitrary toughness, which accounts for the presence of a lag of a priori unkn
length between the fluid front and the crack tip. First, we formulate the governing e
tions for a semi-infinite fluid-driven fracture propagating steadily in an impermea
linear elastic medium. Then, since the pressure in the lag zone is known, we sug
new inversion of the integral equation from elasticity theory to express the openin
terms of the pressure. We then calculate explicitly the contribution to the opening
the loading in the lag zone, and reformulate the problem over the fluid-filled portion o
crack. The asymptotic forms of the solution near and away from the tip are then
cussed. It is shown that the solution is not only consistent with the square root singu
of linear elastic fracture mechanics, but that its asymptotic behavior at infinity is actu
given by the singular solution of a semi-infinite hydraulic fracture constructed on
assumption that the fluid flows to the tip of the fracture and that the solid has
toughness. Further, the asymptotic solution for large dimensionless toughness is de
including the explicit dependence of the solution on the toughness. The intermediat
of the solution (in the region where the solution evolves from the near tip to the far
the tip asymptote) of the problem in the general case is obtained numerically and rel
results are discussed, including the universal relation between the fluid lag and
toughness.@S0021-8936~00!02401-6#
c

a

t

m

l
g

l

n

t to

is
ing

or-
ing
g
e
a
so-

id
t al.

olid

re
the

t the
ero
-

d the
h
uld
and
r a
r-

e
olid

ss

ath-

g
g
f
t
b

Introduction
The problem of a fluid-driven fracture propagating in ro

arises in hydraulic fracturing, a technique used widely in the
and gas industry to enhance the recovery of hydrocarbons f
underground reservoirs, as well as in the formation of intrus
dykes in the earth crust and in the transport of magma in
lithosphere by means of fractures.

The conditions under which fluid-driven fractures propagate
rock vary widely and are usually not well defined. In that respe
mathematical modeling of the propagation of such fractures
comes an important tool for predicting the evolution of fluid pre
sure, fracture opening, and fracture geometry and for underst
ing the dependence of the process on rock properties~fracture
toughness and elastic constants!, in situ stresses, fracturing fluid
properties~essentially viscosity! and boundary conditions.

Mathematical modeling of fluid-driven fractures has attrac
numerous contributions since the 1950s~see, e.g.,@1–11#!. These
models require simultaneous consideration of fluid and solid
chanics: on the one hand, the lubrication equation to characte
the flow of fluid in the fracture~and, in the case of a permeab
medium, a time-dependent equation that governs the exchan
fluid between the fracture and the rock!; on the other hand, the
elasticity equations to describe the deformation and propaga
of the fracture. Such models are notoriously difficult to deve
because of the strong nonlinear coupling between the lubrica
and elasticity equations and the nonlocal character of the ela
response of the fracture. Furthermore, constructing the solu
for the near-tip region represents in itself a formidable challe
which has motivated a series of dedicated research eff
~@9,12–20#!.
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Interest in the tip region stems not only from a basic ques
find the correct structure of the solution~in particular to determine
the unknown lag between the fluid front and the crack tip!, but
also from the recognition that the strong fluid-solid coupling
mainly confined to a small region near the tip of the advanc
fracture~small compared to the overall fracture dimension!, where
rapid variation of the fluid pressure is taking place. More imp
tantly, however, the tip solution holds the key for understand
the propagation regime of a fluid-driven fracture. Two limitin
regimes exist~@21–23#!: in the viscosity-dominated regime, th
toughness of the solid is ‘‘small’’ enough that the solution of
hydraulic fracture can be approximated by the zero toughness
lution ~@8,10#!; while in the toughness-dominated regime the flu
can be assumed to be inviscid as in the solution of Huang e
~@24#!.

For a hydraulic fracture propagating in a zero toughness s
(KIc50, viscosity-dominated solution!, it was recently recognized
that the fluid-solid coupling in the near-tip region of the fractu
actually corresponds to an exact matching singularity between
lubrication and elasticity equations under the assumptions tha
fluid flows up to the tip of the fracture and that the solid has z
toughness~@7,9,15#!. For a Newtonian fluid, this matching singu
larity is characterized by a crack openingv varying asx2/3 ~where
x is distance from the tip!, and not asx3/2 as predicted by linear
elastic fracture mechanics for the case of zero toughness, an
fluid pressurep as2x21/3. This singularity is thus associated wit
a negative infinite fluid pressure at the tip of the fracture. It sho
be noted that the singular asymptotes of the fluid pressure
fracture opening near the tip, provide the exact solution fo
semi-infinitefluid-driven fracture propagating steadily in impe
meable elastic solid of zero toughness~@15#!. The new tip singu-
larity was used by Carbonell and Detournay@10# and by Savitski
and Detournay@11# to construct self-similar solutions for a finit
hydraulic fracture propagating in a zero toughness elastic s
under plane-strain and axisymmetric conditions, respectively.

For a hydraulic fracture propagating in a solid with toughne
KIc.0, it can readily be shown that a lagl is required between
the fluid front and the crack tip to ensure coherence of the m
ematical solution~@22#!. Indeed, under the condition ofl50 ~no
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lag!, combination of the lubrication equation with the linear ela
tic fracture mechanics asymptotic fracture openingw;x1/2 im-
plies that the fluid pressure has a logarithmic singularity,p
; ln x, which is mathematically inconsistent with the assum
eigensolution. Hence, the presence of the lag removes the s
larity in the fluid pressure, and at the same time enables the c
sical square root stress singularity of linear elastic fracture
chanics to take place. It could also be argued that a lag
necessarily forms even ifKIc50, since the fluid cannot sustain a
arbitrary large negative pressure.~Such an argument is obviousl
akin to the question of the existence of a process zone or a pl
zone to ensure finiteness of the stress at the crack tip.! Although
the assumption of zero lag does not lead to any mathema
inconsistency forKIc50 ~contrary to the caseKIc.0), a lag must
necessarily exist if the supplementary condition of a minim
fluid pressure~here taken to be zero! is introduced. In which case
the solution forKIc.0 can be expected to be continued in t
limit KIc50, but this then raises the question of the meaning
the zero toughness singular solution.

In this paper, we construct the solution of the near-tip region
the case of arbitrary toughness~including the limit KIc50), by
analyzing the problem of a semi-infinite hydraulic crack propag
ing at constant velocityV in an impermeable linear elastic me
dium ~see Fig. 1!. The elastic solid is characterized by the plan
strain modulusE85E/(12n2), whereE is the Young’s modulus
andn the Poisson’s ratio, and the material toughnessKIc ; and the
Newtonian fluid~assumed to be incompressible! by the viscosity
m. There is a far-field confining stressso acting perpendicular to
the fracture.

We assume that a fluid lag exists adjacent to the crack tip. S
the crack propagation is stationary, the fluid front propagates w
the same velocity as the crack tipV. The lengthl of the tip cavity
is thus constant, but is unknown and is part of the solution. T
tip cavity is filled by evaporated fracturing fluid under a consta
pressure which is assumed, however, to be negligibly small c
pared to the far-field stressso and is therefore set equal to zer
But for the presence of the unknown lagl and the pressure
boundary conditionp50, the problem considered here is identic
to the one treated by Desroches et al.@15# for the zero toughness
case.

The paper is organized as follows. First, we formulate the g
erning equations and derive a dimensionless form of these e
tions which only depends on one numberk, having the meaning
of a dimensionless toughness. The asymptotic forms of the s
tion near and away from the tip are then discussed. It is sho
that the solution is not only consistent with linear elastic fract
mechanics at the tip, but that its asymptotic behavior at infinity
actually given by the zero toughness singular solution of a se
infinite hydraulic fracture obtained by Desroches et al.@15#. The
intermediate part of the solution~in the region where the solution
evolves from the near tip to the far from the tip asymptote! of the
problem is obtained numerically. We also formulate t
asymptotic solution for large dimensionless toughnessk, and de-

Fig. 1 Semi-infinite fluid driven crack with the lag zone adja-
cent to the tip
184 Õ Vol. 67, MARCH 2000
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rive the explicit dependence of this asymptotic solution onk.
Finally, relevant results are presented and discussed, including
universal relationship between the scaled fluid lagL and the
toughnessk.

Governing Equations
The flow of a viscous incompressible fluid in the crack is d

scribed by the equations of lubrication theory~@25#!; i.e., the con-
tinuity equation

]w

]t
1

]q

]X
50 (1)

and Poiseuille law

q52
w3

12m

]p

]X
(2)

wherep is the fluid pressure,w the crack opening, andq the fluid
flow rate per unit width of the crack. These field quantities a
function of both the spatial coordinateX ~with the fixed reference
X-axis chosen to be parallel to the fracture!, and the timet.

The other equation relating the net loading on the crack defi
as p2so and the crack-openingw is given by elasticity theory
~e.g.,@26#!

p~X,t !2so5
E8

4p E
2`

Xtip ]w~s,t !

]s

ds

X2s
(3)

where the integral is taken in the sense of a Cauchy princ
value. In~3!, Xtip5Vt denotes the tip position.

After performing the transformation from a fixed to movin
with the crack-tip coordinate systemx5Xtip2X5Vt2X, making
use of the condition of steady propagation and upon integra
the continuity Eq.~1!, the lubrication equations reduce to~@15#!,

w2~x!
dp

dx
512mV for xP]l,`@ . (4)

In the lag region, the condition onp is simply

p50 for xP@0,l#. (5)

Also the elasticity Eq.~3! transforms as

p~x!2so5
E8

4p E
0

` dw~s!

ds

ds

x2s
. (6)

To be complete, the system of Eqs.~4!–~6! has to be supple-
mented by the criterion for crack propagation

KI5KIc (7)

whereKI is the stress intensity factor of the crack andKIc is the
material toughness. Noting the asymptotic expression for open
w close to the crack tip~linear elastic fracture mechanics singul
region! in terms ofKI ~e.g.,@26#! and using~7! we write

w5
4KIc

E8 S 2x

p D 1/2

1O~x3/2!. (8)

Henceforth, we will use~8!, which also prescribes the asymptot
behavior of w, rather than ~7! for the condition of crack
propagation.

Scaling and Dimensionless Formulation
The problem depends on five dimensional parametersm, V,

so , E8, andKIc . First, we define two lengthscalesLm and Lk ,
and a small parametere

Lm5
12mVE82

so
3 , Lk5

8

p S KIc

so
D 2

, e5
so

E8
(9)
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The lengthscaleLm is associated with viscous dissipation~@15#!,
while Lk characterizes the dissipation due to fracturing of
solid. Next, we introduce the dimensionless crack openingV, the
net pressureP and the moving coordinatej

V5
w

eLm
, P5

p2so

so
, j5

x

Lm
(10)

The system~4!–~6! and ~8! then takes the form

V2~j!P8~j!51 for jP]L,`@ (11)

P~j!521 for jP@0,L# (12)

P~j!5
1

4p E
0

`

V8~h!
dh

j2h
(13)

V~j!5kj1/21O~j3/2! (14)

where~12! specifies the pressure in the lag region. In the aboveL
andk denote the dimensionless coordinate of the fluid front a
the dimensionless toughness, respectively, defined as

L5
l

Lm
, k52S Lk

Lm
D 1/2

. (15)

Thus, ~11!–~14! completely defines the crack-openingV~j;k!
and the net pressureP~j;k! for the semi-infinite fracture~0<j
,`!, as well as the position of the fluid frontL~k!. Note that, the
normalized system of equations and boundary conditions~11!–
~14! depends on one numberk ~and not on two numbers, accord
ing to dimensional analysis considerations only!.

Elastic Expression for the Crack Opening
Equation~13! expresses the net loadingP(j) as a convolution

integral of the dislocation densityV8(j) with the singular Cauchy
kernel. The Cauchy convolution integral on the semi-infinite
terval jP@0,̀ @ has the inverse given by

V8~j!5
C

2j1/22
4

p E
0

`S j

h D 1/2 P~h!

j2h
dh (16)

whereC is an arbitrary constant and the integral in~16! is taken in
the sense of a Cauchy principal value. Details of the derivation
the inverse~16! are given in Appendix A. Note that this inversio
formula is different from the classical form used for semi-infin
crack in linear elastic fracture mechanics~e.g., @26#! which re-
quiresP~j! to vanish at infinity asj2a with a.1/2 in order for it
to converge, whereas the inversion formula~16! has the more
relaxed requirementa.0 for P~j!.

Since, the net loading is known along the lag zone~12!, we can
split the integral in~16! in two integrals on the intervals~0,L! and
~L,`!, respectively,

V8~j!5
C

2j1/21VL8 ~j!1V r8~j! (17)

VL8 ~j!5
4

p
lnUj1/21L1/2

j1/22L1/2U, V r8~j!52
4

p E
L

`S j

h D 1/2 P~h!

j2h
dh

(18)

whereVL andV r are the contributions of the net loading in th
lag and in the rest of the crack to the crack-openingV, respec-
tively. The unknown constantC is peculiar to the semi-infinite
crack and is part of the solution of the problem. However, it
completely defined by the near-tip crack-opening asymptote~14!.
Indeed, with the help of~14! the dimensionless toughness can
expressed as

k5C2kL2k r
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wherekL andk r are the contributions of the net-loading in the la
zone and the net-loading in the rest of the crack to the dimens
less stress intensity factor, respectively,

kL[ lim
j→0

2j1/2VL8 ~j! k r[ lim
j→0

2j1/2V r8~j!. (19)

According to ~18! and definitions~19!, these contributions are
zero,kL5k r50. Therefore,

C5k. (20)

Integration of~17! overj with the condition of zero opening at th
tip and ~20! yields

V~j!5kj1/21VL~j!1V r~j! (21)

where

VL~j!5
4

p S 2ALj1~j2L!lnUj1/21L1/2

j1/22L1/2U D ,
(22)

V r~j!5
4

p E
L

`

K~j,h!P~h!dh

with the kernelK~j,h! in ~22! given by

K~j,h!5 lnUj1/21h1/2

j1/22h1/2U22S j

h D 1/2

. (23)

It follows from the above considerations that the solution
now reduced to finding the lagL~k!, the net pressureP~j;k! and
the crack-opening V~j;k! along the semi-infinite interva
jP@L,`@. The solution must satisfy~11! and ~21!–~23! with the
boundary conditions

P~L!521, P~`!50. (24)

It is worth noting that the paradoxical property of this solutio
namely that the crack-openingV is positive while the net pressur
P is everywhere negative, is a direct consequence of the se
infinite length of the crack. The classical elastic eigensolutionV
;j1/2 corresponding toP50 for a semi-infinite crack is of a
similar nature.

Near-Tip and Far-Field Asymptotic Behavior

Near-Tip Asymptote. The near-tip asymptote of the crack
openingV~j;k! is given by~14! for the case of nonzero toughnes
One can actually assign a region adjacent to the tip of the cr
jP@0,jo(k;e)#, where~14! holds to a certain specified degree
accuracye; in other wordsuV/kj1/221u<e for jP@0,jo(k;e)#.
This region is said to be dominated by the linear elastic fract
mechanicsj1/2 behavior. The upper limitjo of this region is ex-
pected to be an increasing function of the dimensionless tou
nessk. Accordingly, the linear elastic fracture mechanics regi
should lie inside the lag entirely for small enough values of
toughness, while this region should extend beyond the fluid
for large enough toughness. In the latter case,jo(k).L(k), and,
consequently, from~14! and the lubrication Eq.~11!, we derive
the following logarithmic distribution for the fluid pressure:

P~j;k!.Po~j;k!5211
1

k2 ln
j

L
, jP@L~k!,jo~k!#. (25)

The asymptotic expression~25! is strictly valid only for large
enough values of toughnessk and small enough values of fluid la
L. It can indeed be shown that~25! holds provided thatk2/aL
@1, wherea is the coefficient of the next order term in~14!, i.e.,
V.kj1/21aj3/2. As we will see further, the fluid lag decrease
exponentially withk2; thus the ratioL/k2 is negligibly small for
k;1, causing the linear elastic fracture mechanics region to
tend beyond the fluid lag and therefore ensuring the validity
~25!.
MARCH 2000, Vol. 67 Õ 185
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Far-Field Asymptote. In thezero toughnesssingular solution
of a semi-infinitecrack ~@15#!, the fluid is assumed to flow up to
the crack tip; hence, the lubrication Eq.~11! is valid along the
whole crack length,jP#0,̀ @, and no boundary condition is im
posed on the net-pressure at the tip,P~0!. Since the opening of the
crack goes to zero at the tipV~0!50, validity of ~11! near the tip
leads to a singularity in the fluid pressure there. It can be sho
that the condition of exact matching singularity between the lu
cation ~11! and elasticity~13! equations uniquely prescribes th
form of this singularity as well as the whole self-similar solutio
~@15#!

V`~j!5
1

2A3
~36j!2/3, P`~j!52~36j!21/3. (26)

The solution~26! has a weaker singularity than the one~14! pre-
dicted by linear elastic fracture mechanics. Consistency of~26!
requires, therefore, the toughnessKIc to be zero~k50!. It is im-
portant to note, that~26! cannot be the solution of the syste
~11!–~14! as the fluid lag goes to zeroL→0. Indeed, the net
pressureP is singular at the tip according to~26!, whereas the
solution P of ~11!–~14! is finite at the tip in view of boundary
condition~24!. However, as proven in Appendix B,~26! gives the
exact asymptotic behavior of the solution of~11!–~14! at infinity

P~j;k!5P`~j!, V~j;k!5V`~j!, as j→`. (27)

It is important to note that the asymptotic behavior at infinity
independent ofk; the distance from the tip,j` , at which this
asymptotic solution is applicable within a given degree of ac
racye is, however, expected to be a function ofk. In other words,
uV/V`21u<e for jP@j`(k;e),`@ .

Solution

Numerical Solution for Arbitrary k. The unknown solution
for an arbitrary nonzero toughnessk behaves according to linea
elastic fracture mechanics in the near-tip regionjP@0,jo(k)# ~see
~14!, ~12! and 25!!, and asymptotically as the zero toughness s
gular solution ~26! at large enough distance from the tip,j
P@j`(k),`@ . In the transition zone,jP@jo(k),j`(k)#, the inter-
mediate solution has to be obtained numerically.

The system of equations to be solved on the semi-infinite in
val jP#L,`@ is the lubrication Eq.~11!, the integral Eqs.~21!–
~23!, the boundary conditions~24!, and the asymptotic expressio
for P at infinity ~27!. Also recall that for large enough values o
toughness the near fluid lag asymptote~25! is applicable. The
solution ~which include the lagL! is a function of only one di-
mensionless parameter,k.

The numerical algorithm used to calculate the solution is
scribed in Appendix C. We only point out here that in the nume
cal solution, the lag lengthL is prescribed rather thank, and that
k is obtained as part of the solution which then depends o
on L.

Although results will be discussed in detail in a later sectio
we report here the calculated dependence on the toughnessk of
the boundsjo and j` of the regions dominated, respectively, b
the near-tip and the far-field asymptotes. The variation ofjo and
j` with k ~computed for a relative errore50.01!, as well as the
variation ofL with k is shown in Fig. 2.~The dashed lines cor
respond to the largek asymptotes which are discussed below!
According to Fig. 2, the boundsjo(k) andj`(k) are increasing
functions ofk for k large enough. This result is expected since
region dominated by the linear elastic fracture mechanics tip
gularity extends with the strength of this singularity, namelyk,
whereas the region where the solution is given by far-field asy
tote is pushed further away to infinity. The peculiar evolution
jo andj` in the rangeLP@1023,1022# ~nonmonotonic behavior!
is linked to the fact that the asymptotic solution at infinityP`(j)
fulfills the pressure at the fluid interfaceP521 exactly atj5L
51/36. Therefore, we can expect that for this particular value
186 Õ Vol. 67, MARCH 2000
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the lag, the far-field asymptote is valid over the largest portion
the crack, almost up to the fluid front~compared to other values o
the lag!; in other words,j`(L) has a minimum atL51/36, as can
be seen in Fig. 2.

An examination of the curvesjo(k) andL~k! in Fig. 2 shows
that they intersect at aboutk.2.55. Thus fork smaller than this
value, the linear elastic fracture mechanics region lies inside
lag entirely ~within an accuracye50.01!; this value ofk also
marks the onset of the applicability of the near-tip asympto
expression~25! for the fluid pressure.

Asymptotic Solution for Large k. In order to capture the
asymptotic behavior of the solution for largek, and motivated by
the numerical results shown in Fig. 2, we introduce the resca
field coordinate

j̃5k2bjj (28)

and look for a largek asymptotic solution of the system~11!,
~21!–~23! with ~25!, ~27! of the form

P~j;k!5kbPP̃~ j̃ !, V~j;k!5kbVṼ~ j̃ !. (29)

The power-law exponentsbj , bP , bV are determined as follows
Substitution of~28! and~29! in the lubrication Eq.~11!, and in the
near-tip ~25! and the far-field~27! asymptotic expressions fo
pressure yields

Ṽ2
dP̃

dj̃
5kbj22bV2bP (30)

P̃~ j̃ !5k2bPPo~j;k!5k2bP22S 2k21 ln
kbj

L
1 ln j̃ D , j̃→0

(31)

P̃~ j̃ !5k2bPP`~j!5k2bP2bj/3P`~j̃ !, j̃→`. (32)

In order forṼ( j̃) andP̃( j̃) to be independent ofk, necessarily

2bV1bP2bj50, bP522,
(33)

bP1bj/350 2k21 ln
kbj

L
5const.

It follows therefore that the largek asymptotic representation~29!
with ~28! of P andV exists for the power-law exponentsbj56,
bP522, bV54, i.e.,

Fig. 2 Bounds jo and j` of the regions where solution is
dominated by corresponding asymptotes, and lag L versus di-
mensionless toughness k in log-log scale. „Dashed lines show
the large k asymptotes of jo„k…, j`„k….…
Transactions of the ASME
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P~j;k!5k22P̃~ j̃ !, V~j;k!5k4Ṽ~ j̃ !, j5k6j̃, (34)

and provided that the asymptotic form of the relationL5L~k! is
given by

L5L* k6e2k2
(35)

with L* is a yet undetermined constant.
Note that it has been assumed that the near-tip asymptotic

pression for the pressure~25! holds, in deriving~34! and ~35!.
This assumption is supported by the asymptotic form~35! of the
relationL~k! which shows that the fluid lag indeed decreases w
increasing toughnessk; it will be further justified below.

The unknown functionsP̃( j̃), Ṽ( j̃) and the constantL* are
the solution of the following system of equations:

Ṽ2
dP̃

dj̃
51, j̃P@ l o ,`@ (36)

Ṽ~ j̃ !5 j̃1/21Ṽr~ j̃ !,
(37)

Ṽr~ j̃ !5
4

p H E
0

l o
K~ j̃,h̃ !P̃o~ h̃ !dh̃1E

l o

`

K~ j̃,h̃ !P̃~ h̃ !dh̃J
where

P̃.P̃o~ j̃ !5 ln
j̃

L*
and Ṽ~ j̃ !. j̃1/2, j̃P@0,l o# (38)

P̃~ j̃ !5P`~j̃ ! and Ṽ~ j̃ !5V`~j̃ !, j̃→`. (39)

In the above equationsl o is an arbitrary number smaller than o
equal toj̃o ~to be prescribed in the numerical solution of~36!–
~39!!, that provides a ‘‘safe’’ bound to the near-tip region whe
the asymptotic behavior is given by~38!.

The scaled contribution from the loading on the lag to the op
ing is

ṼL~ j̃ ![k24VL~j;k!5
16

p
k24~jL!1/2<k2e2k2/2,

for j̃<1 and k@1.

Hence,ṼL(j) can be neglected in the expression forṼ(j), ~see
~37!!. The exponential decay of the lagL with k ~34! also allows
us to shift the lower bound of the first integral inṼr( j̃) ~see~37!!

to zero, since the convolution integral ofP̃o over j̃P@0,L̃#, L̃

5L* e2k2
, is negligible.

The system of Eqs.~36!–~39! is solved numerically forP̃( j̃),
Ṽ( j̃) andL* within the framework of the algorithm devised fo
the general case of arbitraryk, 0<k,` ~see Appendix C!. In
particular, it is found that

L* .4.36•1023. (40)

The numerical solution also provides the constant~k-independent!
boundsj̃o and j̃` , j̃o, j̃` , for which the asymptotic behaviors
~38! and~39!, are reached byṼ( j̃) to a certain degree of accurac

j̃o.6.58•1027, j̃`.1.37, for e50.01. (41)

Consequently, the asymptotic formulas for the bounds in the or
nal scaling,jo(k) andj`(k), are

jo~k!5 j̃ok6, j`~k!5 j̃`k6, k@1. (42)

Comparison between the boundsjo and j` computed for the
general case and the asymptotic expressions~42! with ~41! is
shown in Fig. 2. It can be seen that the asymptotic behavio
these two bounds is virtually reached fork54 ~the relative error is
of order one percent or less fork>4!.
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Results

Fluid Lag and Toughness. Figure 3 shows the variation in
semi-logarithmic scale of the fluid lag lengthL with the toughness
k computed numerically, as well as the largek asymptote~35!,
with L* given by~40!. The fluid lag can be seen to be a decrea
ing function of toughness, attaining a maximum valueLo
'0.3574 atk50. This value ofLo is actually very close to the
value computed~in a different scaling! by Lister @9#, using a per-
turbation technique, for the problem of a buoyancy-driven hydr
lic fracture. Note that forL.Lo , k,0 and a~physically inad-
missible! overlapping of the crack faces occurs in the regi
adjacent to the tip. As the toughnessk increases the lag reache
the largek asymptote~shown in Fig. 3 as a dashed line! and
decays exponentially to zero. The computed fluid lag lengthL is
given by the asymptote~35! for k>4.2 with one percent or less
error.

It is of interest to compute the maximum dimension of the la
lo5LoLm , for some typical values of the physical paramete
Consider the following set: E853•104 MPa, m
51027 MPa•s~100 cp), so510 MPa, andV51 m/s. Then, the
characteristic lengthLm51.08 m andlo.0.39 m. The fluid lag
reduces tol.0.27 m for a toughnessKIc51 MPa•m1/2, accord-
ing to Fig. 3~L.0.25 fork50.31!.

Recently published results of laboratory scale hydraulic frac
ing experiments carried out at the Delft University of Technolo
~@27#! also provide an opportunity to test the theoretical predict
of the fluid lag size. In an experiment involving the propagation
a penny-shaped hydraulic fracture in a cement block, the posi
of both the fracture tip and the fluid front position were measu
continuously by ultrasonic diffraction. For example, these m
surements give a fracture radiusR'0.1 m, and a fluid lag length
l'1023 m at a particular timet, and a fracture propagation ve
locity V'4•1026 m/s ~estimated from the evolution ofR with
time t!. Given V and the following set of parametersE8
51.92•104 MPa, KIc50.5 MPa•m1/2, m55•1024 MPa•s andso

58 MPa, the predicted fluid lag isl'0.8•1023 m which is in
relatively good agreement with the experimental value. We sho
emphasize that the semi-infinite crack model is applicable to
near-tip region of a finite fracture provided thatLm!R ~which
also ensures that the plane strain condition is met sinceR is equal
to the local radius of curvature for a penny-shape crack!. Here the
characteristic lengthLm'0.02 m is only one order of magnitud
smaller than the radius of the fractureR. It appears, however, tha

Fig. 3 Dimensionless lag length L versus dimensionless
toughness k „solid line …, together with the large k asymptote
„dashed line …
MARCH 2000, Vol. 67 Õ 187
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there is a reasonable agreement between the predicted and e
mental values ofl provided that the ratioLm /R is less than ten
percent~@28#!.

Crack Opening and Fluid Pressure. Figures 4 and 5 give
the profiles of the net-loading in linear and semi-logarithm
scales, respectively, for various values ofk. It can be seen that the
pressure increases rapidly from its valueP521 at the fluid front
j5L, and that it tends towards the far-field asymptote~indicated
by dashed line! for large j. The value of the fluid lagL corre-
sponding to each pressure profile on Fig. 5 is given by the in
section of the curve with thej-axis.

Figures 6 and 7 show in log-log and linear scale the cr
openingV along the crack for various values ofk ~and thus ofL,
see Table 1!. The dashed line corresponds to the asymptotic so
tion at infinity, V`(j). Figure 7 shows the shape of the crack
the near-tip region for the dimensionless toughnessk varying
from 0 to 4.11. It can be seen that for zero or near zero tough
the crack has a ‘‘sharp’’ tip (V;j3/2) as opposed to nonzer

Fig. 4 Dimensionless net-loading P along the crack for kÄ0,
2.08, 3.33, 4.11. The dashed line corresponds to P`„j….

Fig. 5 Dimensionless fluid pressure P along the crack for
kÄ0, 2.08, 3.33, 4.11 in semi-log scale. Corresponding values of
fluid lag L are given by the intersection of a curve with the
j-axis. The dashed line corresponds to P`„j….
188 Õ Vol. 67, MARCH 2000
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toughness when the crack tip is ‘‘blunt’’ (V;j1/2). Figure 6 pro-
vides transparent evidence that the solution~in terms ofV! be-
haves asj1/2 ~or as Vo(j), classical linear elastic fracture me
chanics type, but asj3/2 for k50! in the region immediately
adjacent to the tip and asj2/3 ~or asV`(j)) further away from the
tip. There is a transition zone between these two types of beh
ior, which can be identified asjP@jo(k),j`(k)#, wherejo and
j` are the bounds~introduced earlier! of the regions dominated by
the corresponding asymptote.

Fig. 6 The dimensionless crack opening V along the crack in
log-log scale for dimensionless toughness varying from kÄ0
„L¶0.3574… to kÄ4.1 „LÄ10À6

…, „see Table 1 …. The dashed line
corresponds to the asymptotic solution at infinity, V`„j….

Fig. 7 The opening V along the crack in near tip region for k
varying from kÄ0 „L¶0.3574… to kÄ4.1 „LÄ10À6

…, „see Table
1…. The dashed line corresponds to V`„j….

Table 1 Table of corresponding values of the pair „k,L…
Transactions of the ASME
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The solution for the pressureP and the openingV for k54.11
(L51026) ~see Figs. 4, 5 and 7, 6! matches the largek
asymptotic solution~34! with a maximum error of order 0.1 per
cent and 1 percent~which is about the accuracy of the numeric
method itself! for pressure and opening, respectively. Thus,
solution of the semi-infinite fluid-driven crack is given by its larg
toughness asymptote~34! for k>4. Also, the plot of the pressur
profile in the semi-logarithmic scale~see Fig. 5! confirms the
logarithmic distribution~25! for the range of toughnessk>3, ac-
cording to Fig. 3.

Finally, the largek asymptotic solution for the fluid pressur
and the crack opening, i.e., the scaled openingṼ( j̃) and pressure
P̃( j̃), is shown in Figs. 8 and 9~with the dots indicating the
position of the boundsj̃o and j̃` corresponding to a relative erro
e50.01!.

Fig. 8 Scaled opening Ṽ along the crack in log-log scales.
Dashed lines correspond to the solution asymptotes and black
dots to j̃o and j̃` .

Fig. 9 Scaled pressure P̃ along the crack in semi-logarithmic
scales. Dashed lines correspond to the solution asymptotes
and black dots to j̃o and j̃` .
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Conclusions
In this paper, we have constructed the solution for a se

infinite fluid-driven fracture steadily propagating in an imperm
able elastic solid. The particularity of this solution is that it a
counts for the existence of a fluid lag, of a priori unknown leng
The existence of this lag~where the pressure is essentially zer!
allows the construction of a solution for arbitrary material toug
ness which has a near crack-tip behavior consistent with lin
elastic fracture mechanics. Indeed, the assumption that the
reaches the tip of the fracture implies a singularity in the flu
pressure and a crack-tip behavior which is incompatible with
ear elastic fracture mechanics. The singular solution of a se
infinite fracture built on the assumption of zero lag~@15#! was
shown, however, to correspond to the asymptotic behavior at
finity. It was demonstrated that the solution depends only on
dimensionless toughnessk, which is an aggregate of all the pa
rameters of the problem. A largek asymptotic solution whose
dependance onk is explicit was also derived; this asymptot
solution was shown to be applicable fork.4, with an error less
than one percent. An important outcome of this solution is
universal relation between the fluid lagL and the toughnessk.
According to this relation, the lag is a decreasing function of
toughnessk; it is maximum at zero toughness and vanishes ex
nentially for largek.

The characteristic length of the near tip processes,Lm , is typi-
cally several orders of magnitude smaller than the length of
draulic fractures (102103 m). This difference in scales sugges
that this solution of a semi-infinite fracture can actually be used
describe the near-tip asymptotic solution of a finite hydraulic fr
ture. A consistent solution of a finite two-dimensional fluid-drive
fracture propagating in an impermeable solid of nonzero tou
ness can actually be constructed in the spirit of a singular per
bation technique~@23#!, using the solution derived in this paper a
the ‘‘inner’’ solution and the zero-toughness self-similar soluti
for a finite crack~@10#! as the ‘‘outer’’ solution.
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Appendix A

Inversion Formulae on a Semi-Infinite Interval

1 Introduction. This Appendix is concerned with the inver
sion of

P~j!5
1

4p E
0

`

V8~h!
dh

j2h
(A1)

which is usually given by~see, e.g.,@26#!

V8~j!52
4

p E
0

`S h

j D 1/2 P~h!

j2h
dh. (A2)

Here we derive an alternative inversion formula as there are s
ations regarding the behavior of the functionsP~j! andV8~j! at
infinity, for which ~A1! exists but not its inverse~A2!.

Consider the condition of existence of an integral on the se
infinite interval hP@0,̀ @ in regards to the behavior of its inte
grand at infinity; the integral obviously exists if the integran
behaves asj212a for large j and if a.0. Consequently, the in-
tegral in~A1! exists ifV8(j);j2a asj→` and if a.0. Similarly
the integral in ~A2! converges provided thata.1/2 if P(j)
;j2a as j→`. It then follows that there are situations whenP
can be evaluated using~A1! but when the inverse~A2! does not
exist. Indeed, consider the case whereV8~j! behaves asj2a at
MARCH 2000, Vol. 67 Õ 189
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infinity, with a in the open interval#0, 1/2@. It can then be shown
that the correspondingP~j! according to, i.e.,~A1! behaves also a
infinity as j2a with the same exponenta ~see Appendix B for a
proof of the particular casea51/3!. Obviously, the inverse~A2!
does not exist. As an example, consider the particular func
Va85j2a, 0,a,1/2. Then, according to~A1!, the corresponding
pressurePa5j2a/(4 tan pa). Note thatV1/28 5j21/2 is an eigen-
solution for the plane problem of a semi-infinite crack and t
P1/250.

The inversion formula~A2! is thus not applicable to the prob
lem considered in this paper, since the expected behavior forP at
infinity is characterized bya51/3. In this Appendix, we derive
inversion formulae applicable to that problem. First, we show t
there is a family of inversion formulae that are equivalent to
conventional inversion formula, whenever the latter exists. Ne
we prove that the new formulae are also applicable whenP~j!
behaving at infinity asj2a with a.0, although the conventiona
formula ~A2! exists only fora.1/2.

2 Alternative Inversion Formulae.To construct an inversion
with relaxed requirements onP~j! at infinity, we start by simul-
taneously adding to and substracting from the right-hand sid
~A2! the termC/2j1/2, whereC is for the time being an arbitrary
constant which we choose to express as

C5
8

p E
0

` h1/2P~h!

f ~h!
dh. (A3)

The functionf (h) in ~A3! is presently restricted to behave in su
a way that the constantC is bounded. The inversion formula~A2!
then becomes

V8~j!5
C

2j1/22
4

p E
0

`S h

j D 1/2 @j2h1 f ~h!#P~h!

~j2h! f ~h!
dh. (A4)

In order to relax the requirements on the behavior ofP~j! at
infinity to ensure convergence of the integral~compared to those
for ~A2!!, the aggregate@j2h1 f (h)#/ f (h) in ~A4! must vanish
at infinity as some negative power ofh. This can be achieved i
and only if f (h)5h1D, whereD is an arbitrary constant. In
deed, for this case, the inversion~A4! takes the form

V8~j!5
C

2j1/22
4

p E
0

`S h

j D 1/2S j1D

h1D D P~h!

j2h
dh (A5)

and the integral in~A5! exists if P~j! behaves at infinity asj2a

with a.0 ~actually witha.21/2, but as discussed below the ca
21/2,a<0 is of no interest since~A1! does not exist then!. Note
that this inversion formula withD51/2 is quoted by Srivastava
and Buschman@29#.

AlthoughD can be chosen arbitrarily, we will use the particul
valueD50. Hence~A5! becomes

V8~j!5
C0

2j1/22
4

p E
0

`S j

h D 1/2 P~h!

j2h
dh (A6)

with

C05
8

p E
0

` P~h!

h1/2 dh. (A7)

Obviously C is bounded ifP~j! behaves at infinity asj2a with
a.1/2. Actually, the constantC0 is the scaled stress intensit
factor and it can readily be recognized that~A7! is the classical
expression for the stress intensity factor as an integral of the
loading over the semi-infinite crack~e.g., @26#!. It can also be
proven that there is no contribution to the termj21/2 of V8~j!
from the integral in~A6!. ~There is a contribution to that term
from the integral in~A5! if DÞ0; however, the combination o
190 Õ Vol. 67, MARCH 2000
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that contribution and the termC/2j1/2 of ~A5! with C computed
from ~A3! is identical to the termC0/2j1/2 of ~A6! with C0 com-
puted from~A7!.!

Although we have focused on a net loadingP~j! behaving at
infinity as j2a with a.1/2, the general inversion formula~A5!
together with~A3!, and in particular~A6! with ~A7!, applies when-
ever ~A2! exists. As an example consider the classical probl
whereP51, 0,j,1 and zero elsewhere. Then~A2! gives

V8~j!5
8

pj1/22
4

p
lnU11j1/2

12j1/2U (A8)

and ~A6! yields

V8~j!5
C

2j1/22
4

p
lnU11j1/2

12j1/2U (A9)

with C516/p according to~A7!. The two inversion formulas~A2!
and ~A6! give therefore identical results.

3 General Case ofP(j);j2a at Large j, with 0,a
,1/2. The inversion formula~A5! was derived from the conven
tional ~A2! and, therefore, at this stage is proven to be the va
inverse of~A1! under the same conditions imposed on the load
at infinity as for the conventional one. Actually, as proven ne
~A5! or ~A6! gives the inverse of~A1! for any P~j! behaving at
infinity as j2a with a.0. However, in that case,C becomes an
arbitrary constant which cannot be determined by~A3! or ~A7!
anymore since the integral in these equations does not exist.

Consider first the particular loadingPa(j)52j2a/(4 tanpa)
for jP@0,̀ @. The corresponding dislocation density integr
Va8 (j) is given by~A5!

Va8 ~j!5
C22csc~pa!D1/22a

2j1/2 1j2a. (A10)

Note that ~A10! provides aVa8 (j) obtained by integration of
Pa(j) according to~A5! as long asa.21/2. However, the pair
Pa(h) andVa8 (j) satisfy ~A1! identically only fora.0, which,
as noted earlier, is the condition of existence of the integra
~A1!. Therefore,~A5! is the exact inverse of~A1! for the consid-
ered type of loading witha.0. Recall also that the termj21/2

does not contribute toP in ~A1!, as it is an eigensolution.
In the problem of interest, the loadingP~h! can be expressed a

P~h!5(
i 51

n

AiPa i
~h!1P r~h! (A11)

where 0,a i<1/2 andP r(h);h2b with b.1/2 at infinity. Ap-
plying ~A5! to the loadingP~h! specified by~A11!, we obtain the
correspondingV8~j!

V8~j!5(
i 51

n

AiVa i
8 ~j!1V r8~h! (A12)

whereV r8(h) is the result of~A5! applied toP r(h). Since each
pair (Pa i

(h),Va i
8 (j)) and (P r(h),V r8(h)) satisfy ~A1! identi-

cally and due to linearity of~A1!, P~h! andV8~j! given by~A11!
and ~A12!, respectively, satisfy~A1! identically. Therefore, for-
mula ~A5! gives the exact inverse of~A1! for any loadingP~h!
behaving at infinity ash2a with a.0.

Note finally that the inversion~A6! corresponding toD50 is
used in this paper.

Appendix B

Asymptotic Behavior at Infinity. In this Appendix, we
prove that the zero toughness singular solution~26! gives the
asymptotic behavior of the solution of~11!–~14! at infinity, see
~27!. To prove ~27!, we start by assuming that the asympto
behavior ofP at infinity is indeed given by~26!
Transactions of the ASME
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P~j!5P`~j!1O~j21/32a!, a.0, as j→`. (B1)

We can choosej`(k),` such that the asymptotic formula~B1!
is valid for any prescribed degree of accuracy forjP@j` ,`@ or,
in other words, the terms of orderO(j21/32a) in ~B1! are negli-
gible and can be dropped.

It follows from ~18! that the contributionVL8 (j) from the lag
loading to the derivative of the openingV8~j! is of orderj21/2 as
j→`. Let us find the asymptotic behavior at infinity for the co
tribution V r8(j) from the loading on the rest of the crack toV8~j!.
First, we split the integral in the expression~18! for V r8(j) in two
integrals I 1(j) and I 2(j) over the intervalsjP@L,j`# and j
P@j` ,`@ , respectively:

V r8~j!5I 1~j!1I 2~j! (B2)

where

I 1~j!52
4

p E
L

j`S j

h D 1/2 P~h!

j2h
dh

(B3)

I 2~j!52
4

p E
j`

`S j

h D 1/2 P~h!

j2h
dh.

Consider first the asymptotic behavior ofI 1(j) asj→`. Behav-
ior at infinity of the integralI 1(j) is constrained by the following
two inequalities:

mminj
21/21O~j21!<I 1~j!<mmaxj

21/21O~j21! as j→`
(B4)

wheremmin andmmax are finite non-negative numbers defined

mmax5
8

p
~Aj`2AL! mmin52P~j`!mmax. (B5)

Indeed, the net-loadingP~h! is bounded on the intervalh
P@L,j`#, PP@21,P(j`)#. Consider first the minimum value
for P on the interval under consideration,P~L!521. Sincej
.j` and P,0, I 1 is positive and an upper bound forI 1 is ob-
tained by substituting the functionP~h! by P~L!

I 1~j!<
4

p E
L

j`S j

h D 1/2 1

j2h
dh5

4

p
lnUAj1Aj`

Aj2Aj`

Aj2AL

Aj1AL
U .
(B6)

Hence,

I 1~j!<mmaxj
21/21O~j21! as j→`. (B7)

Thus,~B7! proves the right inequality in~B4!, which provides an
upper bound forI 1(j). The other inequality, which gives th
lower bound forI 1(j), can be proved in a similar fashion b
considering the upper net-loading boundP(j`).

Consider next the asymptotic behavior of the integralI 2(j).
Since j` is chosen sufficiently large, such that the asympto
expression~B1! for P~j! is valid on the intervaljP@j` ,`@ to any
chosen degree of accuracy, the first term of the asymptotic ex
sion for I 2(j) asj→` is determined by substitutingP` to P in
the integrand ofI 2 defined in~B3!

I 2~j!5 i 2~j,`!2 i 2~j,j`! (B8)

with

i 2~j,z![2
4

p E
0

zS j

h D 1/2 P`~h!

j2h
dh.

Evaluating the integrali 2(j,z) analytically and then calculating
the first term of the asymptotic expansion of the resulting exp
sion leads to

i 2~j,`!5bj21/31O~j21/2!, i 2~j,j`!5O~j21/2! (B9)
Journal of Applied Mechanics
-

s

tic

an-

es-

where b524/3321/6. Combining ~B2!, ~B4!, and ~B8! with ~B9!
yields

V r8~j!5bj21/31O~j21/2!. (B10)

Upon integrating ~B10!, using ~21!, and noting thatVL(j)
5O(j1/2), see~22!, we obtain the asymptotic expansion of th
opening of the crack asj→`

V~j!5
3

2
bj2/31O~j1/2! as j→`. (B11)

Noting that 3bj2/3/2[V`(j) ~see ~26!!, we conclude that the
asymptotic behavior of the solutionP~j;k! andV~j;k! at infinity,
~27!, is consistent with the elasticity Eqs.~21!–~23!. Furthermore,
this asymptote~27! satisfies the lubrication Eq.~11! automatically.
Therefore, if there exists a unique solution for any prescrib
k>0, then the asymptotic behavior of this solution at infinity
given by ~26!.

Appendix C

Numerical Scheme. This Appendix outlines the numerica
scheme used to solve the system~11!, ~21!–~23! on the semi-
infinite intervaljP@L,`@ with the boundary condition~24! and the
asymptotic behavior~27!. As shown next, this numerical algo
rithm yields a system of nonlinear algebraic equations in terms
the fluid pressure at nodes inside the fluid-filled part of the cr
and in terms of the toughnessk, given the lagL. ~Although the
length of the lagL is technically an unknown of the problem to b
solved as a function ofk, the lagL—i.e., the geometry of the
problem—is prescribed in the numerical solution and the co
spondingk solved numerically.!

Actually, we seek to determine numerically the transition b
tween the near-tip~14! and the far-field asymptote~27!, which are
reached to a certain prescribed degree of accuracy forjP@0,jo#
and jP@j` ,`@ , respectively. Let us introduceLo , L,Lo,jo
(Lo5L if jo<L), and L` , L`.j` and prescribe thatP(j)
5Po(j) for jP@L,Lo# ~if jo.L, otherwiseLo5L) and P(j)
5P`(j) for jP@L` ,`@ . Note that ifjo.L ~which corresponds
to the case of large toughnessk and small lag! we take into ac-
count the asymptotic behavior of the net-loadingP near the inter-
face between the tip cavity and the rest of the crack,j5L, and at
infinity; whereas ifjo<L ~corresponding to moderate and sma
toughness! the near interface asymptotePo(j) is not valid and we
only take into account the far-field asymptote~by imposingLo
5L). The constantsLo and L` have the meaning of ‘‘safe’’
guesses for the boundsjo and j` and must be chosen in such
way that the resulting solution in terms ofP be equal toPo(j) ~if
Lo.L) ~be equal toP`(j)) on several intervals immediatel
succeeding~preceding! the intervaljP@L,Lo#(jP@L` ,`@). In
other words, the intervals@L,Lo# and @L` ,`@ have to lie within
the region dominated by the corresponding asymptotes to pro
a smooth transition between the intermediate numerical solu
and the asymptotes.

We start by dividing the intervaljP@Lo ,L`# into n21 inter-
vals (j i ,j i 11), i 51, . . . ,n21, wherej15Lo , jn5L` and pre-
scribe the variation of pressureP over each boundary element t
be a linear function ofP`(j), i.e.,

P~j!5aiP`~j!1bi , jP@j i ,j i 11#, i 51, . . . ,n21.
(C1)

Using ~22!, one can deduce the expression forV r corresponding
to the net-loading representation~C1!

V r~j!5@Fo~j,h!#h5L
h5j11(

j 51

n21

@ajF`~j,h!1bjF~j,h!#h5j j

h5j j 11

1@F`~j,h!#h5jn

h5` (C2)
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where the functionsFo(j,h), F`(j,h), andF(j,h) are defined
as

F~j,h![
4

p E
0

h

K~j,h!dh

F`~j,h![
4

p E
0

h

K~j,h!P`~h!dh

Fo~j,h![
4

p E
0

h

K~j,h!Po~h!dh

52F~j,h!1
1

k2 $2 ln LF~j,h!1F ln~j,h!%

F ln~j,h![
4

p E
0

h

K~j,h!ln hdh.

FunctionsF`(j,h), F(j,h), and F ln(j,h) in the above formula
can be expressed in the following form:

F~j,h!52
4

p S 2Ajh1~j2h!lnUAj1Ah

Aj2Ah
U D

F`~j,h!5
4

p S 3

256D
1/3

j2/3H 4z12A3 arctanS 112z

A3
D

22A3 arctanS 122z

A3
D 1 ln

12z3

11z3 S 11z

12z D 3

2z4 lnS 11z3

12z3D 2J , z[S h

j D 1/6

F ln~j,h!5
4

p H 2Ajh~12 ln h!1~j2h~12 ln h!

2j ln h!lnUAj1Ah

Aj2Ah
U1x2jS Li 2S S h

j D x/2D
2Li 2S 2S h

j D x/2D D J ,

x[sgn~j2h!

and Li 2 and sgn denote the polylogarithmic function of order
and the sign function, respectively.

The coefficients in~C1! are determined by imposing continuit
of P~j! at the grid points, i.e.,P i5P(j i)

ai5
P i 112P i

P`
i 112P`

i , bi5P i2aiP`
i (C3)

whereP`
i 5P`(j i), andPo

i 5Po(j i). The values of net pressur
at the pointsj1 and jn are prescribed by the structure of soug
solution

P15Po~j1! ~or 21 if j15L!, Pn5P`~jn!. (C4)

Finally, the lubrication Eq.~11! can be evaluated at the mid
points of the intervals, using~21! for the crack-openingV, with
V r(j) expressed as a linear combination of the nodal valuesP i

by means of~C2! and ~C3!

V2~j j 11/2!P8~j j 11/2!51, j 51, . . . ,n21 (C5)

with the pressure gradientP8(j j 11/2) approximated as

P8~j j 11/2!5
P j 112P j

j j 112j j
. (C6)
192 Õ Vol. 67, MARCH 2000
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Taking into account the boundary conditions~C4!, ~C5! consti-
tutes a system ofn21 nonlinear algebraic equations in terms
the n21 unknownsP2 , . . . ,Pn21 andk. This nonlinear system
of equations is solved using the Newton iteration procedu
which is built in theMathematicacomputational software.
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Continuum Damage Mechanics
and Creep Life Analysis
It is shown that the original continuum damage mechanics model of Kachanov is b
suited for creep life analysis of creep-brittle solids and structures than continuum dam
mechanics models that take into account damage-induced softening.
@S0021-8936~00!03001-4#
a

i

n
a

i

,

r

r

m

e

m

s

-
e

nc-
ta

rmal
ave
ua-

sec-

ttle
l

on
eep
an
with

-
by
r

nci-

lue

the

t
t

1 Introduction
Continuum Damage Mechanics was introduced in 1958 by

late Prof. Lazar M. Kachanov. The premise of continuum dam
mechanics is that by modeling the kinetics of damage accum
tion one can predict the duration of the tertiary creep stage
thus estimate the creep life. The seminal idea of Kachanov
influenced many researchers, among others, Rabotnov@1#, Hay-
hurst and Leckie with co-workers~@2#!, and Chaboche and Lema
tre with co-workers~@3#!. Presently, continuum damage mecha
ics is an umbrella for many phenomenological a
micromechanical models concerned with distributed dam
~@4,5#!.

In this paper, we revisit one of the original themes of co
tinuum damage mechanics—creep life analysis of creep-br
~polycrystalline! solids and structures. Our approach is based
heuristic arguments rather than rigorous mathematical proofs
it allows us to cover essentially the entire spectrum of continu
damage mechanics models. The principal result of this pape
that, as far as creep life analysis of creep-brittle solids and st
tures is concerned, the original model of Kachanov@6# appears to
be more useful than more complicated models that take into
count damage-induced softening.

The paper is organized as follows. In Section 2, we summa
the fundamentals of continuum damage mechanics. In Sectio
we compare engineering and continuum damage mechanics
els for creep life predictions. Based on those comparisons,
argue that Kachanov’s model is better suited for practical cr
life analysis of creep-brittle solids and structures than continu
damage mechanics models that take into account damage ind
softening. In Section 4, we briefly discuss several issues relate
the principal result.

2 Continuum Damage Mechanics
In this section, we briefly summarize continuum damage m

chanics fundamentals. We do not distinguish between micro
chanical versus phenomenological models and scalar versus
sor damage variables, since those distinctions are neither u
nor necessary for our purposes.

2.1 Constitutive Equations. Continuum damage mechanic
is based on evolution equations for the creep straine and damage
variablev. For isothermal creep of a cylindrical bar induced by
uniaxial stresss, the evolution equations are

ė5 f ~v,s! (1)

and

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
28, 1999; final revision, June 8, 1999. Associate Technical Editor: J. W. Ju. Dis
sion on the paper should be addressed to the Technical Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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v̇5g~v,s!. (2)

Equations~1! and ~2! require the initial conditions

e5e0 and v5v0 at t50 (3)

and the termination condition

v5v f at t5t f . (4)

In ~3! and ~4!, e0 , v0 , andv f are prescribed data. The termina
tion condition~4! is an implicit equation for the time to fractur
~or the creep life! t f of the bar.

Usually the continuum damage mechanics constitutive fu
tions in ~1! and~2! are calibrated using either uniaxial creep da
or empirical equations that represent such data. For isothe
uniaxial creep data, there are two empirical equations that h
been widely used in the engineering community. The first eq
tion is a power-law relationship between the secondary~or mini-
mum! creep rate and stress~or Norton’s law!

ės5Bsn. (5)

The second equation is a power-law relationship between the
ondary creep rate and time to fracture~or Monkman-Grant’s for-
mula!

ės
nt f5C. (6)

In ~5! and~6! B, n, n andC are material constants. Equations~5!
and ~6! can be combined as

smt f5D, (7)

where

m5nn and D5B2nC.

This paper is concerned with creep life analysis of creep-bri
solids and structures~@7#! for which, under isothermal uniaxia
creep conditions, the ratio

e f

ėst f

<3.

Heree f is the strain at fracture. Such solids fail by accumulati
of intergranular damage associated with relatively small cr
strains. In contrast, creep-ductile solids, for which the ratio c
exceed ten, fail as a result of intragranular damage associated
relatively large creep strains.

2.2 Boundary Value Problems. To formulate boundary
value problems based on~1!–~4!, one has to generalize the con
stitutive equations to three dimensions. Usually this is done
replacings in ~1! and ~2! with stress invariants that are linea
combinations of either the Mises stress and the maximum pri
pal stress~@2#! or the principal stresses~@8#!.

In a typical continuum damage mechanics boundary va
problem, one can identify the latent and propagation stages~@6#!.
The latent stage lasts fromt50 to the timet l , when the first point
reaches the statev5v f , and the propagation stage consumes

n.
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remainder of the creep life. For example, in a circular cylindri
bar subject to torsion, the ‘‘fracture’’of the outer layer signifi
the end of the latent stage, and the remaining creep life invo
propagation of the fracture front toward the center. This and si
lar problems have been considered by Kachanov@9#.

Although formally one can use continuum damage mecha
equations for predicting the duration of the propagation sta
there are conceptual and practical difficulties with such pred
tions. From the conceptual perspective, we recall that continu
damage mechanics, as a continuum theory, is valid only at sc
that are significantly larger than the microcrack size and there
the field variations can be significant only over those, but
smaller scales. Most likely, this provision is violated near t
fracture propagation front, where large damage and stress g
ents are expected across the front. From the practical perspe
we recall that creep life predictions involve large margins of er
~@10#!, and therefore one should not extend the predicted creep
by adding to it the duration of the propagation stage. In the
mainder of this paper we disregard the propagation stage
equate the creep life with the duration of the latent stage.

2.3 Kachanov’s Model. Kachanov’s model is recovere
from ~1!–~4! once we put

f ~v,s!5Bsn, (8)

g~v,s!5
1

D~m11! S s

12v D m

, (9)

and

v050, e050, v f51. (10)

2.4 Models With Softening. The majority of continuum
damage mechanics models include the softening effect of dam
In the phenomenological context, such models were introduce
Rabotnov @1# and advanced by Hayhurst and Leckie with c
workers~@2#!, Lemaitre with co-workers~@3#!, and others; related
micromechanical models, applicable to structural creep life an
sis, were developed by Ashby and Dyson@7# and Dib and Rodin
@11#.

The softening effect is included by choosingf (v,s) such that

] f ~v,s!

]v
.0. (11)

On the one hand, this is a sensible improvement of Kachan
model as it captures the strain rate increase during tertiary cr
on the other hand, as will be shown in the next section, it app
to be a poor choice for practical creep life analysis of creep-br
solids and structures.

For our purposes, it is not necessary to specify explicit exp
sions for f (v,s) andg(v,s). Instead, we prescribef (v,s) and
g(v,s) implicitly, in terms of inequalities they must satisfy
Namely, we assume that

f ~v,s!.0 and g~v,s!.0, (12)

and

] f ~v,s!

]s
.0, and

]g~v,s!

]s
.0. (13)

The first pair of inequalities implies that there is no reverse cr
or damage healing, and the second pair of inequalities implies
the strain and damage rates increase with stress. As far as I k
these conditions are satisfied by all continuum damage mecha
models.

3 Creep Life Analysis
In this section, we consider three models for creep life analy

The first model represents engineering models~@10#!, and in par-
ticular it was used by De Witte@12# for creep life analysis of a
194 Õ Vol. 67, MARCH 2000
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turbine rotor~see also@13#!. We refer to this model as the eng
neering model and denote its attributes by the superscripte. The
second model is due to Kachanov@6# and the third model is a
generic continuum damage mechanics model with softening; t
attributes are denoted by the superscriptsk ands, respectively.

The objective in this section is twofold. First, we establish th
as far as creep life analysis is concerned, the engineering
Kachanov’s models are equivalent. Second, we show that,
creep-brittle solids and structures, Kachanov’s model is more c
servative than continuum damage mechanics models with so
ing, and therefore should be preferred for creep life analysis. F
thermore, we argue that continuum damage mechanics mo
with softening are of little use for creep life analysis of cree
brittle solids and structures in cases when Kachanov’s mode
too conservative.

3.1 Engineering Versus Kachanov’s Models. In the engi-
neering model, the creep life is computed using Robinson’s
mulative damage rule rather than an evolution equation for
damage variable~@14#!. This model is based on the following
steps:

• Compute the stress field using the standard power-law cr
constitutive equations.

• Determine the maximum Mises stresss̄max
e .

• Compute the creep life as

t f
e5D~ s̄max

e !2m. (14)

• For complex loading histories, one may choose several c
cal points and use

D5E
0

t f
e

@s̄max
e ~t!#mdt (15)

instead of~14!.

The following observations about the engineering model
important:

• The engineering model does not include the propaga
stage.

• The engineering and Kachanov’s models predict the sa
creep life as long as Kachanov’s model is extended to three
mensions by replacings with s̄. This statement holds for genera
stress histories~@14#!.

• The conceptual difference between the engineering
Kachanov’s models is that the former relies on real time while
latter usesv as intrinsic material time. The advantage of the e
gineering model is in its simplicity. The advantage of Kachano
model is that it allows one to correlate the creep life and mic
structural observations of damage~@10#!.

3.2 Kachanov’s Model Versus Models With Softening.
The objective in this section is to demonstrate that the creep
predicted with Kachanov’s~or engineering! model is longer than
the creep life predicted with models with softening. I cannot pro
this statement rigorously. Therefore, first, we consider an exam
problem that demonstrates how damage-induced softening
longs the creep life, and then we argue that this property of d
age induced softening holds in general.

Consider a symmetric truss made of three vertical bars that
identical except that the inside bar is longer by a factor ofa than
the outside bars~Fig. 1!. The upper ends of the bars are fixe
whereas the lower ends are attached to a rigid plate that can m
vertically only. The plate is loaded by a constant forceP applied
at its center. We consider two types of constitutive equations—
first type represents Kachanov’s model and the second type
resents models with softening.

For Kachanov’s model, the constitutive equations are chose

ėk5Bsk (16)

and
Transactions of the ASME
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12vk . (17)

For the model with softening, the constitutive equations are c
sen as

ės5B
ss

12vs (18)

and

v̇s5
1

2D

ss

12vs . (19)

For both models, we usee050, v050, andv f51.
The equilibrium and comparability equations for the given tru

are

2s1A1s2A5P (20)

and

ė15aė2 . (21)

Here the subscript 1 refers to the outside bars, the subscri
refers to the inside bar, andA denotes the cross-sectional area
the bars.

For Kachanov’s model, boths1 and s2 do not change with
time ~recall that the propagation stage is not considered in
analysis!, and their values are determined once~20! and ~21! are
combined with~16!:

s1
k5

a

112a

P

A
and s2

k5
1

112a

P

A
. (22)

Note thats1
k>s2

k and therefore the creep life is computed as

t f
k5

D

s1
k . (23)

For the model with softening, the expressions fors1 ands2 are
rather cumbersome but the important point is that they can
represented in the form

s1
s~ t !5s1

kh1~ t ! and s2
s~ t !5s2

kh2~ t !, (24)

where the functionsh1(t) andh2(t) satisfy the inequality

h2~ t !<h1~ t !<1. (25)

This inequality implies that, on the one hand, the outside bars
exposed to a more severe stress history than the inside bar, an
the other hand, the stresss1

s(t)<s1
k . The inequalitys1

s(t)<s1
k

stems from the fact that damage accumulation and consequ
softening is more active in the outside~more stressed! bars than in
the inside~less stressed! bar, and therefore, with time, the stress
redistributed from the outside bars to the inside bar. This st
redistribution leads to the longer creep life:

Fig. 1 Three-bar truss: The bars are identical except that the
inside bar is longer than the outside bars by a factor of a
Journal of Applied Mechanics
ho-

ss

t 1
of
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t f
s

t f
k 511

a21

2a21a
>1 ~a>1!.

Also, it is instructive to obtain this inequality from~25!

t f
k5

D

s1
k 5

1

s1
k E

0

t f
s

s1
s~t!dt5E

0

t f
s

h1~t!dt<t f
s .

Note that, ifa51, the truss becomes essentially statically det
minate and therefore the stress redistribution does not take p
In this case,h1(t)5h2(t)51 andt f

s5t f
k .

The example problem demonstrates that the softening me
nism operates so that the stress is redistributed away from h
stress regions to low-stress regions, and therefore the stress d
bution becomes less nonuniform. Obviously this property is
restricted to the example problem. Furthermore, this propert
shared by all softening mechanisms, as long as instabilities~in our
case the propagation stage! are absent. For example, power-la
creep can be regarded as a softening mechanism that red
stress concentrations induced by elastic deformation~@14#!. In
some sense, damage-induced softening endows the structure
adaptivity that adjusts its properties so that the stress is redis
uted from high-stress/high-damage regions to low-stress/l
damage regions. As a result, the stress histories at the cri
point~s! become less severe and the time to fracture increase

I cannot establish rigorously the necessary and sufficient c
ditions on f (v,s) and g(v,s) associated with the inequalityt f

s

>t f
k . Conditions formulated in~12! and ~13! may be sufficient

since they require that creep strain and damage accumulate
versibly ~12! and the accumulation processes are most active
high-stress regions.

Considering the fact that creep life analysis involves large e
margins, the engineer should prefer conservative estimates fot f ,
provided that those estimates are not too conservative. In
regard, continuum damage mechanics models with soften
could be useful if Kachanov’s model is too conservative. T
could happen if creep deformation induced by damage is sig
cant. But, if this is the case, the structure under consideratio
creep-ductile and one should consider models that emphasiz
tragranular damage and relatively large creep strains. A good
ample of such models is given by Dyson and Gibbons@15#.

In conclusion of this section, it is proper to point out that
three dimensions the validity oft f

s>t f
k can be challenged by argu

ing that the softening mechanism may affect one combination
the stress components whereas damage accumulation may be
trolled by a different combination. For example, in phenomen
logical continuum damage mechanics theories~@2#! the strain rate
is proportional to the deviatoric stresses and Mises stress, whe
the damage rate depends on the Mises stress and the max
principal stress. I believe that this situation is highly unlikely b
I cannot rule it out. Also,t f

s>t f
k may not hold for composite struc

tures because stress redistribution in one phase may adve
affect other phases.

4 Concluding Remarks

• The continuum damage mechanics models that take the
ening effect of damage into account, and proposed as genera
tions of the original model of Kachanov@6# appear to be of little
use for practical creep life analysis of creep-brittle solids a
structures.

• The conclusion that the importance of continuum dama
mechanics models with softening may have been overestimate
the academic circles is indirectly supported by Viswanathan@10#,
who compiled a comprehensive collection of models used in p
tical creep life analysis. There continuum damage mechanics
pears to be less prominent than various empirical equations, a
is used along the lines of Kachanov’s model.
MARCH 2000, Vol. 67 Õ 195
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• Considering the broad range of topics presently covered
continuum damage mechanics one should not take the pre
results out of the proper context, as they are limited to creep
analysis of creep-brittle solids and structures.
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The Stretching and Slipping of
Belts and Fibers on Pulleys
We derive the equations of motion for an extensible belt on a pulley in which all effec
inertia, including (for the first time) acceleration due to stretching, are retained in
momentum balance. These equations are also valid for fibers and films on rollers u
going cold draw. We apply our equations to the problem of torque transmission by a
between two pulleys, and compare the resulting solution to solutions in which centri
acceleration is included but stretching acceleration is neglected (the common engine
practice), and the solution in which both centrifugal and stretching accelerations
neglected. We find that ignoring both centrifugal and stretching accelerations resu
an overprediction of the maximum moment that can be transmitted, and, for a g
transmitted moment, underprediction of the slip angles on the driving and driven pu
and overprediction of belt strain rates and normal and frictional forces from the pulley
the belt in the slip zones. The common engineering practice of including the effe
centrifugal acceleration but neglecting stretching acceleration also results in errors
example underpredicting the maximum moment that can be transmitted, overpred
the slip angles, and underpredicting belt strain rates and normal and frictional force
the driving pulley. The percentage error increases as the ratios of belt stiffness to
trifugal acceleration or initial belt tension decrease.@S0021-8936~00!01401-X#
m

h

a
l

h

m
n
s

n
o
e

h

t

elt
the
ro-
of

tical
ting
har-

ob-

n in
ity
e
ys
the

he
on
and
all

be
ew
en-
wo
ing

l

e is
tion
ing
and
on
t in
n be
ng
de-
n of
the
is-

ss of

f
t
b

1 Introduction
The stretching and sliding of belts on pulleys or fibers and fil

on rollers have significant industrial implications. Torque tran
mission between pulleys is affected by the stretching and slipp
of the belt. In a fiber manufacturing process, polymeric fibers
drawn between feed and take-up rollers in order to improve t
mechanical properties. In a cold draw process~i.e., where no ex-
ternal heat is supplied! the draw occurs on the rollers, accomp
nied by stretching and sliding of fibers. Similar behavior is a
true for films. Although we address the problem of belts on p
leys and adopt this nomenclature, the formulation is equally
plicable to the drawing of fibers and films.

Any examination of a belt-pulley system which takes into a
count the compliance or elasticity of the belt, for prediction of t
slip angles on the pulleys, analysis of creep, etc., must, to
consistent, include the effects of changing belt stretch in the
mentum equations. These analyses recognize that the belt te
is not uniform; there is a tight side and a slack side. The ela
characterization of the belt indicates that this change of tensio
accompanied by a change of strain, so there must be a chan
stretch in the belt. This rate of change of stretch is an accelera
that results in a change of momentum.

In Section 2 we derive the momentum equation for a movi
stretching belt on a pulley. We find that in the normal projecti
of the momentum equation there is a centrifugal acceleration t
(Gv in Eq. ~3!2!, and in the tangential projection there is a chan
of stretch term (Gdv in Eq. ~3!1!. A review of the literature has
revealed that some studies of stretching belts neglect both of t
inertial terms in the momentum equations, and others incorpo
only the centrifugal acceleration term in the normal projectio
This paper is the first to include stretching acceleration in
tangential projection.

Without stretching acceleration, the two momentum projectio

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
24, 1999; final revision, Sept. 28, 1999. Associate Technical Editor: N. C. Perk
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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reduce to a single differential equation for the evolution of b
tension with arclength, decoupled from belt stretch. When
stretching acceleration term is included, the two momentum p
jections become coupled differential equations for the evolution
both belt tension and belt stretch, and to close the mathema
problem statement one must adjoin a constitutive equation rela
belt tension to belt stretch. For definiteness, in Section 3 we c
acterize the belt as linearly elastic.

In Section 5 we obtain and compare four solutions for the pr
lem of torque transmission of a belt between two pulleys~after
first presenting the governing equations for a belt in a free spa
Section 4!. The pulley radii, transmitted moment, angular veloc
of the driving pulley, initial tension in the belt, stiffness of th
belt, and coefficient of friction between the belt and the pulle
are considered to be specified, and the problem is solved for
angular velocity of the driven pulley, the angles over which t
belt is slipping on the driving and driven pulleys, the belt tensi
and speed at all locations along the belt, and the normal
frictional forces per length from the pulleys on the belt at
locations of contact, as well as the maximum moment that can
transmitted by the belt-pulley system. The first solution is our n
solution, which accounts for both stretching acceleration and c
trifugal acceleration in the momentum equations. The next t
solutions include centrifugal acceleration but neglect stretch
acceleration~the common engineering practice!. The fourth solu-
tion, recalled from the literature~@1#! neglects both centrifuga
acceleration and stretching acceleration.

Beyond having a consistent mathematical formulation, ther
a quantitative advantage to our solution. We find that the solu
in the literature which neglects both centrifugal and stretch
accelerations underpredicts the slip angles on the driving
driven pulleys, overpredicts the normal and frictional forces
the belt from the pulleys, overpredicts the strain rate of the bel
the slip zones, and overpredicts the maximum moment that ca
transmitted. The common engineering simplification of includi
centrifugal acceleration but neglecting stretching acceleration
creases the magnitude of the errors, and reverses the directio
some. The quantitative differences between our solution and
common engineering practice is slight for most power transm
sion applications, but these differences increase as the stiffne

b.
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li-
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the belt decreases and the speeds increase. It is essential to u
new equations in applications such as the drawing process in
manufacturing of polymer fibers and films, in which the sti
nesses are small and the speeds are great.

2 Equations of Mass and Momentum for Belts on
Pulleys

Following Carlson@2#, consider an extensible belt on a pulle
with radius r and angular velocityv. Without loss of generality
we assign the direction of increasing arclengths of the belt, posi-
tive belt speedv, and positive pulley rotationv to be the same.
We adopt an Eulerian formulation with the points fixed in space
and assume the motion is steady so that the conditions at loc
s are independent of time. The mass per volume and cr
sectional area of the belt arer andA, respectively. For this stead
motion, conservation of mass requires that the mass flow rateG is
constant,

G5rA~s!v~s!5constant. (1)

Figure 1 shows a free-body diagram of a space-fixed portio
the belt of lengthdsat locations, subtending an angledu. The belt
is in general extensible, so that the speed of the belt entering
domain ats is v and the speed exiting it ats1ds is v1dv. The
tension in the belt ats is T and ats1ds is T1dT. f andn are the
projections of the force per unit length from the pulley on the b
in the tangential and normal directions, respectively, as indica
in Fig. 1. We assign positivef to be in the direction of decreasin
s and positiven to be radially outward;f can be positive, negative
or zero, depending on the velocity or impending velocity of t
belt relative to the pulley. We ignore aerodynamic forces. Con
vation of momentum projected in the tangential and normal dir
tion are

2T cosS du

2 D1~T1dT!cosS du

2 D2 f rdu5Gdv cosS du

2 D ,

2T sinS du

2 D2~T1dT!sinS du

2 D1nds

52Gv sinS du

2 D2G~v1dv !sinS du

2 D . (2)

Using uduu!1 so that cos(du/2)'1 and sin(du/2)'du/2, Eqs.~2!
reduce to

dT2 f ds5Gdv, n5
T2Gv

r
, (3)

where we have taken products of infinitesimal quantities to
negligible.

As is noted in Amijima@3#, when adhesive forces are neglect
the normal force per unit lengthn from the pulley on the belt mus
be compressive~nonnegative according to our sign convention!,
which in combination with Eq.~3!2 demands

T2Gv>0. (4)

Fig. 1 Free-body diagram of a section of belt on a pulley
198 Õ Vol. 67, MARCH 2000
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Hence, at any point on the belt there must be a tension gre
than or equal to the mass flow rate of the belt times its speed
not, the pulley would have to pull on the belt to keep it in conta
and accelerating in a circular path. This the pulley cannot do,
the insufficiently tensioned belt will fly off the pulley.

Comparison With Belt Equations in the Literature. The
mass and momentum equations for a deformable belt on a pu
are Eqs.~1! and ~3!. A review of the literature revealed that a
studies employ the same mass Eq.~1!, but all use momentum
equations which are simplified forms of the momentum Eq.~3!.
For instance, Amijima@3,4#, Rothbart@5#, and Fazekas@6# employ

dT2 f ds50, n5
T2Gv

r
, (5)

where, comparing Eqs.~5! with Eqs.~3!, we see that the centrifu
gal term Gv is included in the normal projection~5!2, but the
inertia termGdv is absent from the tangential projection~5!1.
Equations~5! are an exact special case of Eqs.~3! if and only if
the stretch in the belt is uniform (dv50). Johnson@1#, Firbank
@7#, and all statics textbooks employ

dT2 f ds50, n5
T

r
, (6)

where the inertia terms are absent from both projections. Eq
tions ~6! are an exact reduction of Eqs.~3! if and only if the belt
is motionless (v50, dv50).

3 The Constitutive Model: A Linearly Elastic Belt
Unlike the momentum formulations~5! and ~6!, our formula-

tion ~3! couples the evolutiondT of belt tension explicitly to the
evolutiondv of belt stretch. Hence belt tension along the pull
surface cannot be computed from momentum considerat
alone; one must complement Eqs.~3! with a constitutive model
relating the belt stretch to belt tension. Many such models
possible, depending on the application. Here we assume the b
linearly elastic.

The axial strain« at a points of the belt is

«~s!5
dl~s!

dl ref
21, (7)

with dl(s) the length of an infinitesimal section of the belt
location s and dl ref the length of that section in some referen
state. We consider a belt for which the tension at a point on
belt depends only on the belt’s axial strain« at that point~i.e., the
belt is elastic!, and further that this dependence is linear. Henc

T~s!5Tref1k«~s!, (8)

where k is the elastic modulus~units of force! and Tref is the
tension in the reference state.~The linearly elastic assumption i
for the sake of definiteness; we could alternatively introduc
nonlinear elastic characterization, as in Amijima@3,4#!.

At any point s along the belt, the strain«(s) is related to the
belt speedv(s) at that point and the speedv ref of the belt in the
reference state by

v~s!5v ref ~11«~s!!. (9)

The relation~9! between strain and speed in the belt implies th
the tension may also be expressed as a function of belt spee
that the constitutive assumption Eq.~8! becomes

T~s!5Tref1kS v~s!

v ref
21D . (10)

4 Equation of Momentum for Belts in Free Spans
In the next section we solve the torque transmission probl

Since the problem involves free spans of the belt, we first give
equations governing the belt behavior of such a span. Mass
Transactions of the ASME
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servation in a free span is given by Eq.~1!. Figure 2 shows a
free-body diagram of a differential belt element of lengthdsats in
the freespan. Conservation of momentum gives

~T1dT!2T5G~v1dv !2Gv, (11)

or

dT5Gdv. (12)

Integration gives

T5Gv1c, (13)

wherec is a constant of integration. For a linear elastic belt
must have the rewritten form of Eq.~10!,

T5S k

v ref
D v1Tref 2k. (14)

The mass flow rateG ~which is dependent on the process! will not
in general equal the elastic modulus divided by the reference
locity. Hence

T5constant, v5constant, (15)

is the relevant solution of Eq.~12! in the free span for isotherma
motion.

5 The Torque Transmission Problem
We now solve the steady torque transmission problem of Fig

with an extensible, linearly elastic belt, and pulleys mounted
fixed center distance. We solve the problem three ways:~i! using
our momentum Eqs.~3! for the belt on the pulley, which accoun
for both centrifugal acceleration and the acceleration due
stretching;~ii ! using momentum equations in the form of Eqs.~5!,
where centrifugal acceleration is included but stretching accel
tion is neglected; and~iii ! using Eqs.~6! on the pulley surface,
which neglect both accelerations. The quasi-static solution~iii !
appears in the literature in Johnson@1#. It has long been held tha
the effect of centrifugal acceleration is significant, so that in b
applications solution~ii ! is used, never~iii !. It is also widely con-
jectured that the effect of the stretching inertia term is insign
cant, although it has never before been computed. Our new s
tion ~i! for the first time calculates this effect. We find

• computationally it is less problematic to retain both accele
tion terms than to include one and neglect the other; Eqs.~5! and
the elastic constitutive equation are inconsistent~the momentum
Eqs.~5! predict that the tension is changing in the belt, and he

Fig. 2 Control volume for a belt in a freespan

Fig. 3 Schematic diagram of a belt transmitting a torque M
between two pulleys
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the elastic constitutive equation demands that the stretch of
belt is changing, but this changing stretch is absent from Eqs.~5!!,
resulting in an artificially decoupled and, as we shall see, amb
ous problem statement,

• for relatively stiff belts ~in a sense we will make explici
later! solutions~i! and ~ii ! coincide, with solution~iii ! noticeably
different, supporting in such applications the common enginee
wisdom that that the effect of centrifugal acceleration is sign
cant and the effect stretching acceleration is insignificant, but

• for compliant belts, and fibers undergoing draw, solution~i!
is significantly different from solution~ii !, indicating that the ef-
fect of stretching in these applications is important.

The pulley radiir, transmitted momentM, driving pulley angu-
lar velocity v1 , initial belt tensionTinit , belt stiffnessk, and co-
efficient of friction m between the belt and the pulleys are a
sumed to be specified. The unknowns that constitute the solu
are the angular velocityv2 of the driven pulley, the subtende
anglesb1 and b2 over which the belt is slipping on the driving
and driven pulleys, respectively~see Fig. 3!, the belt tensionT(s)
and speedv(s) at all locationss along the belt, and the norma
and frictional forces per lengthn(s) and f (s) from the pulleys on
the belt at all locations of contact. We will see that solutions~i!
and~ii ! depend on the specified quantities through the four dim
sionless combinations

A5
M

2rk
, B5

Tinit

k
, C5

Gv1r

k
, m. (16)

Solution ~iii ! depends only onA, B, andm. ~We select combina-
tions ~16! rather than, say,M /2rT init ,k/Tinit ,Gv1r /Tinit , since it
is commonly argued that the fractional change due to includ
the stretching acceleration is proportional toGv/k5Gv1r /k, or,
stated differently, solution~ii ! likely can be obtained from solu
tion ~i! by lettingGv1r !k. Combinations~16! allow us to inves-
tigate this conjecture by considering the limit of smallC.!

In the free spans the tensions and velocities are constant~see
Eqs.~15!!. When a constant torqueM is transmitted between two
pulleys of the same radiusr as shown in Fig. 3, the tensionsTt in
the tight free span andTs in the slack free span are@1,8#

Tt5Tinit1
M

2r
5TinitS 11

A

BD , Ts5Tinit2
M

2r
5TinitS 12

A

BD ,

(17)

obtained by assuming the bearings are frictionless and summ
the moments on either pulley to zero;Tinit is the tensile force in
the belt when the momentM is zero.

We assume, as do Amijima@8#, Firbank @7#, and Johnson@1#,
that the belt is not slipping on either the driving or driven pulle
where it first attaches, so that the speedsv t andvs of the tight and
slack free spans are given by

v t5rv1 , vs5rv2 . (18)

We choose our reference state as the one in which the tensionTref
is zero, so that the linearly elastic constitutive Eq.~10! reduces to

T~s!5kS v~s!

v ref
21D , (19)

the same constitutive equation employed by Johnson@1#. Evalu-
ating this constitutive equation at the tight and slack free s
speeds and recalling Eqs.~17! gives

kS rv1

v ref
21D5TinitS 11

A

BD , kS rv2

v ref
21D5TinitS 12

A

BD .

(20)

These two equations can be inverted to give the angular velo
v2 of the driven pulley and the reference speedv ref in terms of
specified quantities,
MARCH 2000, Vol. 67 Õ 199
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v25S B2A11

B1A11Dv1 , v ref5
rv1

11A1B
. (21)

Note thatv2,v1 . Then the constitutive Eq.~19! can be recast as

T~s!5
Tinit

B F ~11A1B!
v~s!

rv1
21G . (22)

In the torque transmission problem the belt passes through
zones. In the direction of increasing arclengths ~clockwise!, re-
ferring to Fig. 3, they are the tight free span, no-slip zone on
driving pulley, the slip zone on the driving pulley, the slack fr
span, the no-slip zone on the driven pulley, and the slip zone
the driven pulley. We selects50 as the start of the tight free
span. In the following subsections we obtain, for each of the th
formulations, the belt tension, speed, and friction and norm
force per length through these zones as a function of arclengs,
as well as the angular extentsb1 andb2 of the slip zones.

5.1 Full Solution Retaining all Inertia Terms. We first
solve the problem using our Eqs.~3! when the belt is on the
pulley.
The tight free span: Belt behavior is governed by Eqs.~15!, so that

T~s!5Tt5TinitS 11
A

BD , v5v t5rv1 . (23)

No-slip zone on the driving pulley: The belt attaches without slip
to the driving pulley with the tight-span speedv t5rv1 , and
maintains this constant speed through a no-slip zone of yet-to
determined length. Since speed is constant so is strain, and h
in the elastic belt so is the tension,T5Tt . With constant speed
(dv50) and constant tension (dT50), Eq. ~3!1 demandsf 50:
there is no friction between belt and pulley in the no-slip zo
The normal force per lengthn is computed using Eq.~3!2. Sum-
marizing,

T~s!5TinitS 11
A

BD , v~s!5rv1 , f ~s!50,
(24)

n~s!5
Tinit

r S 11
A

B
2

C

BD .

Slip zone on the driving pulley: Since the belt leaves the drivin
pulley with the slack-span speedvs5rv2 less than the tight-span
speedv t5rv1 that it attaches~recall from Eq. ~21!1 that v1
.v2!, there must be a slip zone on the driving pulley. In this zo
the friction is kinetic, and, since the belt is moving slower than
pulley surface, the direction of this friction is in the direction
motion. Therefore, according to our sign convention,f 52mn
~recall Fig. 1!. Equations~1!, ~3!, and this friction relation reduce
to

d~T2Gv !

T2Gv
52mdu. (25)

Integrating Eq.~25! over the entire slip zone yields a relation fo
the angle of slipb1 on the driving pulley,

b15
1

m
lnS Tt2Grv1

Ts2Grv2
D5

1

m
lnF B1A2C

B2A2S B2A11

B1A11DCG .

(26)

The boundary between the no-slip and slip zones on the driv
pulley is therefore ats5L1r (p2b1), whereL is the length of
the free span. We integrate Eq.~25! from this boundary to arbi-
trary s within the slip zone:
200 Õ Vol. 67, MARCH 2000
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T~s!2Gv~s!5~Tt2Gv t!e
2m~ s̄/r !5TinitS 11

A

B
2

C

BDe2m~ s̄/r !,

(27)

where s̄5s2 l 2r (p2b1) is the arclength from the start of th
slip zone. To obtain the belt tensionT(s) and speedv(s) in the
slip zone separately as functions of arclength, we combine
~27! with the elastic constitutive Eq.~22! to obtain

T~s!5TinitF S 11
A

B
2

C/B

B1A112CDe2m~ s̄/r !1
C/B

B1A112CG ,
(28)

v~s!5rv1F S 12
1

B1A112CDe2m~ s̄/r !1
1

B1A112CG .
The normal and frictional forces per lengthn(s) and f (s) are then
obtained algebraically fromT(s) and v(s) via Eq. ~3!2 and the
friction relation:

n~s!5
T~s!2Gv~s!

r
5

Tinit

r S 11
A

B
2

C

BDe2m~ s̄/r !,
(29)

f ~s!52mn~s!52m
Tinit

r S 11
A

B
2

C

BDe2m~ s̄/r !.

Slack free span: In this zone, as in the tight free span, the spe
and the tension remain constant.

T~s!5Ts5TinitS 12
A

BD , v~s!5vs5rv25S B2A11

B1A11D rv1 .

(30)

No-slip zone on the driven pulley: The belt attaches to the drive
pulley at the slack-span speedvs5rv2 of the pulley surface. The
belt continues with this speed for a yet-to-be-determined dista
on the pulley. As in the no-slip zone on the driving pulley, there
no friction between belt and pulley. Summarizing,

T~s!5TinitS 12
A

BD , v~s!5S B2A11

B1A11D rv1 ,

f ~s!50, n~s!5
Tinit

r F12
A

B
2S B2A11

B1A11D C

B G . (31)

Slip zone on the driven pulley: In this zone the belt speed in
creases fromrv2 to rv1 . The belt is moving faster than th
pulley surface speedrv2 , so that according to our sign conven
tion f 5mn. Combining this friction relation with Eqs.~1! and~3!
gives

d~T2Gv !

T2Gv
5mdu. (32)

Integrating over the slip zone yields~since the friction coefficients
on both pulleys are the same! the same expression for the angle
slip b2 on the driven pulley as we obtained in Eq.~26! for the
angleb1 on the driving pulley,

b25b15
1

m
lnF B1A2C

B2A2S B2A11

B1A11DCG . (33)

Within the slip zone of the driven pulley,
Transactions of the ASME
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T~s!5TinitF S 12
A

B
2

C/B

B1A112CDem~s* /r !
1

C/B

B1A112CG ,
v~s!5rv1F S B2A11

B1A11
2

1

B1A112CDem~s* /r !
1

1

B1A112CG ,
(34)

n~s!5
Tinit

r S 12
A

B
2S B2A11

B1A11D C

B De~m/r !s* ,

f ~s!5m
Tinit

r S 12
A

B
2S B2A11

B1A11D C

B De~m/r !s* ,

where s* 5s22l 2pr 2r (p2b2) is the arclength measure
from the start of the slip zone.

The maximum valueMmax of torque that can be transmitted b
the extensible belt is

Mmax5
rT init

~emp11! H ~emp11!S C21

B D221F H S 12C

B D 2

14S 11
1

BD S 12
C

BD J emp2

1H 2S 12C

B D S 21
1

B
2

C

BD J emp1S 11C

B D 2G1/2J ,

(35)

found by setting the anglesb15b2 of the slip zones equal to th
maximum allowable valuep in Eq. ~26!.

5.2 Formulations Neglecting Stretching Acceleration in
the Momentum Equations. If the effect of centrifugal accelera
tion is included in the momentum equation, but not the tangen
acceleration, i.e., if Eqs.~5! are employed instead of Eqs.~3!, the
mass conservation, momentum, and friction equations in the
zones on the driving and driven pulleys reduce to

dT

T2Gv
52mdu,

dT

T2Gv
5mdu, (36)

respectively, rather than Eqs.~25! and~32!. The modeling incon-
sistency of this approximation~assumingdv50 in the momentum
equations but coupling change of speed with change of tensio
the elastic constitutive equation! allows for two possible ways to
interpret Eqs.~36!, and hence two different solutions.

5.2.1 The Engineering Solution.Consistent with the as
sumption in the momentum equation that change of speeddv is
negligible, the common engineering practice is to considerv in
Eqs.~36! to be the surface speedrv1 of the driving pulley. Inte-
grating over the slip zone of the driving pulley we obtain the an
of slip,

b15
1

m
lnS Tt2Grv1

Ts2Grv1
D5

1

m
lnS B1A2C

B2A2CD . (37)

Then, Eq.~36!1 is a decoupled differential equation for the ev
lution of belt tension in the slip zone of the driving pulley, whic
integrates to give

T~s!5~Tt2Grv1!e2m~ s̄/r !1Grv1

5TinitF S 11
A

B
2

C

BDe2m~ s̄/r !1
C

BG , (38)

where s̄5s2 l 2r (p2b1) is the arclength from the start of th
slip zone. The belt normal force per lengthn(s) and frictional
force per lengthf (s) are obtained algebraically fromT(s),

n~s!5
1

r
~T~s!2Grv1!5

Tinit

r S 11
A

B
2

C

BDe2m~ s̄/r !,
(39)
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f ~s!52mn~s!52m
Tinit

r S 11
A

B
2

C

BDe2m~ s̄/r !.

If v is also set torv1 in the slip zone of the driven pulley, on
obtains

b25b15
1

m
lnS B1A2C

B2A2CD ,

T~s!5TinitF S 12
A

B
2

C

BDem~s* /r !1
C

BG ,
(40)

n~s!5
Tinit

r S 12
A

B
2

C

BDem~s* /r !,

f ~s!5m
Tinit

r S 12
A

B
2

C

BDem~s* /r !,

wheres* 5s22l 2pr 2r (p2b2) is the arclength from the star
of the slip zone.

Note that belt elasticityk does not appear in this solution unle
one chooses to back out belt speed from the constitutive equa
~The problem for belt tension, normal force, and friction d
couples from the constitutive equation; each of the nondim
sional parametersA, B, C havek in their denominators, but solu
tions ~38! and ~39! depend only on the ratiosA/B, C/B, so that
there is nok dependence.!

The maximum torque that can be transmitted according to
solution is

Mmax52rT initS 12
C

BD S emp21

emp11D52r ~Tinit2Grv1!S emp21

emp11D .

(41)

5.2.2 Alternate Solution. Although Eqs. ~36! follow from
settingdv50 in the momentum equations, it is arguable thatv in
Eqs. ~36! can be considered as a dependent variable, relate
tensionT through the constitutive Eq.~22!. With this viewpoint,
Eq. ~36!1 becomes

dT

F S 12
C

B1A11DT2
Grv1

B1A11G 52mdu. (42)

Integrating this cumbersome expression over the slip zone
duces the angle of slip on the driving pulley,

b15
1

mS 12
C

B1A11D lnS B1A2
C

B1A112C

B2A2
C

B1A112C

D , (43)

and integrating to arbitrary location with the slip zone produce

T~s!5TinitF S 11
A

B
2

C/B

B1A112CDe2m~12C/~11A1B!!~ s̄/r !

1
C/B

B1A112CG , (44)

where s̄5s2 l 2r (p2b1) is the arclength from the start of th
slip zone. Belt speedv(s), normal force per lengthn(s), and
frictional force per lengthf (s) in the slip zone are then obtaine
algebraically fromT(s) using the elastic constitutive equation, th
normal projection of momentum, and the friction relation,
MARCH 2000, Vol. 67 Õ 201
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Table 1 Maximum moment Mmax that can be transmitted by the stiff „kÄ25 N… and compliant
„kÄ0.2 N… belts and corresponding critical values of the dimensionless parameter A , and the
slip angles b1Äb2 for the subcritical moment MÄ2.0 Nm, as predicted by the four solutions

Solution

k525 kN k50.2 kN

Mmax ~Nm! Amax b15b2 ~deg! Mmax ~Nm! Amax b15b2 ~deg!

Full ~Sec. 5.1! 2.764 1.10631023 113.488 2.993 1.50031021 103.992
Engineering~Sec. 5.2.1! 2.761 1.10431023 113.597 2.761 1.38131021 113.597
Alternate~Sec. 5.2.2! 2.760 1.10431023 113.545 2.910 1.45531021 109.040
Capstan~Sec. 5.3! 3.682 1.47331023 80.911 3.682 1.84131021 80.911
v~s!5v1r F S 12
1

B1A112CDe2m~12C/~B1A11!!~ s̄/r !

1
1

B1A112CG ,
(45)
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n~s!5
Tinit

r S 11
A

B
2

C

BDe2m~12C/~B1A11!!~ s̄/r !,

f ~s!52m
Tinit

r S 11
A

B
2

C

BDe2m~12C/~B1A11!!~ s̄/r ).
Fig. 4 Belt tension T„s … as a function of arc length s for a stiff belt „k
Ä25 kN, top … and a compliant belt „kÄ0.2 kN, bottom …: Circles „s… indicate lo-
cations of attachment to the pulleys, and boxes „h… indicate locations of depar-
ture. Full solution „——…, engineering solution „– – –…, alternate solution
„" " " "…, and capstan solution „ " " " …. The full, engineering, and alternate
solutions are indistinguishable for the stiff belt case.
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Fig. 5 Belt speed v „s … as a function of arc length s for a stiff belt „kÄ25 kN,
top … and a compliant belt „kÄ0.2 kN, bottom …: Circles „s… indicate locations of
attachment to the pulleys, and boxes „h… indicate locations of departure. Full
solution „——…, alternate solution „" " " "…, and capstan solution „ " " " ….
The full and alternate solutions are indistinguishable for the stiff belt case.
o

t

The solutions for slip angle on the driven pulley, and belt tensi
belt speed, and normal and frictional forces in the slip zone of
driven pulley are obtained in a similar fashion by integrating E
~36!2,

b25b15
1

mS 12
C

B1A11D lnF B1A2
C

B1A112C

B2A2
C

B1A112C

G ,

T~s!5TinitF S 12
A

B
2

C/B

B1A112CDem~12C/~B1A11!!~s* /r !

1
C/B

B1A112CG ,

hanics
n,
the
q.

v~s!5rv1F S B2A11

B1A11
2

1

B1A112CDem~12C/~B1A11!!~s* /r !

1
1

B1A112CG , (46)

n~s!5
Tinit

r F12
A

B
2S B2A11

B1A11D C

B Gem~12C/~B1A11!!~s* /r !,

f ~s!5m
Tinit

r F12
A

B
2S B2A11

B1A11D C

B Gem~12C/~B1A11!!~s* /r !,

wheres* 5s22l 2pr 2r (p2b2) is the arclength from the star
of the slip zone.
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Fig. 6 Normal force per unit length n „s … from the pulleys on the belt for a stiff belt „k
Ä25 kN, top … and a compliant belt „kÄ0.2 kN, bottom …: Full solution „——…, engineering solution
„– – –…, alternate solution „" " " "…, and capstan solution „ " " " …. The full, engineering, and
alternate solutions are indistinguishable for the stiff belt case.
t

n
tions,
red.
tion
tan
The prediction of the maximum possible torque that can
transmitted is

Mmax52rT initFg~B11!2mp~B112C!

B~mp2g! G , (47)

whereg is the root of

2~B11!egg21mp@~C2322B!eg111C#g

1m2p2~eg21!50, (48)

that produces the least value ofMmax.

5.3 Capstan Solution Neglecting Inertia in the Momentum
Equations. The solution of Johnson@1#, in which inertia is ne-
glected in the momentum equations~i.e., Eqs.~6! and ~22! are
solved instead of Eqs.~3! and ~22!!, is recovered by settingC
50 with A andB finite in either the full solution of Section 5.1
the engineering solution of Section 5.2.1, or the alternate solu
of Section 5.2.2; all three collapse to the same solution.~Alterna-
tively, the solution can be obtained by settingC/B50, with A/B
MARCH 2000
be

,
ion

andB21 finite.! In this formulation the predictions of behavior i
the two free spans are the same as those in the previous solu
but the prediction in all zones on the pulley surfaces are alte
For instance, in the absence of inertia the momentum and fric
relations in the driving pulley slip zone reduce to the caps
equation,

dT

T
52mdu, (49)

the slip angles are given by

b15b25
1

m
lnS Tt

Ts
D5

1

m
lnS B1A

B2AD , (50)

and the maximum momentMmax that can be transmitted is

Mmax52rT initS emp21

emp11D . (51)
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Fig. 7 Frictional force per unit length f „s … from the pulleys on the belt for a stiff belt „k
Ä25 kN, top … and a compliant belt „kÄ0.2 kN, bottom …: Full solution „——…, engineering solution
„– – –…, alternate solution „" " " "…, and capstan solution „ " " " …. The full, engineering, and
alternate solutions are indistinguishable for the stiff belt case.
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5.4 Comparison. We have presented four solutions to th
torque transmission problem:

• our new solution~developed in Section 5.1 and referred to
the full solution!, which for the first time includes the effect o
stretching acceleration in the momentum equations;

• two solutions which neglect stretching acceleration in
momentum equations~contained in Sections 5.2.1 and 5.2.2, a
referred to as the engineering solution and alternate solution
spectively!; and

• the solution that neglects all inertia contributions in the m
mentum equations~contained in Section 5.3 and referred to as t
capstan solution!.

We first note that neither of the two solutions which inclu
centrifugal acceleration and neglect stretching acceleration co
spond to a specialization of the full solution to smallC
5Gv1r /k. These solutions follow from keeping theC terms in
some of the governing equations~specifically the normal projec
tion of momentum and, in the alternate solution, the constitu
equation! but dropping theC terms from others~e.g., the tangen-
lied Mechanics
e

s
f

he
d
re-

o-
he

e
rre-

ive

tial projection of momentum! before solving them, and hence d
not represent some limit of the full solution. As noted in Secti
5.3, settingC5Gv1r /k50 with A5M /2rk, B5Tinit /k finite
~neglecting inertia with respect to elastic stiffness!, or setting
C/B5Gv1r /Tinit50 with B215k/Tinit , A/B5M /2rT init finite
~neglecting inertia with respect to initial belt tension! in the full,
engineering, and alternate solutions reduces all three to the
stan solution.

To examine the differences between the predictions of the f
formulations for nonzero values ofC and C/B, we consider the
two cases with the same initial tensionTinit550 N, pulley radius
r 50.05 m, driving pulley angular velocityv15500 rad/s, belt
mass flow rateG50.5 kg/s, and coefficient of frictionm50.6, but
with differing elastic modulik. The modulusk525 kN in the first
case corresponds to a stiff belt; the valuek50.2 kN of the second
case is much smaller, approaching that of a textile tow in a dr
ing process. The dimensionless combinations areB5231023,
C5531024 for the stiff belt case (k525 kN) and B52.5
31021, C56.2531022 for the compliant belt case (k
MARCH 2000, Vol. 67 Õ 205
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50.2 kN). In both cases we take the lengthL of each free span to
be pr , so that the length of the total belt circuit is 2pr 12L
54pr 50.2p m ~see Fig. 3!.

The maximum momentsMmax that can be transmitted in eithe
case and the corresponding dimensionless critical valueAmax, as
predicted by the four solutions, are given in Table 1. The caps
solution ~47! gives the same valueMmax53.682 Nm for bothk
525 kN andk50.2 kN since extensibility effects are decouple
from the momentum equations in this approximation; in bo
cases the capstan solution severely overpredicts the maxim
possible moment, by 33 percent and 23 percent, respectiv
When centrifugal acceleration is included in the formulation, b
not stretching acceleration~the engineering and alternate sol
tions! the maximum moment is underpredicted. For stiff be
relative to inertia or initial tension~small values ofC or C/B! the
error is slight, in agreement with the common prejudice in en
neering practice, but as the belt becomes relatively more com
ant the error due to neglecting stretching acceleration increa
The errors are 0.11 percent and 0.14 percent fork525 kN, and
7.8 percent and 2.8 percent fork50.2 kN in the engineering and
alternate solutions, respectively. We note that the alternate s
tion is worse than the engineering solution in the stiff belt ca
but better than the engineering solution for the compliant belt

Table 1 also displays the slip anglesb15b2 on the driving and
driven pulleys forM52.0 Nm~A5831024 for the stiff belt case
andA5131021 for the compliant belt case!, a value selected so
as to be less than the maximum momentMmax that can be trans-
mitted for either value ofk, as predicted by all four solutions
Figures 4, 5, 6, and 7 display the four predictions of belt tens
belt speed, normal force per length, and frictional force per len
as functions of arclengths for the complete circuit of the belt, fo
this specified subcritical moment. For the stiff belt the predictio
of the engineering and alternate solutions are graphically indis
guishable from those of the full solution, whereas the caps
solution neglecting all effects of inertia significantly underpredi
the lengths of the slip zones and significantly overpredicts
strain rate of the belt and the normal and frictional forces on
belt in the slip zones. In the compliant belt case, the enginee
and alternate solutions depart noticeably from the full solution
well. On the driving pulley the errors are in the opposite directio
of the inertia-less capstan solution, overpredicting the slip zo
and underpredicting strain rates and frictional and normal forc
On the driven pulley the errors are more complicated to descr
Both the engineering and alternate solutions overpredict the ex
of the slip zone, and in this zone the alternate solution overp
dicts the normal and frictional forces; the engineering solut
predictions for normal and frictional forces coincide with the fu
solution where the zones coincide. Since the engineering solu
206 Õ Vol. 67, MARCH 2000
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incorrectly sets the belt speed in the no-slip zone on the dri
pulley to be the surface speed of the driving pulley, it overpred
the normal force there.

6 Discussion
The quantitative differences just observed between the solu

including stretching acceleration in the momentum equations
the solutions neglecting stretching acceleration increase as
stiffness of the belt decreases and the speeds increase. The
tions we have derived in this paper are also applicable to
drawing process in the manufacturing of polymer fibers and film
In these processes the fiber or film is routed through a serie
rollers, each with faster surface speeds than the one before. M
if not most of the stretching~i.e., draw! can occur on the roller
surfaces. In applications of the equations of this paper to fiber
film drawing, the pulleys become the rollers and the belt becom
the fiber or film. Stiffnesses are much less and speeds usu
much greater than in the torque transmission problem consid
here, and it will be essential to use Eqs.~3! rather than Eqs.~5! or
~6!.
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Asymmetric Four-Point Crack
Specimen

M. Y. He
Materials Engineering Department, University of
California, Santa Barbara, CA 93106

J. W. Hutchinson
Fellow ASME, Division of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138

Accurate results for the stress intensity factors for the asymme
four-point bend specimen with an edge crack are presented
basic solution for an infinitely long specimen loaded by a const
shear force and a linear moment distribution provides the ref
ence on which the finite geometry solution is based.
@S0021-8936~00!03601-1#

This note was prompted by a comparison~@1#! of existing nu-
merical solutions~@2–4#! for the crack specimen known as th
asymmetric four-point specimen shown in Fig. 1. Discrepanc
among the solutions are as large as 25 percent within the pa
eter range of interest. Moreover, in some instances the full se
nondimensional parameters specifying the geometry~there are
four! have not been reported. The specimen has distinct ad
tages for mixed mode testing, including the determination
mixed mode fatigue crack thresholds. Here a new fundame
reference solution is given for a infinitely long cracked specim
subject to a constant shear force and associated bending mo
distribution. The small corrections needed to apply this solution
the finite four-point loading geometry are included.

By static equilibrium~the configuration in Fig. 1 is statically
determinant!, the shear force,Q, between the inner loading point
and the bending moment,M, at the crack are related to the forc
P, by ~all three quantities are definedper unit thickness!:

Q5P~b22b1!/~b21b1! and M5cQ. (1)

Consider first the reference problem of an infinite specim
with crack of lengtha subject to a constant shear forceQ and
associated linearly varying bending momentM. In the absence of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, Feb. 22, 1999. Associate Technical Editor: A. Needleman.
Copyright © 2Journal of Applied Mechanics
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the crack, the exact solution for the cross section has a parab
distribution of shear stress proportional toQ and a linear variation
of normal stress proportional toM ~@5#!. By superposition of these
two contributions, the solution for the intensity factors in the pre
ence of the crack can be written exactly in the form

K I
R5

6cQ

W2 ApaFI~a/W! (2a)

K II
R5

Q

W1/2

~a/W!3/2

~12a/W!1/2 F II~a/W! (2b)

where, anticipating the application, we have takenM5cQ at the
crack. The solution~2a! is the same as that for a pure moment.
has been obtained numerically to considerable accuracy. T
et al. @6# give

F IS a

WD5A2W

pa
tan

pa

2W

0.92310.199S 12sin
pa

2WD 4

cos
pa

2W

for 0<
a

W
<1 (3a)

while Murakami@7# gives

F IS a

WD51.12221.121S a

WD13.740S a

WD 2

13.873S a

WD 3

219.05S a

WD 4

122.55S a

WD 5

for
a

W
<0.7. (3b)

The second solution~2b! is not in the literature.
Finite element analyses of the reference problem have b

carried out to obtain bothF I ~as a check! andF II . Our results for
F I agree with~3b! to four significant figures over the entire rang

icsFig. 1 Geometry of the asymmetric bending and shear
specimen
000 by ASME MARCH 2000, Vol. 67 Õ 207
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of a/W indicated. Equation~3a! appears to be less accurate ov
this same range~with error less than two percent!, but it can be
used fora/W.0.7. The same finite element meshes were use
computeF II . The following polynomial representation was o
tained by fitting the numerical results:

F IIS a

WD57.26429.37S a

WD12.74S a

WD 2

11.87S a

WD 3

21.04S a

WD 4

for 0<
a

W
<1. (4)

This result is believed to be accurate to within one percent o
the entire range ofa/W. The results of Suresh et al.@4# deter-
mined for a specific choice of the other dimensional parameter
the finite geometry are in good agreement with~4!.

Without loss of generality, the solution for the asymmetrica
loaded specimen in Fig. 1 can be written as

K I5
6~c2c0!Q

W2 ApaFI~a/W! (5a)

K II5
hQ

W1/2

~a/W!3/2

~12a/W!1/2 F II~a/W! (5b)

where, in general,c0 /W andh are functions ofa/W, c/W, b1 /W,
andb2 /W. The mode I stress intensity factor is not precisely ze
whereM50, motivating the introduction ofc0 . The representa-
tion ~5! is chosen because it reduces to the reference solu
(c0 /W50,h51) when the loading points are sufficiently far fro
the crack. The finite element results presented below indicate
reference solution is accurate to within about two percent as l
as the distance of nearest loading point to the crack is greater
1.4W.

Fig. 2 Location of the crack for pure mode II at its tip „aÄ1…

Fig. 3 Correction factor for mode II intensity factor „aÄ1…
208 Õ Vol. 67, MARCH 2000
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Figure 2 displays the dependence ofc0 /W on a/W for three
values ofb1 /W and a[(b22b1)/W51. This was computed as
thec/W at whichK I50. If the moment at the crack vanishes~i.e.,
c50!, the mode I factor can be significant when the loadi
points are near the crack. For example, for the extreme, but
entirely unrealistic case, whereb1 /W50.6,a51, a/W50.2, and
c50, the mode mixity,c5tan21(KII /K I), is 65 deg instead of 90
deg.

Variations of the mode II correction factorh with a/W for
severalc/W are shown in Fig. 3 forb1 /W51.0 anda51. The
error is largest for short cracks and for cracks on the order o
distanceW from the closest loading point. Curves correspondi
to constant values of the correction factor are plotted in Fig
with c/W50.2 anda51. If the combination (b1 /W,a/W) lies
above the curve, the correction factor will be smaller than
correspondingh.

Finally, the effect of the parametera5(b22b1)/W is dis-
played in Fig. 5 by normalizing each of the respective stress
tensity factors by the reference value from~2!. These results have
been computed withb1 /W51.4 andc/W50.2. The error in the
reference values is less than roughly 2 percent whena.0.5.

The plots in Figs. 2–5 provide guidance for either:~i! ensuring
the test parameters are such that the reference solution~2! can be
used with confidence, or~ii ! estimating the corrections to the re
erence solution using~5!. As long as the distance between th
crack and the nearest loading point is greater than about 1W

Fig. 4 Error boundaries for mode II stress intensity factor of
two percent and four percent for „aÄ1… for the reference solu-
tion „2…. Combinations „aÕW,b 1 ÕW… lying above a boundary
have smaller error.

Fig. 5 Role of aÄ„b 2Àb 1…ÕW in error of the reference solution
„2… for b 1 ÕWÄ1.4 and c ÕWÄ0.2
Transactions of the ASME
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~i.e., (b12c)/W.1.4 withb2.b1! the reference solution is accu
rate to within a few percent. The errors in the reference solu
are the smallest for deep cracks, i.e.,a/W>0.5.
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Large Shearing of a Prestressed Tube

M. Zidi
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This study is devoted to a prestressed and hyperelastic tube
resenting a vascular graft subjected to combined deformatio
The analysis is carried out for a neo-Hookean response a
mented with unidirectional reinforcing that is characterized by
single additional constitutive parameter for strength of reinforc
ment. It is shown that the stress gradients can be reduced
presence of prestress.@S0021-8936~00!00101-X#

1 Introduction
Mechanical properties are of major importance when selec

a material for the fabrication of small vascular prostheses.
operation and the handing of prostheses vessel by surgeons, o
one part, the design of such grafts, on the other, induce spe
loading and particularly boundary or initial conditions. Cons
quently, the interest in developing a theoretical model to desc
the behavior of the prostheses vessel is proved~@1#!. In this paper,
we consider a thick-walled prestressed tube, hyperelastic, tr
versely isotropic, and incompressible assimilated to a vessel g
We give an exact solution of the stress distributions when the t
is subjected to the simultaneous extension, inflation, torsion,
muthal, and telescopic shears~@2–10#!. The first theoretical re-
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sults, in the case of a silicone tube, indicate that the increas
prestress minimizes the stress gradients due to the effects o
shear.

2 Model Formulation
Consider a nonlinearly elastic opened tube defined by the a

v0 ~Fig. 1!. Let us suppose that the tube undergoes two succes
deformations; first, including the closure of the tube which
duced residual strains~@11#! and second, including inflation, ex
tension, torsion, azimuthal and telescopic shears. The mappin
described by

r 5r ~R! u5S p

v0
Dv1faZ1Q~r ! z5laZ1D~r ! (1)

where (R,v,Z) and (r ,u,z) are, respectively, the reference an
the deformed positions of a material particle in a cylindrical s
tem. f is a twist angle per unloaded length,a and l are stretch
ratios~respectively, for the first and the second deformation!, Q is
an angle which defined the azimuthal shear, andD is an axial
displacement which defined the telescopic shear.

It follows from ~1! that the physical components of the defo
mation gradientF has the following representation in a cylindric
system:

F5F ṙ ~R! 0 0

r ~R!Q̇~r ! ṙ ~R!
r ~R!

R

p

v0
rfa

Ḋ~r ! ṙ ~R! 0 al

G (2)

where the dot denotes the differentiation with respect to the a
ment.

Incompressibility then requires thatJ[detF51, which upon
integration yields

r 25r i
21

v0

pal
~R22Ri

2! (3)

whereRi andr i are, respectively, the inner surfaces of the tube
the free and in the loaded configurations~Re and r e are the outer
surfaces!.

The strain energy density per unit undeformed volume for
elastic material, which is locally and transversely isotropic ab
the t(R) direction, is given by

W5W~ I 1 ,I 2 ,I 3 ,I 4 ,I 5! (4)

where

I 15TrC, I 25
1
2@~TrC!22TrC2#, I 351,

I 45tCt , I 55tC2t (5)

are the principal invariants ofC5F̄F which is the right Cauchy-
Green deformation tensor~F̄ is the transpose ofF!.

The corresponding response equation for the Cauchy stres
for transversely isotropic incompressible is~see@12#!

s52p112@W1B2W2B211I 4W4T ^ T

1I4W5~T ^ B"T1T"B^ T!# (6)

whereB5FF̄ is the left Cauchy-Green tensor,1 the unit tensor,
and p the unknown hydrostatic pressure associated with
incompressibility constraint,Wi5(]W/]I i) ( i 51,2,4,5) and
T5(1/AI 4)Ft.

From ~6!, the equilibrium equations in the absence of bo
forces are reduced to

ds rr

dr
1

s rr 2suu

r
50 (7a)r.

ll.
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Fig. 1 Cross section of the tube in the stress-free „a…, unloaded „b…, and loaded configuration
„c…
-

ds ru

dr
1

2s ru

r
50 (7b)

ds rz

dr
1

s rz

r
50. (7c)

Suppose thatQ and D satisfy the following boundary condi
tions: ~a! Q5Q i , D5D i in r 5r i and ~b! Q5Qe , D5De in r
5r e . Then, a simple computation by integrating~7b! and ~7c!
gives the expression ofQ andD.

Integrating~7a!, given the boundary conditions thats rr (r i)5
2pi ands rr (r e)50, and takingt(R)5tv(R)ev1tZ(R)eZ and us-
ing ~3! yields the pressure fieldp:
, MARCH 2000 Copyright © 2
p~r !5pi12W1S Rv0

rpal D 2

22W2f ~r !1E
r i

r s rr 2suu

s
ds

(8a)

where

f ~r !5Ḋ2~r !F 1

~al!2 1S Rv0f

pl D 2G
1Q̇2~r !S Rv0

p D 2

22
Q̇~r !Ḋ~r !fv0

2

ap
1S rpal

Rv0
D 2

.

(8b)
Fig. 2 Azimuthal stresses distribution inside the wall without fibers „stresses normalized by s r u„r e…, mÄ0.166 Mpa,
p iÄ0.0133 Mpa, t iÄ2 mm, teÄ3 mm …
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Fig. 3 Azimuthal stresses distribution inside the wall with fibers „stresses normalized by s r u„r e…, mÄ0.166 Mpa, Ef
Ä10 Mpa, p iÄ0.0133 Mpa, t iÄ2 mm, teÄ3 mm …
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The expressions ofQ, D, andp determine all the components o
the Cauchy stress tensors.

3 Results
To illustrate the response of the proposed model, we use

extended Mooney Rivlin strain energy function which represe
the behavior of a prosthesis~@13#! constituted of a silicone matrix
and textile fibers,

W5W~ I 1 ,I 4!5
m

2
~ I 123!1

Ef

8
~ I 421!2, (9)

wherem is the shear modulus of the isotropic matrix at infinite
mal deformations andEf is the elastic modulus of the fibers.

The local tangent vector of the fibers is chosen here ast(R)
5cosg(R)ev1sing(R)eZ that represent a helical distribution o
fibers ~@1#!.

From Eqs.~7b!, ~7c! and using~3! it easily follows that the
expressions ofQ andD are

Q~r !5~Qe2Q i !

logF r

r iA11k~r 22r i
2!
G

logF r e

r iA11k~r e
22r i

2!
G 1Q i (10)

D~r !5~De2D i !
log@11k~r 22r i

2!#

log@11k~r e
22r i

2!#
1D i (11)

wherek5pal/Ri
2v0 .

As an illustrative result, we focus our attention only when t
tube is submitted to azimuthal shear strain. Figure 2 shows
distribution of circumferential stresses generated by applied ex
urnal of Applied Mechanics
f

the
nts
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f

e
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nal azimuthal strain at a given pressure when taking into acco
the effects of such residual stresses. We show clearly that a
crease inv0 angle helps to distribute stresses in the loaded s
when the shear is important. This result does not change qua
tively when varying the pressurepi .

Furthermore, the particular effects of the presence of fib
have been examined with a linear distribution of fiber orientat
within the data rangeg(Ri)5240 deg andg(Re)540 deg. As
illustrated in Fig. 3, it is shown here that the effects of the a
muthal shear upon the distribution of the circumferential stres
within the wall become significant. When the tube is prestress
the stresses are also distributed. Clearly these results will be
to help the design and fabrication of a small vascular prosth
~@1#!.
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Buckling of a Short Cylindrical
Shell Surrounded by an
Elastic Medium
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The lateral surface of a cylindrical structure, which is compos
of a thin tube embedded in a large outer medium, is submitte
a uniform external pressure. The buckling pressure of suc
structure, corresponding to a low flexural state of the inner tu
wall, is theoretically analyzed on the basis of the asympto
method. The theoretical results are compared with experime
ones obtained from a compression test realized on an elastic
inserted in a foam. It is found that the Euler pressure and
associated buckling mode index strongly depend upon the r
logical and geometrical parameters of both the tube and the s
rounding medium.@S0021-8936~00!00201-4#

1 Formulation of the Problem and Buckling Study
A nonhomogeneous cylindrical structure composed of a t

shell inserted in a surrounding elastic medium was subjected
state of plane strain by external pressurization and zero axial
gitudinal displacement constraint. The onset of the buckling p
cess for such a structure was analyzed. The theoretical re
were compared with original experimental ones as derived fro
hoop compression test which was conducted with elastic rub
tubes embedded in foamy materials.

Thus, we consider the mechanical behavior of a cylindri
nonhomogeneous structure made of an internal shell confined
large outer medium, the whole structure being submitted to a
form pressurep on its external lateral surface. Each solid is ela
tic, cylindrical—of same axis—with a circular cross section in t
reference configuration. In this configuration, the mean radiu
the shell is denoted asr 0 . The outer radiusr ` of the medium is
assumed to be very large compared tor 0 . We will denote ase0
the thickness of the shell. The two solids have the same he
which is small in comparison withr ` . The outer lateral boundary

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
12, 1999; final revision, July 22, 1999. Associate Technical Editor: S. Kyriadide
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of the medium is subjected to a uniform pressurep. We assume
frictionless contact between the two tubes. Body forces and ine
effects are deemed to be negligibly small.

The work of Forrestal and Herrman@1# presents solutions for
both bonded and smooth conditions at the shell-medium interf
it includes a geometrically nonlinear formulation for both the sh
and the medium. Moore and Booker@2# presented the linear ap
proximation of Forrestal and Herrman’s formulation. The physi
unknowns which are involved in these theoretical formulations
the buckling pressure of the shell in the first work and the ho
compression stress inside this shell in the second one.

In the present work, we use the dimensionless buckling p
sure of the overall structure consisting of the shell and surrou
ing medium developed by Razakamiadana et al.@3# and which is
given by the relation

p̄5n2211
b̄

n221
, (1)

where the dimensionless variables are given as follows:

p̄5ap
r 0

3

D
, b̄5b

r 0
4

d
,

and whereD5E1e0
3/12(12n1

2) is the flexural rigidity modulus of
the shell,E1 andn1 being, respectively, its Young’s modulus an
its Poisson’s ratio, while the indexn characterizes the buckling
mode. The parametersa andb are defined by

a5

Fl212m2

l21m2
G S 2

e0

r 0
D

12S 122
e0

r 0
D F12

m2

m1
G1

m2

l11m1

,

b52
m2

r 0
~l21m2!F n221

n~l212m2!1m2
G ,

in which the Lame’s parameters of the shell and of the medi
are denoted byl1 ,m1 andl2 ,m2 , respectively.

In this study, we were interested in the smallest value of
buckling pressure—the Euler pressure—, while varying the ind
n associated with the buckling mode; such a mode index cha
terizes the number of axes of symmetry in the actual configu
tion. Indeed, this minimal pressure is the most frequently
served experimentally while applying incremental loading to
structure. This pressure is expressed as

pe5min
n>2

F 1

a S ~n221!
D

r 0
3 1

br 0

n221D G . (2)

b.
s.

Fig. 1 Experimental apparatus for hoop compression tests.
The tube inserted in the foam medium is in a buckled state with
index of buckling mode equal to two.
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Table 1 Experimental and theoretical results of Euler pressure normalized by E2 and index of
buckling mode n associated for various dimensionless mechanical and geometrical param-
eters

Experiment Theory
Ē E2 ~kPa! ē e0 ~mm! pe /E231022 n pe /E231022 n

14.50 100 0.078 1.00 (8.6960.80) 6 8.39 6
14.50 100 0.189 2.40 (15.3462.19) 2 13.00 2
26.07 79 0.037 0.46 (4.2160.40) 4 4.21 6
28.70 100 0.105 1.30 (11.0061.00) 4 9.80 4
28.70 100 0.136 1.75 (12.8960.92) 3 12.05 3
28.86 79 0.032 0.40 (3.9860.33) 3 4.87 6
28.86 79 0.070 0.90 (6.1360.63) 2 7.65 5
29.85 69 0.037 0.46 (4.6660.78) 4 5.24 6
33.00 69 0.032 0.40 (4.2160.21) 3 4.79 6
33.00 69 0.070 0.90 (6.1060.31) 2 7.69 5

158.46 13 0.037 0.46 (11.7663.69) 3 7.60 3
175.38 13 0.070 0.90 (17.6960.10) 2 9.61 2
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It is to be noted here that a classical case corresponds to
particular condition of an external incompressible fluid—i.e.,m2
50 andl2→`—surrounding the shell, so thata51 andb50 in
relations~1! and ~2!.

2 Experimental Procedure
Hoop compression tests were performed on a cylindrical st

ture with a circular cross section composed by a thin rubber sh
of external radiusr e513 mm which was inserted in a large foa
medium of external radiusr `5110 mm. Both tubes had a heigh
H530 mm. The thin rubber shell was slightly stressed when
serted within the foam medium in order to establish a good c
tact between the two solids.

A steady loading was applied on the external lateral wall of
surrounding foam medium by means of a tire inner tube conne
to a standard pressurization system. The plane strain of the s
ture was obtained by maintaining it between two circular a
polished PMMA transparent plates. In order to avoid signific
friction between the foam and the plates, the lower and up
faces of the foam were sprinkled with talc powder.

The applied pressure was measured by using a mer
U-manometer graded every 1 mm in height with a maximum re
ing error estimated at about 0.5 mm. When the buckling pres
is ‘‘very low,’’ the relative accuracy of the pressure measurem
was estimated at about seven percent. But, in 90 percent o
cases, the measured pressure was about 50 mm Hg and the
tive uncertainty of measurement was estimated, on average,
one percent.

With this experimental setup, several tests of compression w
conducted on the structure with given geometrical and mechan
characteristics. The tested structure was submitted to a gra
and slow loading so that, for each step, the system can be co
ered in stationary equilibrium state. The shape of the cross sec
of the shell remains circular before undergoing a change of sh
We monitored the evolution of shape with a CCD camera vid
placed on the axis of the tubes—see Fig. 1.

The thicknesse0 of the shell, in its reference configuration, wa
inferred from the mean value of the measurements conducted
a micrometer at various locations on the wall. The variatio
around the mean value were found to be in the order of
percent. The values of Young’s modulus of the shell and of
medium were derived from traction and compression tests, res
tively applied on samples of the constitutive materials. In the d
ferent experimental setup, four types of latex foam media w
different Young’s modulus and Poisson’s ratio were combin
with tubes made of various PCP, PCV, or latex materials hav
different characteristic mechanical properties as indicated in T
1. For the deformations up to ten percent each Young’s mod
was evaluated with a maximum error of five percent. Besid
these tests have shown that the Poisson’s ratio of the shell
Copyright © 2ied Mechanics
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about 0.5—, i.e., the material is incompressible—whereas
Poisson’s ratio for the foam media were around zero.

Next, the video images were digitized and then automatica
processed using a global thresholding method so as to quantify
inner cross section area of the inserted tube and to characteriz
shape. In the extreme case corresponding to a significant varia
of this shape, the relative uncertainty of area measurement
estimated to be of the order of two percent. Indeed, when
structure is submitted to a gradual and slow loading, we retai
as Euler pressurepe , the one which corresponds to a clear chan
in the inner cross section area, as discussed later on.

For a given structure, the measurement of the buckling pres
was repeated ten times at least and the relative gap compar
the mean value varies between 1 percent and 30 percent.

3 Analysis and Discussion
We show, in columns 5 and 6 of Table 1, the experimen

results obtained on 110 tests implying 12 structures of differ
geometry and elastic properties. The results are discussed by u
the dimensionless geometrical and mechanical parameteē
5e0 /r 0 andĒ5E1 /E2 in the case of rather thin tubes and exte

Fig. 2 Top view of the test cell giving an illustrative example
of the tube inserted in the foam medium in a buckled state with
index of buckling mode equal to four. Circular windows—with a
radius in the order 30 mm—were cut on the top and bottom of
the PPMA container for a better definition of the image during
the recording.
000 by ASME MARCH 2000, Vol. 67 Õ 213



t
n

t
e

,

x

a
m

ific

tion

nal
of

d
-
ave-
ique
the
tical

nical
dia.
et-

ec-
fth

of
ible

ro-

s

dia.
hat
the

out
and
he
pe-

te
nal foamy material softer than the rubbery one of the tube. St
ing with Eq. ~2!, we determined the variations of the Euler pre
surepe normalized byE2—denoted asp̄e—as a function ofĒ for
various values ofē. The associated buckling mode indexn then
depends onĒ. It is worth noting that the assessment of the buc
ling pressure in such an experiment was based on the variatio
a global geometrical parameter such as the area of the inte
cross section of the inserted shell—see Fig. 2. Other more se
tive parameters, related to the changes in local shape prope
could, however, be envisaged but their quantification by
image-processing system would have been more difficult
implement.

In columns 7 and 8 of Table 1, the theoretical results are co
pared with experimental ones. These results show that the E
pressures, evaluated theoretically and determined experimen
agree well accounting for the inherent scatter in experime
measurements. Moreover, the mode indexn associated withp̄e
coincides exactly for 50 percent of the cases. Nevertheless,
worth emphasizing that significant differences arised in the c
of very thin tubes for which the mode index are rather high,
large number of lobes being more sensitive to small heterog
ities in material property and geometry. Despite this, the obser
experimental results are, in general, well reproduced by our th
retical model.
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adaptivity easier. Numerical results are presented. A spec
study of interfaces in a Al-SiC composite is given.
@S0021-8936~00!00301-9#

1 Introduction
A great number of recent papers are concerned by the solu

of partial differential equations by wavelet bases~@1,2#!. Mainly,
these works deal with one-dimensional or scalar two-dimensio
problems. The solution of the elastostatics system by this kind
method is not usual~@3,4#!. Boundary problems on open bounde
sets are very difficult to treat~@5#!. Nevertheless, periodic condi
tions on elementary bounded sets are natural for the use of w
let transform. In this paper, we show how to use such a techn
and we give applications to interfaces in Al-SiC composite. In
first section we give the notations and the necessary mathema
background. In the second section we present the mecha
problem: the homogenization of periodic heterogeneous me
The third section is concerned with the algorithm: a wavel
Galerkin method using Daubechies wavelets~@6#!. The determina-
tion of the macroscopic coefficients is treated in the fourth s
tion. Applications and numerical results are described in the fi
section. Concluding remarks are given.

2 Notations and Mathematical Background
In this section, we present the notations used in the following

the paper. The sets of kinematically and statically admiss
fields are denotedH, L, andS. Let

L5~L2~Y!!3 and H5~Hp
1~Y!!2

S5$vPLloc
2 ~Y!,v~x11k1 ,x21k2!5v~x1 ,x2!a.e.,k1 ,k2PK%

(1)

Hp
1~Y!5$vPS, v ,iPL2~Y!, i 51,2%.

u,i denotes thei th partial derivative of the functionu. We de-
noteC the fourth-order elasticity tensor,e the strain tensor, ands
the stress tensor. In the followingY5]0,1@2. To construct a wave-
let basis ofH, we use the compactly supported wavelets int
duced byI. Daubechies@6# which is a basis ofL2(R). These
wavelets are periodized in order to obtain bases ofS. By tensorial
and cartesian products wavelet bases ofH are obtained~@7#!. We
denoteC l , l 51, 2, 3, andC0 the wavelets and the scale function
~six degrees-of-freedom for each point!, Nj52 j21 and L j

5@0,Nj #2.
Let Vj be the subspace of dimension 22 j 11 of H generated by

this wavelet at approximation levelj. An element ofVj max is thus
written as

u~x1 ,x2!5~u1~x1 ,x2!,u2~x1 ,x2!!

ud5 (
kPL j 0

uj 0k
d0 C j 0k

0 1(
l 51

l 53

(
j 5 j 0

j 5 j max

(
kPL j

uj k
dl C j k

l . (2)

j 0 is a given integer,d51 or 2 andk5(k1 ,k2).

3 The Mechanical Problem
We consider a multiphase isotropic elastic composite~Fig. 1!

and we intend to study the behavior of this heterogeneous me
We introduce the notion of equivalent material, i.e., we mean t
under the same loadings, this equivalent material has globally
same response. In former papers~@8,9#! bounds for the bulk and
shear moduli of a two-phase composite have been given. With
going into further detail, these bounds depend on the shear
bulk moduli of the two phases and on the volumic fraction of t
two phases in the composite. In the same way, the theory of
riodic homogenization~@10#! focuses on an idealized composi

r.
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Fig. 1 An example of a composite and its representative volume
es

t

of
consisting of the juxtaposition of identical heterogeneities a
classically, we need to solve an elastostatics problem on a re
sentative volumeY ~ProblemP!:

Problem. P
EPL be given, finduPH such thata(u,v)5 l (v) ;vPH

with a~u,v !5E
Y
s~u!:e~v !dy5E

Y
C~y!e~u!:e~v !dy

and l ~v !52E
Y
CE:D~v !dy

Because of the nonuniqueness of the solution of problem~P!
~defined within a translation!, problem~P! is replaced by problem
(P«) ~‘‘viscous’’ problem!:
Copyright © 2hanics
nd
pre-
Problem. P«
EPL be given, finduPH such thata«(u,v)5 l (v) ;vPH

with a«~u,v !5E
Y
s~u!:e~v !dy1«E

Y
uvdy

It can be shown that the solution of this problem converg
toward the solution of problem~P! with average equal to zero
~@4#!.
Remarks.

~i! The problem~P! is solved classically by a finite elemen
method or by fast Fourier transform~@11#!. We have chosen to
introduce wavelet methods in order to eliminate the notion
mesh and to eliminate Gibbs phenomena.

~ii ! If the discretization of problem~P! in a orthonormal wave-
Fig. 2 Wavelet element matrix „ j 0ÄJ , j maxÄJ¿4…
000 by ASME MARCH 2000, Vol. 67 Õ 215
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let basis leads to the systemKU5B, then the discretization o
problem (P«) leads to (K1«Id)U5B, where Id is the identity
matrix.

~iii ! The tensorC could be given by the image~pixels! of the
microstructure.

4 Wavelet-Galerkin Method
The variational problem (P«) is discretized by a Galerkin

method. We have introduced a wavelet basis because of
localization and adaptivity properties. The projection of the pla
elasticity operator into the wavelet basis~@7#! is given by a stiff-
ness matrixK where the ‘‘elementary matrix’’ of order 2 is

K j j 8kk8
l l 8

5FF11111F13211F31121F3322 F12211F13111F32221F3312

F12121F23221F31111F3321 F22221F23121F32211F3311
G

(3)

where

Fpqab5E
Y
CpqC j k,a

l C j 8k8,b
l 8 dx1dx2 .

We have chosen to decompose the tensorC on a wavelet basis
at levelJ notedu. In the numerical applications, Haar wavelet
used with its compact support equal to the square@ l 1/2j ,(l 1

11)/2j #3@ l 2/2j ,(l 211)/2j #. This wavelet is constant on this sup
port which is a pixel of the image representation. Thus, the wa
let coefficientu j l is equal to the value of the tensorC on this
pixel. Due to the form of the wavelets~Cartesian and tensoria
products of one dimensional wavelets! the computation of the
coefficients of the matrixK leads to the determination of eleme
tary terms which are integral of products of three one-dimensio
wavelets and their derivatives:

E
0

1

uJr

dmC js

dxm

dnC j t

dxn , m,n50,1. (4)

These terms are obtained by the determination of eigenvec
of a low-order matrix~@7,12#!. The right-hand side of the problem
corresponding to the terml (v) in problem (P«) is computed by a
similar technique~@4,5#!. Classically, the matrixK is a sparse
matrix ~Fig. 2!. Because of the form of the wavelets bases
seems natural to solve the linear system which is a discret
version of problem (P«) by multigrid techniques~@13,14#!. Nev-
ertheless, we have chosen to use a conjugate gradient metho

5 Determination of the Macroscopic Coefficients
The determination of the elastic macroscopic coefficients c

responds to the computation of the macroscopic stress tensoS:

S5E
Y
~CE1Ce~u!!dx1dx2 . (5)

The computation of these terms is in the same way as the
trix and the right-hand side@4#.

6 Numerical Results
We present the example of a three-phase fiber-matrix compo

~Fig. 3!: SiC for the fiber, Al for the matrix and an interface. Th
Lamé coefficients associated to the interface arelha and mhb

wherehg is the thickness of the interface.a andb are real posi-
tive parameters andg is a given function with a sufficient regu
larity. We have shown in former papers~@15–17#! that whenh
tends to zero, i.e., the thickness and the rigidity parameters
to zero, we obtain an elastostatic limit problem with an interfa
law. This interface law keeps in memory the mechanical and g
metrical properties of the layer. The interface law is given
216 Õ Vol. 67, MARCH 2000
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Table 1 with respect to the value of the parametersa andb. a and
b determine how the thickness and the rigidity tend to zero
is necessary to quantify the limit, in other words we seek
interval in which the initial problem could be approximated b
the limit problem for which the solution is more easy to obta
On the other hand, it is very important to quantify the influen

Fig. 3 Al-SiC composite with an interfacial zone „thickness h…

Fig. 4 Jump of displacement for different values of a and b
„MÄ3…

Table 1 Interface laws

m/e→0 uN50 sT50 sN5
l̄

g
uN sT50 sn50

m/e→m̄ uN50 sT5
m̄

g
uT sN5Sm̄

g
12

l̄

g
DuN sN52

l̄

g
uN

sT5
m̄

g
uT sT5

m̄

g
uT

m/e→` u50 u50 u50
l/e→` l/e→l̄ l/e→0
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of the interface on the macroscopic coefficients, i.e., on the ela
behavior of a structure. Due to the shape and the thickness
the interface this problem is very difficult to treat by classic
techniques.

We present, in Fig. 4, a study of the convergence of the jump
displacement in the interface for the caseg51, for two values of
a and b. l and m are chosen as Aluminum coefficients. In thi
case the jump is equal to zero in the interface law. We have fou
that for values ofh smaller than 0.4 p.c. of the structure th
interface law could be considered as valid. Note that the displa
ment in the interface has the form~@16#! u(r ,u).ru(u)1u0 .
Figure 5 shows the influence of the thickness parameter on
first component of the homogenized elasticity tensor for differe
values ofa and b. For small values of the thickness~h smaller
than 0.2 p.c. of the structure! it is convenient to neglect the inter-
face. Note that for values of the thickness larger than 0.02,
coefficient depends linearly on the thickness.

7 Concluding Remarks
In this paper, we have shown a robust tool to compute t

overall response of a composite. In particular, our method is a
to compute the influence of an interface even at a very small lev
In the future, we want to investigate more complex materials su
random materials~@18#! or other kind of interfaces~@19,20#!.
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On the Original Publication of the
General Canonical Functional
of Linear Elasticity

C. A. Felippa
Mem. ASME, Department of Aerospace Engineering an
Center for Aerospace Structures, University of
Colorado, Boulder, CO 80309-0429

The general canonical functional of linear elastostatics is asso
ated with the names of Hu and Washizu, who published it in
pendently in 1955. This note discusses how that functional,
generalized four-field form, had been derived by B. M. Fraeijs
Veubeke in a 1951 technical report. This report presents five
the seven canonical functionals of elasticity. In addition to t
general functional, it exhibits what is likely the first derivation
the strain-displacement dual of the Hellinger-Reissner function
The tour of five variational principles takes only a relatively sm
portion of the report: 8 pages out of 56. The bulk is devoted to
use of energy methods for analysis of wing structures. The t
technology focus, and limited dissemination may account for
subsequent neglect of this original contribution to variational m
chanics.@S0021-8936~00!00401-3#

Introduction
The three-field canonical functional of linear elastostati

herein abbreviated to C3FLE, is identified as the Hu-Wash
functional in the mechanics literature. In this functional the thr
interior fields, displacements, stresses, and strains, are inde
dently varied. The attribution is supported by two independ
publications that appeared concurrently, in Mar. 1955~@1,2#!. A
four-field generalization, in which surface tractions are indep
dently varied, will be called C4FLE.

An expository article~actually a book chapter! by Fraeijs de
Veubeke@3# is often cited as one of the early classics in the fin
element literature. That article contains the first enunciation of
‘‘limitation principle,’’ which has since served as guide in th
construction of mixed elements. His exposition of variation

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
22, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: M. Ortiz.
MARCH 2000, Vol. 67 Õ 217
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methods starts from the C4FLE functional, which he calls ‘‘t
general variational principle.’’ However, it does not reference
and Washizu as its source but an earlier technical report, wri
in French~@4#!. This appears as the third reference in the 19
article.

A subsequent journal paper on variational principles,@5#, is
slightly more explicit. It begins: ‘‘There is a functional that ge
erates all the equations of linear elasticity theory in the form
variational derivatives and natural boundary conditions. Its or
nal construction @12# followed the method proposed b
Friedrichs . . . ’’ The reference number points to that report.

These references motivated the writer to investigate whethe
Veubeke had indeed constructed that functional in the 1951
port. That would confer him priority over Hu and Washizu, a
though of course these two papers were more influential in s
sequent work. The writer was able to procure an archived c
thanks to Profs. Beckers and Geradin of the University of Lie`ge,
where Fraeijs de Veubeke was a professor of aeronautical e
neering from the early 1950s until his untimely death in 1977

Construction of the C4FLE Functional
As discussed below, in the 1951 report Fraeijs de Veub

constructs not simply the canonical three-field principle, but
four-field generalization C4FLE. Consequently his priority is e
tablished unless an earlier publication can be found. The fu
tional, however, appears as an intermediate result on the
from the total potential energy~TPE! to the total complementary
energy~TCE! principle. The path also traverses a pair of two-fie
functionals, one being a generalization of the Hellinger-Reiss
~HR! functional published the previous year by Reissner@6#. The
full sequence can be sketched as

TPE→C4FLE→Strain-displacement dual of HR→HR→TCE.
(1)

The report does not call special attention to C4FLE, as well a
the strain-displacement functional that appears there for the
time. The bulk of the material is indeed devoted to the study
energy-based approximation methods for the analysis of mo
coque wing structures, rather than to the derivation of new fu
tionals. Its title, technology focus, and target audience~structural
engineers! are likely responsible for subsequent neglect. This
reinforced by its limited dissemination and the fact that the ma
rial was apparently not submitted to an archival journal.

Fraeijs de Veubeke uses the full-component notational fo
popularized by Timoshenko and others, which was then comm
in continuum mechanics. For historical accuracy this will be f
lowed below until Eq.~10!, at which point it is changed to moder
indicial notation for compactness. The equations taken from
report have been sequentially renumbered.

The report comprises three chapters. The last two, which
with the title application, are of no concern here. Chapter I beg
by summarizing the field equations of linear elastostatics fo
three-dimensional body of volumeV and surfaceS. The fields in
V are displacementsu, v, w, body forcesX̄, Ȳ, Z̄, infinitesimal
strainsex ,gxy , . . . ,ez and stressessx ,txy , . . . ,sz . The surface
S is divided intoS1 , on which tractionsp̄x , p̄y , p̄z are known,and
S2 , on which displacementsū, v̄, w̄ are prescribed. The directio
cosines of the exterior normal toS are denoted byl, m, n.

As starting point for the variational developments~Chapter I, p.
6! Fraeijs de Veubeke exhibits the TPE principle:

dF E
V
W dV1PV1PSG50. (2)

HereW is the internal energy density in terms of displacemen
whose first variation is

dW5sxd
]u

]x
1txydS ]u

]y
1

]v
]xD1¯1szd

]w

]z
(3)
218 Õ Vol. 67, MARCH 2000 Copyright © 2
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and PV and PS are potentials of the body~volume! forces and
surface tractions, respectively,

PV5E
V
~X̄u1Ȳv1Z̄w!dV (4)

PS5E
S1

~ p̄xu1 p̄yv1 p̄zw!dS. (5)

Fraeijs de Veubeke presents the well-known Euler equation
the TPE principle. Next~on p. 8! he recasts the internal energ
density in terms of strains:W5W(e) so that the variation be-
comes

dW5sxdex1txydgxy1¯1szdez . (6)

Following that he states that to free~‘‘libé rer’’ ! strains from the
strain-displacement constraints and the boundary displacem
from the prescribed displacement constraints, one must add to
expressions to be varied the volume term

E
V
FTxxS ]u8

]x
2exD1TxyS ]u8

]y
1

]v8

]x
2gxyD1¯GdV (7)

in which (Txx ,Txy , . . . ) areLagrange multipliers inV, as well as
the surface term

E
S2

@ax~ ū2u!1ay~ v̄2v !1az~w̄2w!#dS (8)

in which (ax ,ay ,az) are multipliers onS2 . The displacements in
~7! are marked by a prime to emphasize that the variations of
strains have become independent of the displacement gradie

Fraeijs de Veubeke states on p. 9 that this expanded functi
is subject to 18 independent variations: three displacements
strains, sixT multipliers, and threea multipliers. He had noted
earlier~on p. 8! that variations with respect to the strains inV give
as Euler equations

Txx5
]W

]ex
, Txy5

]W

]gxy
. . . (9)

whereas variations with respect to the displacements onS2 give as
Euler equations

ax5 lTxx1mTxy1nTxz , . . . . (10)

Hence theT multipliers form a stress system whereas thea mul-
tipliers form a system of surface tractions. Fraeijs de Veub
denotes these ass8 andp8 in later publications, such as the cite
1965 article.

Except for PV and PS , Fraeijs de Veubeke does not defin
global symbols to identify his integrals. For convenience we re
edy that omission by callingUe5*VW(e)dV and identifying Eqs.
~7! and ~8! by DV andDS , respectively, whereD stands for the
term ‘‘dislocation potential’’ now in vogue. We can thereby co
lect all the pieces into one compact expression:

d@Ue1DV1PV1PS1DS#50. (11)

The expression in brackets is the C4FLE functional, which
indicial notation can be compactly presented as

P~ui ,s i j ,e i j ,t i !5E
V
@W~e i j !1s i j ~u~ i , j !2e i j !2 f iui #dV

2E
S1

t̄ iuidS2E
S2

t i~ ūi2ui !dS (12)

in which u( i , j ) denotes the symmetric gradient of the displacem
field. The three-field standard form C3FLE is obtained by sett
t i5s i j nj on S2 a priori. A variant of C3FLE involving stress
derivatives, displayed for example in Gurtin@7# follows from in-
tegration by parts.
000 by ASME Transactions of the ASME
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A Strain-Displacement Functional
Continuing along the path~1!, Fraeijs de Veubeke replaces th

multipliers in ~7! and~8! by ~9! and~10!, respectively, and exhib
its on p. 9 a two-field functional in which strains and displace
ments are primary variables. His full form expression is fai
long. In indicial notation it becomes

P~ui ,e i j !5E
V
FW~e i j !1

]W

]e i j
~u~ i , j !2e i j !2 f iui GdV

2E
S1

t̄ iuidS2E
S2

]W

]e i j
nj~ ūi2ui !dS (13)

in which for linear elasticity]W/]e i j is understood to beEi jkl ekl .
Now ~13! is the stress-strain dual of Hellinger-Reissner~HR! but
has escaped a name.

In an expository article~@8#!, the writer called it ‘‘Strain-
Displacement Reissner’’ following Oden and Reddy@9# who la-
beled it a Reissner functional when constructed as a member
canonical set of elasticity functionals~@10#!. However, in a 1995
letter to the writer, Professor Reissner indicated that he had
considered that form. This functional has had little use in mech
ics until assumed-strain finite elements began appearing in
1980s.

Again, Fraeijs de Veubeke uses Eq.~13! only as an intermedi-
ate result. He applies a Friedrichs-style Legendre transforma
to it and arrives on p. 10 at a generalized form of the Helling
Reissner~HR! functional. He remarks that it had been publish
by Reissner@6# but that the rederived form is slightly more ge
eral in that it includes body forces as well as prescribed nonz
displacements.

The remainder of Chapter I~pp. 11–18! is devoted to the deri-
vation of the TCE functional from HR, and the energy theore
of Castigliano and Menabrea. Even for this better known mate
Fraeijs de Veubeke displays a mastery of variational techniq
unusual for the times. For example, several textbooks
thoughtlessly lift Castigliano’s second theoremui5]U(s)/]Fi
from trusses and frameworks to three-dimensional solids. Th
incorrect because the displacement under a concentrated lo
infinite. He carefully regularizes the singular energy integral
fore stating the theorem.

Conclusions
The 1951 report provides concrete evidence that Fraeijs

Veubeke preceded both Hu and Washizu in the publication of
C4FLE functional. Furthermore, he appears to have been the
to construct a strain-displacement dual of the HR function
Hence it seems fair to propose

1 that the canonical functional~12! be identified as the Fraeij
de Veubeke-Hu-Washizu functional.

2 that the hitherto anonymous strain displacement functio
~13! be named after Fraeijs de Veubeke. This functional was c
structed independently more than 20 years later by Oden
Reddy@10#.

Some historical questions remain, perhaps as curiosities fo
ture science historians.

Fraeijs de Veubeke was a visiting professor at MIT duri
1952, the year following publication of the report examined he
Washizu’s publication is an MIT report dated Mar. 1955. Prof
sor Pian~private communication! has indicated to the writer tha
direct or indirect influence is unlikely, since Fraeijs de Veube
was only a summer visitor.

The writer has not seen Washizu’s 1955 report. However, in
early edition of his well-known monograph~@11#! the derivation
of the C4FLE functional on pp. 31–34 closely follows Fraeijs
Veubeke’s, as readers may verify. The similarity of Hu’s a
Washizu’s paper titles is also puzzling.
Journal of Applied Mechanics
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Fraeijs de Veubeke does not reference Hu or Washizu in an
the papers reprinted in the Memorial Volume@12#. He acknowl-
edges Friedrichs, Courant, Hilbert, Prager, Reissner, and Pian
the other hand, he does not explicitly claim priority for the resu
discussed here. Perhaps he felt that the derivation of new fu
tionals was not the focus of the 1951 report. And indeed it w
not. The tour of five variational principles takes 8 pages out of
In contrast, the titles of the contributions of Hu and Washi
expressly state that to be the main objective. The writer’s opin
is that Fraeijs de Veubeke’s personality would militate agai
engaging in controversy. An aristocrat by birth and gentleman
nature, he never displayed greed for priority and recognition.
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Logarithmic Stress Singularities
Resulting From Various Boundary
Conditions in Angular Corners
of Plates Under Bending

G. B. Sinclair
Department of Mechanical Engineering, Carnegie Mello
University, Pittsburgh, PA 15213-3890

This note considers the occurrence of pure logarithmic singula
ties in angular elastic plates under bending within the context
classical theory. By paralleling the development of requireme
for logarithmic singularities for plates in extension, requiremen
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for log singularities in bending are developed, both for homog
neous boundary conditions on plate edges and for inhomo
neous. Using these singularity requirements, some 50-odd
figurations with log singularities are identified, the great majori
being for inhomogeneous boundary conditions.
@S0021-8936~00!00501-8#

1 Introduction
Elastic stress singularities are not of the real world. Howev

their presence in a stress analysis can be a real fact. Then
essential that their participation be recognized if reasonable u
to be made of the analysis in the vicinity of the singularity. T
objective of this note is to assist in achieving such recognition

In particular, we are concerned with identifying configuratio
which can have pure logarithmic singularities—that is, stress
sultants and attendant stresses which behave likeO(ln r) as r
→0. These are the weakest singularities that occur in elasti
As a result, they can be the most difficult to detect with numeri
methods. Asymptotic identification is thus especially useful
avoiding having them pass undetected.

For angular elastic plates in bending treated within class
fourth-order theory, Williams@1# identifies possible power singu
larities for a variety of homogeneous boundary conditions on
plate edges. No logarithmic singularities are identified in@1#.
Logarithmic singularities can be found elsewhere in the literatu
but these occur in concert with the far stronger singularities
attend concentrated loads. Examples may be found in Na´dai @2#
Article 49, and Timoshenko and Woinowsky-Krieger@3# Article
75. Pure logarithmic singularities for plates in bending with
classical theory would not appear to be identified in the literatu
Here, therefore, we seek to identify such singularities, and to
so when either homogeneous or inhomogeneous boundary c
tions apply on plate edges.

We begin, in Section 2, with a formal statement of the class
asymptotic problems of interest. Then, in Section 3, we outline
development of requirements for pure logarithmic singulariti
We close, in Section 4, with a tabulation of all the configuratio
found to be able to have log singularities.

2 Formulation
The angular plate region of interest is shown in Fig. 1.

describe this plate, we use cylindrical polar coordinates~r,u,z!
with origin O at the vertex of its midplane andu50 along one of
its edges. The plate has indefinite extent in ther-direction, thick-
ness 2h in the z-direction, and subtends an anglef at its vertex.

The displacement of primary concern is that in thez-direction,
w. This displacement has associated moment result
Mr ,M0 ,Mr0 , as shown acting in a positive sense on an elem
in the ru-plane in Fig. 2~a!. It also has associated shear resulta
Qr ,Qu , as shown acting in a positive sense on an element in

Fig. 1 Geometry and coordinates for the angular elastic plate
220 Õ Vol. 67, MARCH 2000 Copyright © 2
e-
ge-
on-
y

er,
it is
e is
e
.
s

re-

ity.
al
in

cal
-
the

re,
hat

in
re.
do
ndi-

of
the
s.

ns

o

nts
ent
ts
ig.

2~b!. All of these field quantities are taken to be independent oz.
Hence, we can confine our attention to the two-dimensional reg
R where

R5$~r ,u!u0,r ,`, 0,u,f%.

With these preliminaries in place, we can formulate the class
problems for asymptotic analysis as next.

We seek the out-of-plane displacementw, together with its as-
sociated moment resultantsMr ,M u ,Mru and shear resultant
Qr ,Qu , as functions ofr, u throughoutR complying with the
following requirements. The displacement is to satisfy the d
placement equation of equilibrium in the absence of both bo
forces and loading on the plate faces atz56h,

¹4w50, (1)

on R, where ¹45¹2(¹2), ¹25]2/]r 21r 21]/]r 1r 22]2/]u2.
The displacement and resultants are to satisfy the result
displacement relations for a homogeneous and isotropic, lin
elastic plate,

H Mr

M u
J 52kF H n

1J ¹2w

12n H 1

2J ]2w

]r 2 G , Mru5k
]

]r S 1

r

]w

]u D , (2)

Qr5
2k

12n

]

]r
~¹2w!, Qu5

2k

12n

1

r

]

]u
~¹2w!,

on R, wherek54mh3/3 is the flexural stiffness of the plate whil
m, n are its shear modulus, Poisson’s ratio. The displacem
resultants are to satisfy any one of the admissible sets of boun
conditions listed in Table 1 on the plate edge atu50, as well as a
further such set onu5f. Finally, the resultants are to compl
with the following regularity-singularity requirement:

M5O~1!, Q5O~ ln r !, as r→0, (3)

on R, whereM is any moment resultant,Q either shear resultant
Several comments on the foregoing formulation are in ord

First, regarding the boundary conditions in Table 1. In conditio
I–III, Mi , V, ai , andb are given constants (i 51,2). When these
constants are zero, we obtain the corresponding homogen
boundary conditions. We distinguish these with a subscripth.
Thus Ih are Kirchhoff conditions for a stress-free edge, IIh are for
a simply supported edge, and IIIh are for a built-in edge. Condi-
tions IV model a plate edge which is elastically restrained b
bar:kt is the bar’s torsional stiffness,kb its bending stiffness, and
plus signs are foru5f, minus foru50.1

Second, regarding the regularity-singularity requirement.
the usual relationships between stress resultants and stress
plate theory, this has pure log singularities int rz ,tuz while
s r ,su ,t ru are nonsingular.

1See@3#, Art. 22, for a development of IV.

Fig. 2 Plate theory resultants: „a… moment resultants, „b…
shear resultants
000 by ASME Transactions of the ASME
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As in the extensional case, requirements for logarithmic sin

larities under bending follow from a further development of t
corresponding classical analysis for power singularities. Acco
ingly we next summarize the asymptotic analysis of power sin
larities in plates under bending.

In Williams @1#, the appropriate choice of a separable bih
monic function for the displacementw leads to fields containing
four constants which share a common power ofr. This function
has the form

w5r l11@c1 sin~l11!u1c2 cos~l11!u1c3 sin~l21!u

1c4 cos~l21!u#, (4)

Table 1 Boundary conditions

Assigned
Roman Numeral

Physical
Description

Prescribed
Quantities

I Applied moment/shear M u5M 1r

Qu 2
]mru

]r Qu 2
]Mru

]r
5V

II Applied moment/displacement M u5M 2r
w5a1r 3

III Applied displacement/rotation w5a2r 3

]w

]u
5br3

IV Elastically restrained Mu56kt

]2

]r2 S1r ]w

]u D
Qu2

]Mru

]r
6kb

]4w

]r4 50
Journal of Applied Mechanics
u-
e
rd-
u-

r-

wherecj ( j 51 – 4) are the four constants, andl is the separation-
of-variables parameter. The stress resultants for this basic
follow from ~2!. Substituting these fields into a set of four hom
geneous boundary conditions then gives

Ac50, (5)

where the vectorc5(c1 ,c2 ,c3 ,c4), andA is a matrix whose el-
ements are in general functions ofl. A nontrivial solution to~5!
requires that the determinantD of A satisfy

D50. (6)

This requirement generates an eigenvalue equation forl. Deter-
mining l satisfying ~6! with 0,Rel,2 then characterizes th
power singularities possible in stress resultants for the partic
homogeneous boundary conditions involved.

To extend the preceding to consider logarithmic singulariti
we need stress resultants containing lnr terms. To this end, we
differentiate the basic field of~4! with respect tol: thus

Table 2 Eigenvalue equations

Boundary Conditions
on u50,f

Eigenvalue
Equation

Ih– Ih (l21)2(k2 sin2 lf2l2 sin2 f)50
IIh– IIh cos2 lf2cos2 f50

III h or IV–III h or IV sin2 lf2l2 sin2 f50
Ih– IIh (l21)(k sin 2lf1l sin 2f)50

Ih– IIIh or IV (l21)(k212k cos 2lf1124l2 sin2 f)50
IIh– IIIh or IV sin 2lf2l sin 2f50
Table 3 Configurations with QÄO„1nr … as r\0

Boundary Conditions
on u50,f

Configuration
Specifications

I–Ih f5p or 2p, M 1Þ0 or VÞ0

k56secf, M1~k12!Stan
f

2D61

Þ6V~22k!,

II–II h f5p or 2p, M2Þ6a1k

III–III h or IV f5p or 2p, a2Þ0 or bÞ0

I–II f5~2m21!
p

2
, 24a1kÞM2~k15!2~2 !mV~k11! ~m51,2!

f5mp, M1Þ(2)mM2 (m51,2)
k52sec 2f, (V sinf212a1k)(k22)ÞM 1(k12)cosf2M2(k24)

I–III f5fk , kÞk̂, (M126a2k cos 3f)(3 sin 3f2(k12)sinf)
Þ(V12bk cos 3f)(3 cos 3f1(k22)cosf)

Ih– IIIh or IV f5f̂k , k5k̂

I–IV f5p or 2p, VÞ0
f5p/2 or 3p/2, M 1Þ0

k52sec 2f, M1(k12)tanfÞV(22k)

II–III f5~2m21!
p

2
, 2M 2Þ3~32k!a1k2~2 !m~k11!bk ~m51,2!

f5mp, a1Þ(2)ma2 (m51,2)

II–IV f5p/2 or 3p/2, M2Þ6a1k

III–IV f5p/2 or 3p/2, a2Þ0
f5p or 2p, bÞ0
MARCH 2000, Vol. 67 Õ 221
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w5r l11@ ln r ~ c̄ sin~l11!u1 c̄2 cos~l11!u1 c̄3 sin~l21!u

1 c̄4 cos~l21!u!1u~ c̄1 cos~l11!u2 c̄2 sin~l11!u

1 c̄3 cos~l21!u2 c̄4 sin~l21!u!#, (7)

where the bars atop constants serve to indicate that they no lo
need be the same as their antecedents in~4!. The displacement in
~7! continues to satisfy the governing biharmonic Eq.~1!. Substi-
tuting ~7! into ~2! produces resultants containing lnr terms. Sub-
stituting ~7! and these last, together with the original basic fiel
into a set of four homogeneous boundary conditions gives

Ac̄ ln r1
dA

dl
c̄1Ac50, (8)

wheredA/dl is formed fromA by differentiating each elemen
with respect tol. General requirements for a nontrivial solutio
for c̄ in ~8! are established in Dempsey and Sinclair@4#. From
these we obtain ourrequirements for pure logarithmic singulari
ties under homogeneous boundary conditions:

l52, D50, (9a)

dnD

dln 50 for n51, . . . ,42r A , (9b)

c̄3
21 c̄4

2Þ0, (9c)

wherer A is the rank ofA whenl52. Equation~9c! ensures that
one of c̄3 or c̄4 is not zero so that the shear resultants are ind
logarithmically singular as in~3!.

Turning to the inhomogeneous boundary conditions I–III
Table 1, we obtain instead of~5!

Ac5f, (10)

for l52, wheref is a vector whose components involve one
more ofMi , V, ai , andb ( i 51,2). ForfÞ0, we have a problem
in ~10! if D50 for l52, unless the rank of the augmented matr
(A8)5(A:f ), is also reduced. If this rank reduction does not o
cur, we can overcome the difficulty by again supplementing
basic fields associated with~4! with the auxiliary ones stemming
from ~7!.2 This gives

Ac̄ ln r1
dA

dl
c̄1Ac5f, (11)

for l52. The system in~11! can be solved provided all the re
quirements in~9b! arenot met. Accordingly ourrequirements for
pure logarithmic singularities under inhomogeneous bound
conditionsare

l52, D50, r A8Þr A , (12a)

dnD

dln Þ0 for at least onen51, . . . ,42r A , (12b)

c̄3
21 c̄4

2Þ0, (12c)

wherer A8 is the rank ofA8 whenl52. As with ~9c!, ~12c! ensures
~3! is complied with whenl52.

An additional set of requirements for logarithmic singulariti
under inhomogeneous boundary conditions is given in Sinclair@7#
for the extensional case. These requirements arise from fur
auxiliary fields which result from a further differentiation wit
respect tol. However, we omit these requirements here beca
they can never be completely satisfied for the class of probl

2Essentially this is the approach adopted in Dimpsey@5# to solve extensional Levy
problems for certain critical wedge angles. An alternative approach for these p
lems is furnished in Ting@6#. The latter yields the same logarithmic fields for th
critical angles, and has the added attribute of effecting a sensible evolution of str
as the critical angles are passed through. It could be adapted to the class of pro
of concern here if one sought a corresponding evolution of responses.
222 Õ Vol. 67, MARCH 2000
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treated. Subsequently we do note, though, the one instance
log-squared singularity that attends partial compliance with the

With the requirements for logarithmic singularities at han
analysis proceeds routinely. We first derive eigenvalue equat
as in~6! for all possible combinations of homogeneous bound
conditions that can be drawn from Table 1. Then we check~9! and
~12!. When potential new configurations with log singularities a
revealed, the last requirement in either~9! or ~12! requires the
assembling of associated new fields. The algebra involved
straightforward but lengthy: details are furnished in Sinclair@8#.
Displacements with log singularities in their companion resulta
are set out ibid. All of these fields are verified directly by subs
tuting them into the governing Eqs.~1!,~2!, checking the
regularity-singularity requirement~3!, and checking the pertinen
boundary conditions. In the interests of brevity, we omit the
fields here and simply provide the configurations that engen
them.

4 Results
Eigenvalue equations are set out in Table 2. Therein

k5
31n

12n
.

Except for a factor of~l–1! when free-edge conditions, Ih , are
involved, these equations are equivalent to those derived in W
liams @1#. The equivalence of built-in conditions IIIh with elasti-
cally restrained conditions IV, as far as eigenvalue equations
concerned, follows from an adaptation of the argument in Sinc
@9# for boundary conditions which have terms with a differe
r-dependence within a single condition. This equivalence ho
for any value ofl. Just forl52, elastically restrained condition
are equivalent to symmetry conditions,]w/]u50 andQu50. We
also investigate them in this role in what follows.

Configurations which have logarithmic singularities in the
shear resultants as in~3! are listed in Table 3. In Table 3,fk is
such that

sin2 fk5
k11

4k
@26A42k#. (13)

If in addition to ~13!,

k5
2tanf

f cos 2f
,

thenk5k̂, fk5f̂k ~actual values in the physical range of 3<k
<7 are k̂53.27, f̂k574.8 deg andk̂53.02, f̂k5265.9 deg.!.
For I–II andf5f̂k , k5k̂, a log-squared singularity occurs.

There are but two geometries with logarithmic singularities u
der completely homogeneous conditions in Table 3. These o
for k5k̂, f5f̂k when the boundary conditions are Ih2III h or
IV. One of these geometries is a re-entrant corner (f̂k
5265.9 deg) and so is not surprising, but the other is for a pr
corner (f̂k574.8 deg). Here, then, the increase in the occurre
of singularities with mixed boundary conditions is making
presence felt, as it does in the extensional case.

For inhomogeneous boundary conditions, there are a numbe
quite innocent looking configurations with log singularities
Table 3. For example, I–Ih for f5p when M u5M1r : Here the
moment resultant actually varies continuously along the bound
though its derivative does not.
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Stress and Displacement Fields for
Propagating the Crack Along
the Interface of Dissimilar Orthotropic
Materials Under Dynamic Mode I
and II Load

K. H. Lee
Department of Automotive Engineering, Sangju Nationa
University, Sangju City, Kyungbuk 742-711, Korea

General stress and displacement fields are derived as a c
steadily propagates along the interface of dissimilar orthotrop
materials under a dynamic mode I and II load. They are obtain
from the complex function formulation of steady plane mot
problems for an orthotropic material and the complex eigen
pansion function. After the relationship between stress inten
factors and stress components for a propagating crack is defin
the stress, displacement components, and energy release rate
stress intensity factors are derived. The results are useful for b
dissimilar isotropic and orthotropic and isotropic-orthotropic b
materials, and homogeneous isotropic and orthotropic mater
under subsonic crack propagation velocity.
@S0021-8936~00!00601-2#

1 Introduction
Yang et al.@1# and Deng@2# provided the asymptotic fields o

the singular terms of steady-state elastodynamic bimaterial cr
tip fields and Liu et al.@3# obtained the asymptotic series repr
sentation of stress fields near the tip of a running interfacial cr
in a bimaterial under steady or unsteady state conditions. H
ever, the stress and displacement components for the interf
propagating crack in dissimilar orthotropic media, where the e
tic principal axis direction with the crack direction is orthogon
or parallel, is not clearly represented.

Therefore, the general stress and displacement fields are
rived when a finite crack is steadily propagated along the interf
in dissimilar orthotropic media under dynamic mode I and II loa
ing in the paper. Lee et al.@4# derived the steady plane motio
formulations for orthotropic material from the partial differenti
equation for an elastodynamic plane. The general stress and
placement fields are obtained from the formulation of steady pl
motion which is added to the complex eigenexpansion functi
and the boundary conditions. The relationship between stres
tensity factors and stress components for propagating an int

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
23, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: W. J. Druga
Journal of Applied Mechanics
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cial crack is defined and the confusion of the definition for t
stress intensity factors of the interface crack is clarified.

2 General Stress and Displacement Fields
When characteristic rootsml and ms of orthotropic material

have imaginary numbersip, iq, the complex stress for orthotropi
plane motion can be represented as Eq.~1! @4#,

sx52 Re$~Mb2p2!f8~zl !1~Mb2q2!c8~zs!%

sy52 Re$~11Ma!@f8~zl !1c8~zs!#% (1)

txy52 Im@a lf8~zl !1asc8~zs!#%

where

p5AB122
AB12

2
2K66, q5AB121

AB12

2
2K66

B125
1

2
@2a121a661rc2~a12

2 2a11a662a11a22!#/a11

K665$a221rc2@a12
2 2a22a662a11a22

1rc2a66~a11a222a12
2 !#%/a11

a l5p1a22

rc2

p
2prc2a112

~rc2!2

p
~a11a222a12

2 !

as5q1a22

rc2

q
2qrc2a112

~rc2!2

q
~a11a222a12

2 !

Ma5rc2~a122a11!, Mb5rc2~a122a22!.

ai j ( i , j 51,2,3, . . . ,6) aredisplacement constants, which are th
ai35aj 350 for plane stress and are transformed into thebi j
5ai j 2ai3aj 3 /a33 for plane strain@5#. The r and c are, respec-
tively, density and crack propagation velocity. And the charac
istic rootsml , ms of orthotropic materials, which depend on th
physical properties and the crack propagation, are either im
nary when AK66,B12; K66.0 or complex when AK66

.uB12u; K66.0 @4#. Most orthotropic materials have imaginar
number roots. The complex displacement for orthotropic pla
motion can be represented as Eq.~2! @4#,

ux52 Re@plf~zl !1psc~zs!# (2)

uy52 Im@qlf~zl !1qsc~zs!#

where

pl5a11~Mb2p2!1a12~Ma11!

ps5a11~Mb2q2!1a12~Ma11!

ql5@a12~Mb2p2!1a22~Ma11!#/p

qs5@a12~Mb2q2!1a22~Ma11!#/q.

Analytical complex functionsf8(zl) and c8(zs) can be repre-
sented as such a power series in

f8~zl !5azl
ln1bzl

ln
¯

, c8~zs!5czs
ln1dzs

ln
¯

(3)e
n.
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wherea, b, c, and d are complex constants andln is an eigen-
value. They are to be determined from boundary conditions. F
the traction-free crack (u56p) and the traction and displace
ment continuous condition across interface~u50!, the following
equations can be obtained:

ei2pln@S#1Fa1

c1
G5@T#1Fb1̄

d1
G (4)

e2 i2pln@S#2Fa2

c2
G5@T#2Fb2̄

d2
G (5)

@S#1Fa1

c1
G2@T#1Fb1̄

d1
G5@S#2Fa2

c2
G2@T#2Fb2̄

d2
G (6)

@U#1Fa1

c1
G2@V#1Fb1̄

d1
G5@U#2Fa2

c2
G2@V#2Fb2̄

d2
G (7)

where

Sk5F ~11Ma! ~11Ma!

a l as
G , Tk5F2~11Ma! 2~11Ma!

a l as
G

Uk5F2pl 2ps

ql qs
G , Vk5Fpl ps

ql qs
G .

MatricesLk , Lk* , Hk , andHk* input as follows:

Lk5UkSk
21, Lk* 5VkTk

21

(8)

H5L12L2* , H* 5L1* 2L2 .

Substituting Eq.~8! into Eqs.~4!–~7!, the characteristic equatio
can be derived for eigenvalueln ,

Fl2 0

0 l1
G~ei2pln!22Fl11l2 0

0 l11l2
G~ei2pln!1Fl1 0

0 l2
G50

(9)

where

l15h111Ah12h21, l25h112Ah12h21

h115~ l 11!12~ l 11!2 , h125~ l 12!11~ l 12!2

h215~ l 21!11~ l 21!2

~ l 11!k5H psa l2plas

D
J

k

5H qs2ql

as2a l
J

k

~ l 12!k5H ~11Ma!~pl2ps!

D
J

k

, ~ l 21!k5H asql2a lqs

D
J

k

Dk5@~11Ma!~as2a l !#k .

When Dk50, the crack propagation velocityc becomes the
Rayleigh speed. From Eq.~9!, eigenvalueln can be determined a
Eq. ~10!.
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- ln5H n ~50,1,2,3, . . . !

2n21

2
6 i« ~n50,1,2,3, . . . !

(10)

«5
1

2p
ln

12b

11b
, b5

h11

Ah12h21

Therefore the two cases, oscillatory and nonoscillatory fie
must be considered.

2.1 Oscillatory Stress and Displacement Fields. Theln is
a complex eigenvalue in this case. Therefore, in substituting
complex eigenvalueln5(2n21)/21 i« in Eq. ~10! into Eqs.
~4!–~7!, complex constantsak , bk , ck , anddk may be obtained
as

ak5Fas2~11Ma!h

D
G

k

ep«~21!k11
z

bk5Fas1~11Ma!h

D
G

k

ep«~21!k
z̄

ck5F2a l1~11Ma!h

D
G

k

ep«~21!k11
z

(11)

dk52Fa l1~11Ma!h

D
G

k

ep«~21!k
z̄

where h5(h21/h12)
1/2 and z is a complex constant related t

stress intensity factors. Substituting Eq.~11! into Eq. ~3!, fn18 (zl)
andcn18 (zs) for material 1 are written as

fn18 ~zl !5
zl

~2n21!/2

D1

$@as2~11Ma!h#e«pznzl
i«

1@as1~11Ma!h#e2«pz n̄zs
2 i«%

(12)

cn18 ~zs!5
zs

~2n21!/2

D1

$@2a l1~11Ma!h#e«pznzl
i«

2@as1~11Ma!h#e2«pz n̄zs
2 i«%.

Stress intensity factors can be defined as Eq.~13! when the crack
is propagated along the interface in dissimilar media.

K I1 iK II5 lim
r→0

A2prr 2 i«S sy1 i
1

h
txyD

u50

. (13)

In substituting Eq.~12! into Eq.~1! and substituting Eq.~1! into
Eq. ~13!, the complex constants related to stress intensity fac
are obtained as Eq.~14!,

Kn
052A2p~e«p1e2«p!zn

0

(14)

Kn* 52A2p~e«p1e2«p!zn* ,

wherezn
0 andzn* are real parts of complex constantzn . Whenn

50 in Eq.~14!, Kn
0 andKn* are stress intensity factorsK I andK II .

In substituting Eq.~14! into Eq.~12! and substituting Eq.~12! into
Eq. ~1!, stress fields for propagating the crack along the interf
in dissimilar orthotropic material can be obtained. Oscillato
stress fields with odd power series (n51,3,5, . . . ) for material 1
~the material above the interface! can be represented as
000 by ASME Transactions of the ASME
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sxn5 (
n5odd

`
Kn

0

2A2pD cosh~«p!
F ~Mb2p2!H e«~p2u l !Ā cosS « ln r l1

n22

2
u l D1e2«~p2u l !A cosS « ln r l2

n22

2
u1D J r l

~n22!/2

2~Mb2q2!H e«~p2us!B̄ cosS « ln r s1
n22

2
usD1e2«~p2us!B cosS « ln r s2

n22

2
usD J r s

~n22!/2G
1 (

n5odd

`
Kn*

2A2pD cosh~«p!
F2~Mb2p2!H e«~p2u l !Ā sinS « ln r l1

n22

2
u l D1e2«~p2u l !A sinS « ln r l2

n22

2
u l D J r l

~n22!/2

1~Mb2q2!H e«~p2us!B̄ sinS « ln r s1
n22

2
usD1e2«~p2us!B sinS « ln r s2

n22

2
usD J r s

~n22!/2G (15)

syn5 (
n5odd

`
Kn

0

2A2pD cosh~«p!
F ~11Ma!H e«~p2u l !Ā cosS « ln r l1

n22

2
u l D1e2«~p2u l !A cosS « ln r l2

n22

2
u l D J r l

~n22!/2

2~11Ma!H e«~p2us!B̄ cosS « ln r s1
n22

2
usD1e2«~p2us!B cosS « ln r s2

n22

2
usD J r s

~n22!/2G
1 (

n5odd

`
Kn*

2A2pD cosh~«p!
F2~11Ma!H e«~p2u l !Ā sinS « ln r l1

n22

2
u l D1e2«~p2u l !A sinS « ln r l2

n22

2
u l D J r l

~n22!/2

1~11Ma!H e«~p2us!B̄ sinS « ln r s1
n22

2
usD1e2«~p2us!B sinS « ln r s2

n22

2
usD J r s

~n22!/2G (16)

txyn5 (
n5odd

`
Kn

0

2A2pD cosh~«p!
Fa l H e«~p2u l !Ā sinS « ln r l1

n22

2
u l D2e2«~p2u l !A sinS « ln r l2

n22

2
u l D J r l

~n22!/2

1asH 2e«~p2us!B̄ sinS « ln r s1
n22

2
usD1e2«~p2us!B sinS « ln r s2

n22

2
usD J r s

~n22!/2G
1 (

n5odd

`
Kn*

2A2pD cosh~«p!
Fa l H e«~p2u l !Ā cosS « ln r l1

n22

2
u l D2e2«~p2u l !A cosS « ln r l2

n22

2
u l D J r l

~n22!/2

1asH 2e«~p2us!B̄ cosS « ln r s1
n22

2
usD1e2«~p2us!B cosS « ln r s2

n22

2
usD J r s

~n22!/2G (17)

where

A5as1~11Ma!h, Ā5as2~11Ma!h, B5a l1~11Ma!h, B̄5a l2~11Ma!h.

By substituting Eq.~11! into Eq. ~3! integrated withz and substituting Eq.~3! into Eq. ~2!, oscillatory displacement fields can b
obtained. Oscillatory displacement fields with odd power series (n51,3,5, . . . ) for material 1 can be represented as

uxn5 (
n5odd

`
Kn

0

A2p~n214«2!D cosh«p
H e«~p2u l !plĀFn cosS « ln r l1

n

2
u l D12« sinS « ln r l1

n

2
u l D G r l

n/2

1e2«~p2u l !plAFn cosS « ln r l2
n

2
u l D12« sinS « ln r l2

n

2
u l D G r l

n/22e«~p2us!psB̄Fn cosS « ln r s1
n

2
usD

12« sinS « ln r s1
n

2
usD G r s

n/22e2«~p2us!psBFn cosS « ln r s2
n

2
usD12« sinS « ln r s2

n

2
usD G r s

n/2J
1 (

n5odd

`
Kn*

A2p~n214«2!D cosh«p
H 2e«~p2u l !plĀFn sinS « ln r l1

n

2
u l D22« cosS « ln r l1

n

2
u l D G r l

n/2

2e2«~p2u l !plAFn sinS « ln r l2
n

2
u l D22« cosS « ln r l2

n

2
u l D G r l

n/21e«~p2us!psB̄Fn sinS « ln r s1
n

2
usD

22« cosS « ln r s1
n

2
usD G r s

n/21e2«~p2us!psBFn sinS « ln r s2
n

2
usD22« cosS « ln r s2

n

2
usD G r s

n/2J (18)
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uyn5 (
n5odd

`
Kn

0

A2p~n214«2!D cosh«p
H e«~p2u l !qlĀFn sinS « ln r l1

n

2
u l D22« cosS « ln r l1

n

2
u l D G r l

n/2

2e2«~p2u l !qlAFn sinS « ln r l2
n

2
u l D22« cosS « ln r l2

n

2
u l D G r l

n/22e«~p2us!qsB̄Fn sinS « ln r s1
n

2
usD

22« cosS « ln r s1
n

2
usD G r s

n/21e2«~p2us!qsBFn sinS « ln r s2
n

2
usD22« cosS « ln r s2

n

2
usD G r s

n/2J
1 (

n5odd

`
Kn*

A2p~n214«2!D cosh«p
H e«~p2u l !qlĀFn cosS « ln r l1

n

2
u l D12« sinS « ln r l1

n

2
u l D G r l

n/2

2e2«~p2u l !qlAFn cosS « ln r l2
n

2
u l D12« sinS « ln r l2

n

2
u l D G r l

n/22e«~p2us!qsB̄Fn cosS « ln r s1
n

2
usD

12« sinS « ln r s1
n

2
usD G r s

n/21e2«~p2us!qsBFn cosS « ln r s2
n

2
usD12« sinS « ln r s2

n

2
usD G r s

n/2J (19)
n

o

(

a-

ter-

-
ent

r

wheren.0. For material 2, which is the material below the i
terface, parameters«p and2«p in oscillatory stress and displace
ment fields are changed to2«p, «p. Whenn is 1, Eqs.~15!–~19!
are stress and displacement fields around the propagating int
cial crack tip. Thus,K1

0 andK1* are stress intensity factorsK I and
K II .

2.2 Nonoscillatory Stress and Displacement Fields.The
ln is a positive integer eigenvalue in this case. Nonoscillat
stress fields with the even power series (n52,4,6, . . . ) for mate-
rial 1 can be presented as

sxn5 (
n5even

`
Kn

0

A2p

1

11ws

~11Ma!

D
H ~Mb2q2!r s

~n22!/2

3cos
n22

2
us2~Mb2p2!r l

~n22!/2 cos
n22

2
u l J

1 (
n5even

`
Kn*

A2p

1

11wl

1

D H a l~Mb2q2!r s
~n22!/2

3sin
n22

2
us2as~Mb2p2!r l

~n22!/2 sin
n22

2
u l J (20)

syn5 (
n5even

`
Kn

0

A2p

1

11ws

~11Ma!2

D
H r s

~n22!/2 cos
n22

2
us

2r l
~n22!/2 cos

n22

2
u l J 1 (

n5even

`
Kn*

A2p

1

11wl

~11Ma!

D

3H a l r s
~n22!/2 sin

n22

2
us2asr l

~n22!/2 sin
n22

2
u l J (21)

txyn5 (
n5even

`
Kn

0

A2p

1

11ws

~11Ma!

D
H asr s

~n22!/2 sin
n22

2
us

2a l r l
~n22!/2 sin

n22

2
u l J 1 (

n5even

`
Kn*

A2p

1

11wl

a las

D

3H 2r s
~n22!/2 cos

n22

2
us1r l

~n22!/2 cos
n22

2
u l J (22)

wheren.0, ws5( l 12)1 /( l 12)2 , andwl5( l 21)1 /( l 21)2 .
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Nonoscillatory displacement fields with even power seriesn
52,4,6, . . . ) for material 1 can be represented as

uxn5 (
n5even

`
Kn

0

A2p

2

11ws

~11Ma!

Dn
H psr s

n/2 cos
n

2
us

2plr l
n/2 cos

n

2
u l J

1 (
n5even

`
Kn*

A2p

2

11wl

1

Dn H a l psr s
n/2 sin

n

2
us

2asplr l
n/2 sin

n

2
u l J (23)

uyn5 (
n5even

`
Kn

0

A2p

2

11ws

~11Ma!

Dn

3H qsr s
n/2 sin

n

2
us2qlr l

n/2 sin
n

2
u l J 1 (

n5even

`
Kn*

A2p

2

11wl

1

Dn

3H 2a lqsr s
n/2 cos

n

2
us1asqlr l

n/2 cos
n

2
u l J . (24)

For material 2, which is the material below the interface, p
rametersws and wl are changed tows

21 and wl
21. Therefore,

general stress and displacement fields for propagating the in
face crack can be represented as

sn~r ,u!5(
n51

`

@sxn syn txyn#
T

(25)

un~r ,u!5(
n51

`

@uxn uyn#
T.

2.3 Stress and Displacement Fields at the Interfacial
Propagating Crack Tip. When n is 1, the general fields be
come the propagating crack-tip fields. Stress and displacem
componentssx , ux at the interfacial propagating crack tip fo
material 1 are expressed as
Transactions of the ASME



sx5
K I

2A2prD cosh«p
H ~Mb2p2! f l~u!Fe«~p2u l !Ā cosS « ln r l2

u l

2
D 1e2«~p2u l !A cosS « ln r l1

u l

2
D G

2~Mb2q2! f s~u!Fe«~p2us!B̄ cosS « ln r s2
us

2
D 1e2«~p2us!B cosS « ln r s1

us

2
D G J

1
K II

2A2prD cosh«p
H 2~Mb2p2! f l~u!Fe«~p2u l !Ā sinS « ln r l2

u l

2
D 1e2«~p2u l !A sinS « ln r l1

u l

2
D G

1~Mb2q2! f s~u!Fe«~p2us!B̄ sinS « ln r s2
us

2
D 1e2«~p2us!B sinS « ln r s1

us

2
D G J (26)

ux5
K I

2D~114«2!cosh«p
A2r

p H e«~p2u l !plĀFcosS « ln r l1
u l

2
D 12« sinS « ln r l1

u l

2
D G 1

f l~u!

1e2«~p2u l !plAFcosS « ln r l2
u l

2
D 12« sinS « ln r l2

u l

2
D G 1

f l~u!
2e«~p2us!psB̄FcosS « ln r s1

us

2
D 12« sinS « ln r s1

us

2
D G 1

f s~u!

2e2«~p2us!psBFcosS « ln r s2
us

2
D 12« sinS « ln r s2

us

2
D G 1

f s~u!
J

1
K II

2D~114«2!cosh«p
A2r

p H 2e«~p2u l !plĀFsinS « ln r l1
u l

2
D 22« cosS « ln r l1

u l

2
D G 1

f l~u!

2e2«~p2u l !plAFsinS « ln r l2
u l

2
D 22« cosS « ln r l2

u l

2
D G 1

f l

~u!1e«~p2us!psB̄FsinS « ln r s1
us

2
D 22« cosS « ln r s1

us

2
D G 1

f s~u!

1e2«~p2us!psBFsinS « ln r s2
us

2
D 22« cosS « ln r s2

us

2
D G 1

f s~u!
J (27)
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r l5rAcos2 u1p2 sin2 u, r s5rAcos2 u1q2 sin2 u

f l~u!5@cos2 u1p2 sin2 u#2~1/4!,

f s~u!5@cos2 u1q2 sin2 u#2~1/4!

u j5tan21(Zj tan u), j 5 l ,s, Zl5p, Zs5q.

The displacements between the crack surfaces are given by

d~r !5d21 ihd15A2r

p

H21~K I1 iK II !r
i«

~112i«!cosh~«p!
(28)

and the energy release rate is given by

G5
~K I

21K II
2 !H21

4 cosh2~«p!
. (29)

As the stresssx is taken to be discontinuous and strain«x to be
continuous across the liney50, the relation between (sx)1 and
(sx)2 is the same as

~sx!25
~a11!1~sx!11@~a12!12~a12!2#sy

~a11!2

. (30)

From Eq. ~13!, the stress intensity factors for propagating t
crack along the interface in the infinite plate are obtained as

K I1 iK II5Apa~112i«!~2a!2 i«S sy
`1 i

1

h
txy

` D (31)

where sy
` and txy

` are the applied normal and shear stresses
infinity. Since Eq.~31! contains the term (2a)2 i«, the ambiguity
of the dependence on the measuring unit of the crack length
the value of the stress intensity factor occurs. If (r )2 i« is replaced
Journal of Applied Mechanics
e

at

for

with (r / l )2 i« in Eq. ~13!, wherel 52a ~crack length!, the stress
intensity factors become the following equation, which does
contain the ambiguity of the dependence on the measuring un
the crack length:

K I1 iK II5Apa~112i«!S sy
`1 i

1

h
txy

` D . (32)

When stress intensity factors are the same as in Eq.~32!, the term
« ln r k (k5 l ,s) in Eqs. ~15!–~19! and ~26!–~27! is replaced by
« ln(r k/2a).

3 Conclusions
General stress, displacement fields, and energy release rat

explicitly presented for the interfacial propagating crack in d
similar orthotropic materials.

When the orthotropic materials have characteristic rootsml' i
andms' i in the stationary crack state, the fields are the same
the Deng@2# results for the propagating interfacial crack in is
tropic bimaterials. When the mechanical properties of dissim
orthotropic materials are the same, the stress, displacement fi
and energy release rate are the same as those of homoge
orthotropic material@4#. When the interface crack propagatio
velocity is zero, the fields of the interfacial propagating crack
identical to those of the interfacial stationary crack. The resu
are useful for both dissimilar isotropic-isotropic and isotrop
orthotropic and orthotropic-orthotropic bimaterials under subso
crack propagation velocity lower than the two Rayleigh wave
locities and homogeneous isotropic and orthotropic materials
der subsonic crack propagation velocity.
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• Properties of isotropic-isotropic bimaterial:

Cs2 /Cs152, n150.3, n250.2, r15r2 , r 50.01.

• Properties of orthotropic-orthotropic bimaterial:

Cs2 /Cs152, nLT150.3, nLT250.2, r15r2 , r 50.01

EL1 :ET1 :GLT152.6000001:2.6:1,Csk5~AGLT /r!k

Table 1 The comparison of dissimilar isotropic and orthotro-
pic stress component sxAK I under plane stress „c ÕCs1Ä0.5…

u ~deg! Iso-Iso.Mat Ort-Ort.Mat u ~deg! Iso-Iso.Mat Ort-Ort.Mat

01 .634439 .6344413 02 1.503408 1.503400
10 .7468052 .7468115 210 1.302192 1.302208
20 .8190195 .8190226 220 1.064251 1.064264
30 .8481339 .8481356 230 .8146014 .8146035
40 .8359575 .8359596 240 .5795064 .5794959
50 .7908002 .7907966 250 .382161 .3821618
60 .7287843 .7287816 260 .2386282 .2386150
70 .6730161 .6730131 270 .1543843 .1543860
80 .6487839 .6487848 280 .1229814 .1229963
90 .6748663 .6748638 290 .1271673 .1271672

100 .7547211 .7547229 2100 .1428393 .1428359
110 .8735087 .8735143 2110 .1447629 .1447555
120 1.00348 1.003481 2120 .1124064 .1124141
130 1.114235 1.114237 2130 .0342066 .0341946
140 1.181642 1.181642 2140 2.0908023 2.0908047
150 1.191849 1.191844 2150 2.2536999 2.2537051
160 1.14096 1.140951 2160 2.4382891 2.4383058
170 1.032682 1.032665 2170 2.6245366 2.6245342
180 .8758961 .8758781 2180 2.7919333 2.7919445
228 Õ Vol. 67, MARCH 2000
EL2 :ET2 :GLT259.600001:9.6:4,K̄ I5K I /A2pr

a15a2590 deg.

EL , ET , GLT , andnLT(2«T /«L) are elastic constants and Poi
son’s ratio,L and T are, respectively, the fiber direction and th
transverse direction to the fiber, whilea is the angle of the fiber
direction with respect to the crack direction. The above orthot
pic materials are almost like the isotropic ones (ml' i and ms
' i in c/Cs150). As shown in Table 1, when the orthotrop
materials have isotropic characteristics, the fields derived in
study are the same as the Deng’s~@2#! results of the interfacial
propagating crack in isotropic bimaterials.
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